Внешние и внутренние силы действующие на материальную точку. Система материальных точек

На земной поверхности постоянно действуют силы, которые разрушают скалы, размывают берега, переносят массы раздробленных и растворенных минеральных веществ, осаждают и накапливают слои осадков. Подобные процессы, господствующие на поверхности Земли , называются внешними или экзогенными . С давних пор от них отделяют глубинные, внутренние , или эндогенные , силы, источники которых находятся в недрах планеты. Извне воздействуют на Землю силы притяжения Луны и Солнца . Сила притяжения других небесных тел очень мала, и ею можно пренебречь. Однако некоторые ученые считают, что в геологической истории Земли за десятки миллионов лет гравитационные воздействия из космоса могут значительно возрастать. В результате их происходят, например, морские приливы. Некоторые ученые к экзогенным силам относят и земное притяжение, из-за которого происходят оползни и обвалы, стекают воды, перемещаются ледники и т. д.

Экзогенные силы разрушают и химически преобразуют горные породы , переносят рыхлые и растворимые продукты разрушения водой, ветром и ледниками. Одновременно идет отложение, накопление (аккумуляция) продуктов разрушения на суше или на дне водоемов в виде осадков (в дальнейшем они преобразуются в осадочные горные породы). Внешние силы участвуют, в сочетании с внутренними, в формировании рельефа Земли , в образовании осадочных пород и многих типов месторождений полезных ископаемых (например, руд алюминия - бокситов, никеля и др.).

Обычно считается, что от соотношения движений земной коры и денудации зависит направление развития рельефа : при преобладании разрушения и денудации над тектоническими процессами происходит общее нивелирование и понижение рельефа . Горы постепенно превращаются в пенеплены - слабо всхолмленные, местами почти ровные, предельные равнины. Под влиянием новейших тектонических движений пенеплены поднимаются, образуя высокие плоские хребты (например в Саянах, в Тянь-Шане), или опускаются, покрываясь толщей коры выветривания.

Земная поверхность, согласно подобным представлениям, выглядит как арена борьбы внутренних и внешних сил планеты. Первые вызывают движения в земной коре, вторые - разрушают поверхность гор и перераспределяют продукты разрушения. Выходит, будто внутренние силы планеты созидательные, «главные», без которых замерла бы жизнь Земли , сгладился бы рельеф и повсюду расстилалась гладь Мирового океана . Так ли это?

Прежде чем ответить на этот вопрос, познакомимся с внутренними (эндогенными) силами. У них главный источник энергии - внутренняя теплота в недрах Земли . К внутренним силам относятся: распад радиоактивных веществ, различные химические реакции и превращения вещества в недрах, внезапные разрядки возникающих в толще планеты напряжений. Эндогенные силы вызывают движения магмы, вулканическую деятельность, метаморфизм горных пород , землетрясения , медленные поднятия и опускания земной коры, ее горизонтальные перемещения, разрывы в толще горных пород , образование месторождений полезных ископаемых и т. д.

Они ярко проявляются в магматизме - сложных процессах возникновения и движения магмы (расплавленной огненно-жидкой массы) в верхние горизонты коры и к поверхности Земли . Она имеет преимущественно силикатный состав и образуется в земной коре или (редко) в верхней мантии. Главные типы магм: основная (базальтовая) и кислая (гранитная). Извергаясь на поверхность Земли , магма образует вулканы .

Это эффузивный магматизм.

Магма не всегда изливается, а часто внедряется в толщу горных пород и там медленно остывает. Так образуются интрузии . Слагающие их магматические породы называют интрузивными. Формируясь в условиях медленного охлаждения магмы под большим давлением, интрузивные породы приобретают правильную равномерно-зернистую структуру. В процессе денудации массивы интрузивных пород могут оказаться на земной поверхности. Например, очень много гранитных массивов в Забайкалье, есть они на Урале, в Украине, в Средней Азии.

Из магматических внедрений наиболее известны лакколиты - грибообразные или подобные караваям интрузии, приподнявшие осадочные слои. Лакколиты залегают неглубоко, и приподнятые слои иногда образуют огромные купола - диаметром от сотен метров до 5-6 км и более. Широко известны лакколиты района Минеральных Вод на Северном Кавказе, поднимающиеся среди ровного плато: горы Железная, Бештау, Машук и др.; Аюдаг - в Крыму.

Дайки - результат внедрения магмы по трещинам в земную кору. Нередко породы, слагающие их, бывают более твердыми, чем окружающие; поэтому при выветривании дайки остаются в виде стены. Толщина их может достигать десятков и даже сотен метров. Трещинные интрузии небольшой мощности и неправильной формы называют магматическими жилами . Иногда в узле пересечения трещин залегают штоки , подобные столбам. Крупные массивы глубинных горных пород , главным образом гранитоидов, удлиненно-овальной формы, залегающих на значительной глубине, называются батолитами. Они достигают 2000 км в длину и 100 км и более в ширину. С гранитными батолитами связаны месторождения олова, вольфрама, золота и многих других металлов.

Медленные поднятия и опускания обширных участков земной коры сопровождают всю историю Земли , они происходят, конечно, и в наши дни. Направление этих колебательных, или эпейрогенических, движений (эпейрогенез) с течением времени изменяется: поднимающиеся участки начинают погружаться, и наоборот. Скорость таких движений настолько мала, что за короткий отрезок времени их заметить трудно. Скорости выражаются долями миллиметров в год, а предельные - сантиметрами в год. Классический пример опусканий - территория Голландии. Значительная ее часть находится ниже уровня моря и от вторжения моря защищена дамбами. Они надстраиваются по мере опускания суши. Скорость опускания здесь - 0,5-0,7 см/год. А поднимается земная кора, например, в Швеции и Финляндии, где по берегам Ботнического залива многие порты оказались удаленными от моря на значительное расстояние.

Внутренние силы работают в недрах планеты и совершенно скрыты от наших глаз. Эпейрогенические колебательные движения столь неторопливы, что заметить их также нельзя. Конечно, некоторые проявления внутренней жизни Земли видны на поверхности (вулканы) или ощущаются людьми (землетрясения). А вот интрузии, дайки, жилы - результаты вековых движений поверхности, разрывы земной коры и многое другое - разве все это может наблюдать краевед? Да, может. Особенно в горной местности, на обнажениях, где хорошо видны, вскрыты эрозией слои горных пород, жилы, штоки, дайки и т. п. В разных районах нашей страны имеются обнажения горных пород, в которых выходят на поверхность отложения самых разных геологических эпох: от древнейших пород (они обнажаются в пределах Балтийского щита, Восточной Сибири, Украинского кристаллического массива) до современных, созданных в результате деятельности человека.

В конце прошлого века было открыто явление радиоактивности. Энергия распада ядер очень велика, радиоактивных минералов в недрах много. Ученые стали подсчитывать мощности внешних и внутренних источников энергии Земли . Выяснилось, что среди них абсолютно преобладает лучистая энергия Солнца . Перехватываемая Землей лучистая энергия Солнца в тысячи раз превышает все внутренние источники, вместе взятые. Выходит, внешние силы должны играть главную роль в жизни нашей планеты. По мнению советского ученого-естествоиспытателя В. И. Вернадского, в глубинах планеты ниже земной коры геологическая активность быстро затухает. Действительно, почти все эпицентры землетрясений и вулканические очаги приурочены к земной коре и отчасти к подстилающему ее слою астеносферы (области относительно низкой вязкости подкорового вещества, которое частично находится в пластичном состоянии). Но ведь, как известно, земная кора - это область былых биосфер. Почти все слагающие ее породы некогда побывали на земной поверхности, подверглись «обработке» внешними силами и накопили в той или иной форме солнечную энергию. А затем, опускаясь на многие километры в недра Земли , под огромным давлением вышележащих пород они отдают накопленную энергию. Теперь она становится как бы внутренней тепловой (геотермальной) энергией Земли, вызывая множество геологических процессов как в глубинах (например, магматизм), так и на поверхности (вулканизм и др.).

    Строение вулкана: 1 - кальдера; 2 - сомма; 3 - конус, 4 - кратер; 5 - жерло. 6 - лавовый поток; 7 - лавовый очаг.

    Залегание магматических пород: Б - батолит; Л - лакколит; Ш - шток; Ж - жила; П - покров.

    Типы вулканов: 1 - площадной; 2 - трещинный; 3 - гавайский; 4 - стромболианский; 5 - везувианский; 6 - плинианский.

Внешняя сила - это мера взаимодействия между телами. В задачах сопротивления материалов внешние силы считаются всегда заданными. К внешним силам относятся также реакции опор (связей).

Внешние силы делятся на объемные и поверхностные . Объемные силы при­ложены к каждой частице тела по всему его объему. Примером объемных сил являются силы веса и силы инерции. Часто задают простой закон изменения этих сил по объему. Объемные силы определяются их интенсивностью, как предел отношения равнодействующей сил в рассматриваемом элементарном объеме к величине этого объема, стремящего к нулю: \lim_{\Delta V\to0}{\Delta F \over \Delta V} и измеряются в Н/м 3 .

Поверхностные силы делятся на сосредоточенные и распределенные .
Сосре­доточенными считаются силы, приложенные к малой поверхности, размеры которой малы по сравнению с размерами тела. Однако при расчете напряжений вблизи зоны приложения силы нагрузку следует считать распределенной. К сосредоточенным нагрузкам относят не только сосредоточенные силы, но и пары сил, примером которых можно счи­тать нагрузку, создаваемую гаечным ключом при закручивании гайки. Сосредоточенные усилия измеряются в кН .
Распределенные нагрузки бывают распределенными по длине и по площади. К распределенным нагрузкам относят давление жидкости, газа или другого тела. Распределенные силы измеряются, как правило, в кН/м (распределенные по длине) и кН/м 2 (распределенные по площади).

Все внешние нагрузки можно разделить на статические и динамические .
Статическими считаются нагрузки, в процессе приложения которых возникающие силы инерции малы и ими можно пренебречь.
Если силы инерции велики (к примеру – землетрясение) – нагрузки считаются динамическими . Примерами таких нагрузок также могут служить внезапно приложенные нагрузки , ударные и повторно-переменные .
Внезапно приложенные нагрузки передаются на сооружение сразу
полной своей величиной (к примеру давление колес локомотива, входящего на мост).
Ударные нагрузки возникают при быстром изменении скорости соприкасающихся элементов конструкции, например» при ударе бабы копра о сваю при ее забивке.
Повторно-переменные нагрузки действуют на элементы конструкции, повторяясь значительное число раз. Таковы, например, повторные давления пара, попеременно растягивающие и сжимающие шток поршня и шатун паровой машины. Во многих случаях нагрузка представляет собой комбинацию нескольких видов динамических воздействий.

Внутренние силы

В результате действия внешних сил в теле возникают внутренние силы .
Внутренняя сила - силы взаимодействия между частями одного тела, возникающие под действием внешних сил.

Внутренние силы являются самоуравновешенными, поэтому они не видны и не влияют на равновесие тела. Определяют внутренние силы методом сечения.

Внешние нагрузки приводят к следующим видам напряженно-деформированного состояния:

  • Изгиб
  • Кручение

Системой материальных точек (или тел) называется любая, выделенная нами их совокупность. Каждое тело системы может взаимодействовать как с телами, принадлежащими этой системе, так и с телами, не входящими в нее. Силы, действующие между телами системы, называются внутренними силами. Силы, действующие на тела системы со стороны тел, не входящих в данную систему, называются внешними силами. Система называется замкнутой (или изолированной ), если она включает в себя все взаимодействующие тела. Таким образом, в замкнутой системе действуют только внутренние силы.

Строго говоря, замкнутых систем в природе не существует. Однако практически всегда можно так сформулировать задачу, чтобы внешними силами можно было пренебречь (из-за их малости или скомпенсированное™, т.е. взаимоуничтожения) по сравнению с внутренними. Выбор воображаемой поверхности, ограничивающей систему, является прерогативой (свободной волей) субъекта, т.е. должен осуществляться исследователем на основе анализа внутренних и внешних сил. Одна и та же система тел может считаться замкнутой или открытой в различных условиях, зависящих от постановки задачи и от заданной точности ее решения.

В замкнутой системе тел все явления описываются с помощью простых и общих законов, поэтому, если допускают условия задачи, то следует пренебречь малым действием внешних сил и рассматривать систему как замкнутую. Это и есть то, что часто называют физической моделью объективной реальности.

Частным случаем идеальной механической системы является абсолютно твердое тело, которое не может ни деформироваться, ни изменяться в объеме, ни тем более разрушаться (очевидно, что таких тел в природе нет): расстояние между отдельными материальными точками, образующими такую систему, остаются постоянными при всех видах взаимодействия.

Теперь введем очень важное в механике понятие центра масс (центра инерции) системы материальных точек. Возьмем систему, состоящую из N материальных точек. Центром масс механической системы называется точка С, радиус-вектор положения которой в произвольно выбранной системе отсчета задан соотношением:

где /и, - масса материальной точки; /; - радиус-вектор, проведенный из начала координат системы отсчета в точку, где находится т,.

Если поместить начало координат в точку С, то Rc = 0 и тогда

что приводит к другому определению центра масс: центр масс механической системы - это такая точка, для которой сумма произведений масс всех материальных точек, образующих механическую систему, на их радиус-векторы, проведенные из этой точки, как начала коор

динат, равны нулю. На рисунке 1.

Рис. 1.11.

1 это проиллюстрировано на примере системы, состоящей из двух тел (например двухатомной молекулы).

Радиус-вектор Rc этой системы МТ в декартовой системе координат имеет координаты Х с, Y c , Z c (общий трехмерный случай). При этом положение центра масс может быть определено следующими уравнениями :


где М - суммарная масса механической системы МТ,

До сих пор мы оперировали совокупностью N дискретных материальных точек. А как быть с определением центра масс протяженного тела, масса которого распределена в пространстве непрерывно? Естественно перейти в этом случае от суммирования в (1.68)-(1.70) к интегрированию. При этом в векторной форме мы получим


Для имеющих плоскость симметрии (как в примере) тел центр масс располагается в этой плоскости. Если тело обладает осью симметрии (ось х в нашем примере), то центр масс непременно должен лежать на этой оси, если тело обладает центром симметрии (например, как в случае однородного шара), то этот центр должен совпадать с положением центра масс.

Для того чтобы определить, как движется центр масс системы, запишем выражения (1.70) в виде

=MZ C и продифференцируем их дважды по времени (все мас-

сы полагаем постоянными)

Сопоставив полученные равенства с выражениями (1.51), получаем


или (в векторной форме)


Эти уравнения, называемые дифференциальными уравнениями движения центра масс, совпадают по структуре с дифференциальными уравнениями движения материальной точки. Это позволяет сформулировать теорему о движении центра масс: центр масс механической системы движется как материальная точка, масса которой равна массе всей системы и к которой приложены все внешние силы, действующие на систему.

Если на систему не действуют внешние силы т.е. действие внешних сил скомпенсировано), то

т.е. скорость движения центра масс замкнутой системы всегда остается постоянной (сохраняется). Внутренние силы на движение центра масс системы никакого воздействия не оказывают. Если, в частности, в данной инерциальной системе координат центр масс замкнутой системы в один из моментов времени покоится, то это значит, что он будет находиться в покое всегда.

Многие задачи механики решаются наиболее просто в системе координат, связанной с центром масс.

  • При выбранной в примере системе координат Zc = 0 (плоский одномерный случай).

Само выветривание не приводит к образованию форм рельефа, а лишь превращает твёрдые породы в рыхлые и подготавливает материал к передвижению. Результатом такого передвижения являются различные формы рельефа.

Действие силы тяжести

Под действием силы тяжести породы, разрушенные , перемещаются но поверхности Земли с возвышенных участков в более низкие. Каменные глыбы, щебень, песок часто устремляются вниз с крутых горных склонов, порождая обвалы и осыпи.

Под действием силы тяжести возникают оползни и сели . Они переносят огромные массы пород. Оползни представляют собой сползание масс горных пород вниз по склону. Они образуются по берегам водоёмов, на склонах холмов и гор после сильных дождей или таяния снега. Верхний рыхлый слой горных пород становится тяжелее при насыщении водой и сползает по нижнему, не пропускающему воду слою. Ливневые дожди и быстрое таяние снегов также вызывают в горах грязекаменные потоки сели. Они с разрушительной силой движутся вниз по склону, снося всё на своём пути. Оползни и сели приводят к авариям и гибели людей.

Деятельность текучих вод

Важнейший преобразователь рельефа - движущаяся вода, которая выполняет большую разрушительную и созидательную работу. Реки прорезают широкие речные долины на равнинах, глубокие каньоны и ущелья в горах. Небольшие водные потоки создают на равнинах овражно-балочный рельеф.

Текучие поды не только создают углубления на поверхности, но и захватывают обломки горных пород, переносят их и откладывают во впадинах или и собственных долинах. Так из речных наносов вдоль рек формируются плоские равнины

Карст

В тех районах, где близко к земной поверхности залегают легкорастворимые горные породы (известняки, гипс, мел, каменная соль), наблюдаются удивительные природные явления. Реки и ручьи, растворяя горные породы, исчезают с поверхности и устремляются в глубь земных недр. Явления, связанные с растворением горных пород поверхностными и , называются карстом. Растворение пород приводит к образованию карстовых форм рельефа: пещер, пропастей, шахт, воронок, иногда заполненных водой. Красивейшие сталактиты (многометровые известковые «сосульки») и сталагмиты («колонны» из известковых наростов) образуют в пещерах причудливые скульптуры.

Деятельность ветра

На открытых безлесных пространствах ветер перемещает гигантские скопления песчаных или глинистых частиц, создавая эоловые формы рельефа (Эол бог покровитель ветра в древнегреческой мифологии). Большинство песчаных покрыто барханами песчаными холмами. Иногда они достигают высоты 100 метров. Сверху бархан имеет вид серпа.

Двигаясь с большой скоростью, частички песка и щебня обрабатывают каменные глыбы подобно наждачной бумаге. Этот процесс идёт быстрее у поверхности земли, где песчинок больше.

В результате деятельности ветра могут накапливаться плотные отложения из пылеватых частиц.
Такие однородные пористые породы серовато-жёлтого цвета называются лёссами.

Деятельность ледников

Деятельность человека

Большую роль в изменении рельефа играет человек. Особенно сильно изменены его деятельностью равнины. Люди издавна селятся на равнинах, они строят дома и дороги, засыпают овраги, сооружают насыпи. Человек изменяет рельеф при добыче : выкапываются огромные карьеры, насыпаются холмы-терриконы - отвалы пустой породы.

Масштабы человеческой деятельности могут быть сравнимы с природными процессами. Например, реки вырабатывают свои долины, вынося горные породы, а человек строит сопоставимые по размерам каналы.

Формы рельефа, созданные человеком, называются антропогенными. Антропогенное изменение рельефа происходит с помощью современной техники и довольно быстрыми темпами.

Движущаяся вода и ветер выполняют огромную разрушительную работу, которая называется (от латинского слова erosio разъедание). Эрозия земель - природный процесс. Однако он усиливается в результате хозяйственной деятельности людей: распашки склонов, вырубки лесов, неумеренного выпаса скота, прокладки дорог. Только за последние сто лет эрозии подверглась третья часть всех обрабатываемых земель мира. Наибольших эти процессы достигли в крупных земледельческих районах России, Китая и США.

Формирование рельефа Земли

Особенности рельефа Земли

ВНЕШНИЕ И ВНУТРЕННИЕ СИЛЫ . В механике внешними силами по отношению к данной системе материальных точек (т. е. такой совокупности материальных точек, в которой движение каждой точки зависит от положений или движений всех остальных точек) называются те силы, которые представляют собой действие на эту систему других тел (других систем материальных точек), не включенных нами в состав данной системы. Внутренними силами являются силы взаимодействия между отдельными материальными точками данной системы. Подразделение сил на внешние и внутренние является совершенно условным: при изменении заданного состава системы некоторые силы, ранее бывшие внешними, могут стать внутренними, и обратно. Так, например, при рассмотрении движения системы, состоящей из земли и ее спутника луны, силы взаимодействия между этими телами будут внутренними силами для этой системы, а силы притяжения солнца, остальных планет, их спутников и всех звезд будут внешними силами по отношению к указанной системе. Но если изменить состав системы и рассматривать движение солнца и всех планет как движение одной общей системы, то внешними силами будут только силы притяжений, оказываемых звездами; все же силы взаимодействия между планетами, их спутниками и солнцем становятся для этой системы силами внутренними.

Точно так же, если при движении паровоза выделим поршень парового цилиндра как отдельную систему материальных точек, подлежащую нашему рассмотрению, то давление пара на поршень по отношению к нему явится внешней силой, и то же давление пара будет одной из внутренних сил, если будем рассматривать движение всего паровоза в целом; в этом случае внешними силами по отношению ко всему паровозу, принятому за одну систему, будут: трение между рельсами и колесами паровоза, сила тяжести паровоза, реакция рельсов и сопротивление воздуха; внутренними силами будут все силы взаимодействия между частями паровоза, например, силы взаимодействия между паром и поршнем цилиндра, между ползуном и его параллелями, между шатуном и пальцем кривошипа, и т. п. Как видим, по существу нет различия между внешними и внутренними силами, относительное же различие между ними определяется лишь в зависимости от того, какие тела мы включаем в рассматриваемую систему и какие считаем не входящими в состав системы. Однако указанное относительное различие сил имеет весьма существенное значение при исследовании движения данной системы; по третьему закону Ньютона (о равенстве действия и противодействия), внутренние силы взаимодействия между каждыми двумя материальными точками системы равны по величине и направлены по одной и той же прямой в противоположные стороны; благодаря этому при разрешении различных вопросов о движении системы материальных точек возможно исключить все внутренние силы из уравнений движения системы и тем самым сделать возможным самое исследование о движении всей системы. Этот метод исключения внутренних, в большинстве случаев неизвестных, сил связи имеет существенное значение при выводах различных законов механики системы.