Как найти решение неравенства. Линейные неравенства, примеры, решения

Вида ах 2 + bх + 0 0, где (вместо знака > может быть, разумеется, любой другой знак неравенства). Всеми необходимыми для решения таких неравенств фактами теории мы с вами располагаем, в чем сейчас и убедимся.

Пример 1 . Решить неравенство:

а) х 2 - 2х - 3 >0; б) х 2 - 2х - 3 < 0;
в) х 2 - 2х - 3 > 0; г) х 2 - 2х - 3 < 0.
Решение,

а) Рассмотрим параболу у = х 2 - 2х - 3, изображенную на рис. 117.

Решить неравенство х 2 - 2х - 3 > 0 - это значит ответить на вопрос, при каких значениях х ординаты точек параболы положительны.

Замечаем, что у > 0, т. е. график функции расположен выше оси х, при х < -1 или при х > 3.

Значит, решениями неравенства служат все точки открытого луча (- 00 , - 1), а также все точки открытого луча (3, +00).

Используя знак U (знак объединения множеств), ответ можно записать так: (-00 , - 1) U (3, +00). Впрочем, ответ можно записать и так: х < - 1; х > 3.

б) Неравенство х 2 - 2х - 3 < 0, или у < 0, где у = х 2 - 2х - 3, также можно решить с помощью рис. 117: график расположен ниже оси х, если -1 < х < 3. Поэтому решениями данного неравенства служат все точки интервала (- 1, 3).

в) Неравенство х 2 - 2х - 3 > 0 отличается от неравенства х 2 - 2х - 3 > 0 тем, что в ответ надо включить и корни уравнения х 2 - 2х - 3 = 0, т. е. точки х = -1

и х = 3. Таким образом, решениями данного нестрогого неравенства являются все точки луча (-00 , - 1], а также все точки луча .

Практичные математики обычно говорят так: зачем нам, решая неравенство ах 2 + bх + с > 0, аккуратно строить параболу график квадратичной функции

у = ах 2 + bх + с (как это было сделано в примере 1)? Достаточно сделать схематический набросок графика, для чего следует лишь найти корни квадратного трехчлена (точки пересечения параболы с осью х) и определить, куда направлены ветви параболы - вверх или вниз. Этот схематический набросок даст наглядное истолкование решению неравенства.

Пример 2. Решить неравенство - 2х 2 + Зх + 9 < 0.
Решение.

1) Найдем корни квадратного трехчлена - 2х 2 + Зх + 9: х 1 = 3; х 2 = - 1,5.

2) Парабола, служащая графиком функции у = -2х 2 + Зх + 9, пересекает ось х в точках 3 и - 1,5, а ветви параболы направлены вниз, поскольку старший коэффициент - отрицательное число - 2. На рис. 118 представлен набросок графика.

3) Используя рис. 118, делаем вывод: у < 0 на тех промежутках оси х, где график расположен ниже оси х, т.е. на открытом луче (-оо, -1,5) или на открытом луче C, +оо).
Ответ: х < -1,5; х > 3.

Пример 3. Решить неравенство 4х 2 - 4х + 1 < 0.
Решение.

1) Из уравнения 4х 2 - 4х + 1 = 0 находим .

2) Квадратный трехчлен имеет один корень ; это значит, что парабола, служащая графиком квадратного трехчлена, не пересекает ось х, а касается ее в точке . Ветви параболы направлены вверх (рис. 119.)

3) С помощью геометрической модели, представленной на рис. 119, устанавливаем, что заданное неравенство выполняется только в точке , поскольку при всех других значениях х ординаты графика положительны.
Ответ: .
Вы, наверное, заметили, что фактически в примерах 1, 2, 3 использовался вполне определенный алгоритм решения квадратных неравенств, оформим его.

Алгоритм решения квадратного неравенства ах 2 + bх + 0 0 (ах 2 + bх + с < 0)

На первом шаге этого алгоритма требуется найти корни квадратного трехчлена. Но ведь корни могут и не существовать, что же делать? Тогда алгоритм неприменим, значит, надо рассуждать как-то по-другому. Ключ к этим рассуждениям дают следующие теоремы.

Иными словами, если D < 0, а > 0, то неравенство ах 2 + bх + с > 0 выполняется при всех х; напротив, неравенство ах 2 + bх + с < 0 не имеет решений.
Доказательство. Графиком функции у = ах 2 + bх + с является парабола, ветви которой направлены вверх (поскольку а > 0) и которая не пересекает ось х, так как корней у квадратного трехчлена по условию нет. График представлен на рис. 120. Видим, что при всех х график расположен выше оси х, а это значит, что при всех х выполняется неравенство ах 2 + bх + с > 0, что и требовалось доказать.

Иными словами, если D < 0, а < 0, то неравенство ах 2 + bх + с < 0 выполняется при всех х; напротив, неравенство ах 2 + bх + с > 0 не имеет решений.

Доказательство. Графиком функции у = ах 2 + bх +с является парабола, ветви которой направлены вниз (поскольку а < 0) и которая не пересекает ось х, так как корней у квадратного трехчлена по условию нет. График представлен на рис. 121. Видим, что при всех х график расположен ниже оси х, а это значит, что при всех х выполняется неравенство ах 2 + bх + с < 0, что и требовалось доказать.

Пример 4 . Решить неравенство:

а) 2х 2 - х + 4 >0; б) -х 2 + Зх - 8 >0.

а) Найдем дискриминант квадратного трехчлена 2х 2 - х + 4. Имеем D = (-1) 2 - 4 2 4 = - 31 < 0.
Старший коэффициент трехчлена (число 2) положителен.

Значит, по теореме 1, при всех х выполняется неравенство 2x 2 - х + 4 > 0, т. е. решением заданного неравенства служит вся (-00 , + 00).

б) Найдем дискриминант квадратного трехчлена - х 2 + Зх - 8. Имеем D = З2 - 4 (- 1) (- 8) = - 23 < 0. Старший коэффициент трехчлена (число - 1) отрицателен. Следовательно, по теореме 2, при всех х выполняется неравенство - х 2 + Зx - 8 < 0. Это значит, что неравенство - х 2 + Зх - 8 0 не выполняется ни при каком значении х, т. е. заданное неравенство не имеет решений.

Ответ: а) (-00 , + 00); б) нет решений.

В следующем примере мы познакомимся еще с одним способом рассуждений, который применяется при решении квадратных неравенств.

Пример 5. Решить неравенство Зх 2 - 10х + 3 < 0.
Решение. Разложим квадратный трехчлен Зx 2 - 10x + 3 на множители. Корнями трехчлена являются числа 3 и , поэтому воспользовавшись ах 2 + bх + с = а (х - x 1)(x - х 2),получим Зx 2 - 10х + 3 = 3(х - 3) (х - )
Отметим на числовой прямой корни трехчлена: 3 и (рис. 122).

Пусть х > 3; тогда x-3>0 и x->0, а значит, и произведение 3(х - 3)(х - ) положительно. Далее, пусть < х < 3; тогда x-3< 0, а х- >0. Следовательно, произведение 3(х-3)(х-) отрицательно. Пусть, наконец, х <; тогда x-3< 0 и x- < 0. Но в таком случае произведение
3(x -3)(x -) положительно.

Подводя итог рассуждениям, приходим к выводу: знаки квадратного трехчлена Зx 2 - 10х + 3 изменяются так, как показано на рис. 122. Нас же интересует, при каких х квадратный трехчлен принимает отрицательные значения. Из рис. 122 делаем вывод: квадратный трехчлен Зx 2 - 10х + 3 принимает отрицательные значения для любого значения х из интервала (, 3)
Ответ (, 3), или < х < 3.

Замечание. Метод рассуждений, который мы применили в примере 5, обычно называют методом интервалов (или методом промежутков). Он активно используется в математике для решения рациональных неравенств. В 9-м классе мы изучим метод интервалов более детально.

Пример 6 . При каких значениях параметра р квадратное уравнение х 2 - 5х + р 2 = 0:
а) имеет два различных корня;

б) имеет один корень;

в) не имеет -корней?

Решение. Число корней квадратного уравнения зависит от знака его дискриминанта D. В данном случае находим D = 25 - 4р 2 .

а) Квадратное уравнение имеет два различных корня, если D>0, значит, задача сводится к решению неравенства 25 - 4р 2 > 0. Умножим обе части этого неравенства на -1 (не забыв изменить при этом знак неравенства). Получим равносильное неравенство 4р 2 - 25 < 0. Далее имеем 4 (р - 2,5) (р + 2,5) < 0.

Знаки выражения 4(р - 2,5) (р + 2,5) указаны на рис. 123.

Делаем вывод, что неравенство 4(р - 2,5)(р + 2,5) < 0 выполняется для всех значений р из интервала (-2,5; 2,5). Именно при этих значениях параметра р данное квадратное уравнение имеет два различных корня.

б) квадратное уравнение имеет один корень, если D - 0.
Как мы установили выше, D = 0 при р = 2,5 или р = -2,5.

Именно при этих значениях параметра р данное квадратное уравнение имеет только один корень.

в) Квадратное уравнение не имеет корней, если D < 0. Решим неравенство 25 - 4р 2 < 0.

Получаем 4р 2 - 25 > 0; 4 (р-2,5)(р + 2,5)>0, откуда (см. рис. 123) р < -2,5; р > 2,5. При этих значениях параметра р данное квадратное уравнение не имеет корней.

Ответ: а) при р (-2,5, 2,5);

б) при р = 2,5 илир = -2,5;
в) при р < - 2,5 или р > 2,5.

Мордкович А. Г., Алгебра . 8 кл.: Учеб. для общеобразоват. учреждений.- 3-е изд., доработ. - М.: Мнемозина, 2001. - 223 с: ил.

Помощь школьнику онлайн , Математика для 8 класса скачать , календарно-тематическое планирование

см. также Решение задачи линейного программирования графически , Каноническая форма задач линейного программирования

Система ограничений такой задачи состоит из неравенств от двух переменных:
и целевая функция имеет вид F = C 1 x + C 2 y , которую необходимо максимизировать.

Ответим на вопрос: какие пары чисел ( x ; y ) являются решениями системы неравенств, т. е. удовлетворяют каждому из неравенств одновременно? Другими словами, что значит решить систему графически?
Предварительно необходимо понять, что является решением одного линейного неравенства с двумя неизвестными.
Решить линейное неравенство с двумя неизвестными – это значит определить все пары значений неизвестных, при которых неравенство выполняется.
Например, неравенству 3x – 5 y ≥ 42 удовлетворяют пары (x , y ) : (100, 2); (3, –10) и т. д. Задача состоит в нахождении всех таких пар.
Рассмотрим два неравенства: ax + by c , ax + by c . Прямая ax + by = c делит плоскость на две полуплоскости так, что координаты точек одной из них удовлетворяют неравенству ax + by >c , а другой неравенству ax + +by <c .
Действительно, возьмем точку с координатой x = x 0 ; тогда точка, лежащая на прямой и имеющая абсциссу x 0 , имеет ординату

Пусть для определенности a < 0, b >0, c >0. Все точки с абсциссой x 0 , лежащие выше P (например, точка М ), имеют y M >y 0 , а все точки, лежащие ниже точки P , с абсциссой x 0 , имеют y N <y 0 . Поскольку x 0 –произвольная точка, то всегда с одной стороны от прямой будут находиться точки, для которых ax + by > c , образующие полуплоскость, а с другой стороны – точки, для которых ax + by < c .

Рисунок 1

Знак неравенства в полуплоскости зависит от чисел a , b , c .
Отсюда вытекает следующий способ графического решения систем линейных неравенств от двух переменных. Для решения системы необходимо:

  1. Для каждого неравенства выписать уравнение, соответствующее данному неравенству.
  2. Построить прямые, являющиеся графиками функций, задаваемых уравнениями.
  3. Для каждой прямой определить полуплоскость, которая задается неравенством. Для этого взять произвольную точку, не лежащую на прямой, подставить ее координаты в неравенство. если неравенство верное, то полуплоскость, содержащая выбранную точку, и является решением исходного неравенства. Если неравенство неверное, то полуплоскость по другую сторону прямой является множеством решений данного неравенства.
  4. Чтобы решить систему неравенств, необходимо найти область пересечения всех полуплоскостей, являющихся решением каждого неравенства системы.

Эта область может оказаться пустой, тогда система неравенств не имеет решений, несовместна. В противном случае говорят, что система совместна.
Решений может быть конечное число и бесконечное множество. Область может представлять собой замкнутый многоугольник или же быть неограниченной.

Рассмотрим три соответствующих примера.

Пример 1. Решить графически систему:
x + y – 1 ≤ 0;
–2 x – 2y + 5 ≤ 0.

  • рассмотрим уравнения x+y–1=0 и –2x–2y+5=0 , соответствующие неравенствам;
  • построим прямые, задающиеся этими уравнениями.

Рисунок 2

Определим полуплоскости, задаваемые неравенствами. Возьмем произвольную точку, пусть (0; 0). Рассмотрим x + y– 1 0, подставим точку (0; 0): 0 + 0 – 1 ≤ 0. значит, в той полуплоскости, где лежит точка (0; 0), x + y 1 ≤ 0, т.е. полуплоскость, лежащая ниже прямой, является решением первого неравенства. Подставив эту точку (0; 0), во второе, получим: –2 ∙ 0 – 2 ∙ 0 + 5 ≤ 0, т.е. в полуплоскости, где лежит точка (0; 0), –2x – 2y + 5≥ 0, а нас спрашивали, где –2x – 2y + 5 ≤ 0, следовательно, в другой полуплоскости – в той, что выше прямой.
Найдем пересечение этих двух полуплоскостей. Прямые параллельны, поэтому плоскости нигде не пересекаются, значит система данных неравенств решений не имеет, несовместна.

Пример 2. Найти графически решения системы неравенств:

Рисунок 3
1. Выпишем уравнения, соответствующие неравенствам, и построим прямые.
x + 2y – 2 = 0

x 2 0
y 0 1

y x – 1 = 0
x 0 2
y 1 3

y + 2 = 0;
y = –2.
2. Выбрав точку (0; 0), определим знаки неравенств в полуплоскостях:
0 + 2 ∙ 0 – 2 ≤ 0, т.е. x + 2y – 2 ≤ 0 в полуплоскости ниже прямой;
0 – 0 – 1 ≤ 0, т.е. y x – 1 ≤ 0 в полуплоскости ниже прямой;
0 + 2 =2 ≥ 0, т.е. y + 2 ≥ 0 в полуплоскости выше прямой.
3. Пересечением этих трех полуплоскостей будет являться область, являющаяся треугольником. Нетрудно найти вершины области, как точки пересечения соответствующих прямых


Таким образом, А (–3; –2), В (0; 1), С (6; –2).

Рассмотрим еще один пример, в котором получившаяся область решения системы не ограничена.

Метод интервалов – простой способ решения дробно-рациональных неравенств. Так называются неравенства, содержащие рациональные (или дробно-рациональные) выражения, зависящие от переменной.

1. Рассмотрим, например, такое неравенство

Метод интервалов позволяет решить его за пару минут.

В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.

Метод интервалов основан на следующем свойстве дробно-рациональной функции.

Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует.

Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида .

Где и - корни квадратного уравнения .

Рисуем ось и расставляем точки, в которых числитель и знаменатель обращаются в нуль.

Нули знаменателя и - выколотые точки, так как в этих точках функция в левой части неравенства не определена (на нуль делить нельзя). Нули числителя и - закрашены, так как неравенство нестрогое. При и наше неравенство выполняется, так как обе его части равны нулю.

Эти точки разбивают ось на промежутков.

Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным - либо "плюс", либо "минус".

И поэтому для определения знака функции на каждом таком промежутке мы берем любую точку, принадлежащую этому промежутку. Ту, которая нам удобна.
. Возьмем, например, и проверим знак выражения в левой части неравенства. Каждая из "скобок" отрицательная. Левая часть имеет знак .

Следующий промежуток: . Проверим знак при . Получаем, что левая часть поменяла знак на .

Возьмем . При выражение положительно - следовательно, оно положительно на всем промежутке от до .

При левая часть неравенства отрицательна.

И, наконец, class="tex" alt="x>7"> . Подставим и проверим знак выражения в левой части неравенства. Каждая "скобочка" положительна. Следовательно, левая часть имеет знак .

Мы нашли, на каких промежутках выражение положительно. Осталось записать ответ:

Ответ: .

Обратите внимание: знаки на промежутках чередуются. Это произошло потому, что при переходе через каждую точку ровно один из линейных множителей поменял знак, а остальные сохранили его неизменным .

Мы видим, что метод интервалов очень прост. Чтобы решить дробно-рациональное неравенство методом интервалов, приводим его к виду:

Или class="tex" alt="\genfrac{}{}{}{0}{\displaystyle P\left(x \right)}{\displaystyle Q\left(x \right)} > 0"> , или , или .

(в левой части - дробно-рациональная функция, в правой - нуль).

Затем - отмечаем на числовой прямой точки, в которых числитель или знаменатель обращаются в нуль.
Эти точки разбивают всю числовую прямую на промежутки, на каждом из которых дробно-рациональная функция сохраняет свой знак.
Остается только выяснить ее знак на каждом промежутке.
Мы делаем это, проверяя знак выражения в любой точке, принадлежащей данному промежутку. После этого - записываем ответ. Вот и всё.

Но возникает вопрос: всегда ли знаки чередуются? Нет, не всегда! Надо быть внимательным и не расставлять знаки механически и бездумно.

2. Рассмотрим еще одно неравенство.

Class="tex" alt="\genfrac{}{}{}{0}{\displaystyle \left(x-2 \right)^2}{\displaystyle \left(x-1 \right)\left(x-3 \right)}>0">

Снова расставляем точки на оси . Точки и - выколотые, поскольку это нули знаменателя. Точка - тоже выколота, поскольку неравенство строгое.

При числитель положителен, оба множителя в знаменателе отрицательны. Это легко проверить, взяв любое число с данного промежутка, например, . Левая часть имеет знак :

При числитель положителен; первый множитель в знаменателе положителен, второй множитель отрицателен. Левая часть имеет знак :

При ситуация та же! Числитель положителен, первый множитель в знаменателе положителен, второй отрицателен. Левая часть имеет знак :

Наконец, при class="tex" alt="x>3"> все множители положительны, и левая часть имеет знак :

Ответ: .

Почему нарушилось чередование знаков? Потому что при переходе через точку "ответственный" за неё множитель не изменил знак . Следовательно, не изменила знак и вся левая часть нашего неравенства.

Вывод: если линейный множитель стоит в чётной степени (например, в квадрате), то при переходе через точку знак выражения в левой части не меняется . В случае нечётной степени знак, разумеется, меняется.

3. Рассмотрим более сложный случай. От предыдущего отличается тем, что неравенство нестрогое:

Левая часть та же, что и в предыдущей задаче. Та же будет и картина знаков:

Может, и ответ будет тем же? Нет! Добавляется решение Это происходит потому, что при и левая, и правая части неравенства равны нулю - следовательно, эта точка является решением.

Ответ: .

В задаче на ЕГЭ по математике такая ситуация встречается часто. Здесь абитуриенты попадают в ловушку и теряют баллы. Будьте внимательны!

4. Что делать, если числитель или знаменатель не удается разложить на линейные множители? Рассмотрим такое неравенство:

Квадратный трехчлен на множители разложить нельзя: дискриминант отрицателен, корней нет. Но ведь это и хорошо! Это значит, что знак выражения при всех одинаков, а конкретно - положителен. Подробнее об этом можно прочитать в статье о свойствах квадратичной функции .

И теперь мы можем поделить обе части нашего неравенства на величину , положительную при всех . Придём к равносильному неравенству:

Которое легко решается методом интервалов.

Обратите внимание - мы поделили обе части неравенства на величину, о которой точно знали, что она положительна. Конечно, в общем случае не стоит умножать или делить неравенство на переменную величину, знак которой неизвестен.

5 . Рассмотрим еще одно неравенство, на вид совсем простое:

Так и хочется умножить его на . Но мы уже умные, и не будем этого делать. Ведь может быть как положительным, так и отрицательным. А мы знаем, что если обе части неравенства умножить на отрицательную величину - знак неравенства меняется.

Мы поступим по другому - соберём всё в одной части и приведём к общему знаменателю. В правой части останется нуль:

Class="tex" alt="\genfrac{}{}{}{0}{\displaystyle x-2}{\displaystyle x}>0">

И после этого - применим метод интервалов .

Неравенство – это числовое соотношение, иллюстрирующее величину чисел относительно друг друга. Неравенства широко используются при поиске величин в прикладных науках. Наш калькулятор поможет вам разобраться с такой непростой темой, как решение линейных неравенств.

Что такое неравенство

Неравные соотношения в реальной жизни соотносятся с постоянным сравнением различных объектов: выше или ниже, дальше или ближе, тяжелее или легче. Интуитивно или зрительно мы можем понять, что один объект больше, выше или тяжелее другого, однако фактически речь всегда идет о сравнении чисел, которые характеризуют соответствующие величины. Сравнивать объекты можно по любому признаку и в любом случае мы можем составить числовое неравенство.

Если неизвестные величины при конкретных условиях равны, то для их численного определения мы составляем уравнение. Если же нет, то вместо знака «равно» мы можем указать любое другое соотношение между этими величинами. Два числа или математических объекта могут быть больше «>», меньше «<» или равны «=» относительно друг друга. В этом случае речь идет о строгих неравенствах. Если же в неравных соотношениях присутствует знак равно и числовые элементы больше или равны (a ≥ b) или меньше или равны (a ≤ b), то такие неравенства называются нестрогими.

Знаки неравенств в их современном виде придумал британский математик Томас Гарриот, который в 1631 году выпустил книгу о неравных соотношениях. Знаки больше «>» и меньше «<» представляли собой положенные на бок буквы V, поэтому пришлись по вкусу не только математикам, но и типографам.

Решение неравенств

Неравенства, как и уравнения, бывают разных типов. Линейные, квадратные, логарифмические или показательные неравные соотношения развязываются различными методами. Однако вне зависимости от метода, любое неравенство вначале требуется привести к стандартному виду. Для этого используются тождественные преобразования, идентичные видоизменениям равенств.

Тождественные преобразования неравенств

Такие трансформации выражений очень похожи на привидение уравнений, однако они имеют нюансы, которые важно учитывать при развязывании неравенств.

Первое тождественное преобразование идентично аналогичной операции с равенствами. К обеим сторонам неравного соотношения можно прибавить или отнять одно и то же число или выражение с неизвестным иксом, при этом знак неравенства останется прежним. Чаще всего этот метод применяется в упрощенной форме как перенос членов выражения через знак неравенства со сменой знака числа на противоположный. Имеется в виду смена знака самого члена, то есть +R при переносе через любой знак неравенства изменится на – R и наоборот.

Второе преобразование имеет два пункта:

  1. Обе стороны неравного соотношения разрешается умножить или разделить на одно и то же положительное число. Знак самого неравенства при этом не изменится.
  2. Обе стороны неравенства разрешается разделить или умножить на одно и то же отрицательное число. Знак самого неравенства изменится на противоположный.

Второе тождественное преобразование неравенств имеет серьезные различия с видоизменением уравнений. Во-первых, при умножении/делении на отрицательное число знак неравного выражения всегда изменяется на обратный. Во-вторых, разделить или умножить части отношения разрешается только на число, а не на любое выражение, содержащее неизвестное. Дело в том, что мы не можем точно знать, число больше или меньше нуля скрывается за неизвестным, поэтому второе тождественное преобразование применяется к неравенствам исключительно с числами. Рассмотрим эти правила на примерах.

Примеры развязывания неравенств

В заданиях по алгебре встречаются самые разные задания на тему неравенств. Пусть нам дано выражение:

6x − 3(4x + 1) > 6.

Для начала раскроем скобки и перенесем все неизвестные влево, а все числа – вправо.

6x − 12x > 6 + 3

Нам требуется поделить обе части выражения на −6, поэтому при нахождении неизвестного икса знак неравенства изменится на противоположный.

При решении этого неравенства мы использовали оба тождественных преобразования: перенесли все числа справа от знака и разделили обе стороны соотношения на отрицательное число.

Наша программа представляет собой калькулятор решения числовых неравенств, которые не содержат неизвестных. В программу заложены следующие теоремы для соотношений трех чисел:

  • если A < B то A–C< B–C;
  • если A > B, то A–C > B–C.

Вместо вычитания членов A–C вы можете указать любое арифметическое действие: сложение, умножение или деление. Таким образом, калькулятор автоматически представит неравенства сумм, разностей, произведений или дробей.

Заключение

В реальной жизни неравенства встречаются также часто, как и уравнения. Естественно, что в быту знания о разрешении неравенств могут и не понадобиться. Однако в прикладных науках неравенства и их системы находят широкое применение. К примеру, различные исследования проблем глобальной экономики сводятся к составлению и развязыванию систем линейных или квадратных неравенств, а некоторые неравные отношения служат однозначным способом доказательства существования определенных объектов. Пользуйтесь нашими программами для решения линейных неравенств или проверки собственных выкладок.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.