Контрольная работа основы биомеханического контроля. Биомеханический контроль

Педагогическое оценивание

Автоматизация биомеханического контроля

Тестирование двигательных качеств

Тестирование в биомеханике

Биомеханические измерения, шкалы измерений, точность измерений

Основы биомеханического контроля

Объектом биомеханического контроля в спорте является моторика человека , т.е. двигательные качества и их проявление.

В результате биомеханического контроля получают сведения о:

1. Об уровне развития физических качеств (сила, быстрота, выносливость, гибкость, ловкость) и о должном уровне их развития для отбора и овладения технико-тактическими приемами

Выявить общую тренированность (оценка функционального состояния, антропометрические измерения, уровень развития физических качеств);

Выявить специальную тренированность;

Выявить динамику развития физических качеств и спортивных результатов;

Изучить методы отбора способных спортсменов;

Установить контрольные нормативы для различных этапов тренировки в различных видах спорта.

2. Технике и тактике двигательной деятельности

Знания о биомеханических характеристиках базируются на первичной информации, получаемой различными средствами (с помощью контрольно-педагогических испытаний, измерительных устройств).

Измерением называется нахождение значения фи­зической величины опытным путем с помощью специальных технических средств .

Измерения по способу получения искомой величины подразделяют на: субъективные (информация от органов чувств), объективные (используют специальные технические средства)

По способу получения числового значения измеряемой ве­личины все измерения делят на: пря­мые, косвенные и совместные.

По количеству измерительной информации измерения бы­вают однократные и многократные.

Основой для измерения физи­ческой величины служит шкала измерений - упорядоченную совокупность значений величины.

Наиболее распространенными являются четыре типа: наименований (номинальная), порядка, интервалов и отношений.

Шкалы наименований (номинальная) – самая простая, в которой числа, буквы и другие условные обозначения служат для наличия, обнаружения и различия изучаемых объектов (например, при разборе тактики игры номера полевых игроков в тактической комбинации выступают как наименования).

Шкала порядка возникает, когда составляющие шкалу числа упорядочены по рангам, но интервалы между рангами нельзя точно измерить. Шкала порядка дает возможность не только установить факт равенства или неравенства, но и определить характер неравенства в понятиях «больше - меньше», «лучше - хуже». С помощью шкал порядка измеряют «качественные показатели», не имеющие строгой количественной меры (занятое место). Шкала порядка бесконечна, в ней нет как нулевого уровня, так и максимально лучшего.



Шкала интервалов использует численные значения разделены определенным числом единиц, ее особенность, что точка отсчета выбирается произвольно (летоисчисление, температура, угол в суставе)

Шкала отношений самая точная. Она дает возможность определить не только лучше или хуже, но и на сколько, имеет нулевой начальный уровень отсчета, числа упорядочены по рангам и разделены равными интервалами. Можно измерить количественные показатели (длина и масса тела, скорость)

Данные виды шкалы могут преобразовываться друг в друга, в зависимости, какой уровень точности нужен.

В каждом измерении полученный результат неизбежно содержит погрешность – это отклонение результата измерений от действительного (истинного) значения измеряемой вели­чины.

По причинам возникновения погрешности разделяют на инст­рументальные (вызвана несовершенством средства измерения), методические (несовершенством организации процедуры измерения) и субъективные (вызваны индивидуальными особенностями испытуемых и исследователей).

По форме величины основной и дополнительной погреш­ностей могут быть представлены как в абсолютных, так и в относительных единицах.

Абсолютная погрешность – величина, равная разности результатов измерения и истинным значениям измеряемой величины (Ап = А – А 0) . За истинное значение принимают результат, полученный более точным методом. Абсолютная погрешность измеряется в тех же единицах, что и сама величина.

В практической работе часто удобнее пользоваться не абсолютной, а относительной величиной погрешности.

Относительная погрешность – отношение абсолютной погрешности к истинному значению измеряемой величины .

Погрешности измерения бывают систематическими и случайными.

Систематической называется погрешность, величина которой не меняется от измерения к измерению. В силу этой своей особенности систематическая погрешность часто может быть предсказана заранее или в крайнем случае обнаружена и устранена по окончании процесса измерения.

Для устранения систематической погрешности используется тарировка прибора. Тарированием (от нем. tarieren) называется проверка показаний измерительных приборов путем сравнения с показаниями образцовых значений мер (эталонов) во всем диапазоне возможных значений измеряемой величины.

Случайные погрешности возникают в силу разнообразных причин, которые заранее предсказать невозможно. Они не устранимы, но, используя методы математической статистики, можно оценить величину случайной погрешности и учесть ее при объяснении результатов измерения.

В четвертой лекции по дисциплине "Биомеханика двигательной деятельности" описываются методы исследования в биомеханике (кино- и видеосъемка, динамометрия, акселерометрия и электромиография), этапы измерений и состав измерительной системы. При анализе биомеханических методов обсуждаются положительные и негативные особенности и методов, а также погрешности измерений. Совершенствование биомеханических методов исследования позволило разработать полностью автоматические системы, позволяющие анализировать движения в реальном времени.

Лекция 4

Методы исследования в биомеханике

4.1. Понятие метода исследования

Метод (греч. methodos – путь к чему-либо) – в самом общем значении – способ достижения цели, определенным образом упорядоченная деятельность.

Метод исследования выбирают исходя из условий проведения и задач исследования. К методу исследования и обеспечивающей его аппаратуре предъявляют следующие требования:

  • Метод и аппаратура должны обеспечивать получение достоверного результата, то есть степень точности измерений должна соответствовать цели исследования;
  • Метод и аппаратура не должны влиять на исследуемый процесс, то есть искажать результаты и мешать испытуемому;
  • Метод и аппаратура должны обеспечивать оперативность получения результата.

Пример. Тренер и спортсмен поставили цель улучшить результат в беге на 100 м на 0,1 с. Спринтер пробегает дистанцию 100 м за 50 шагов, следовательно, время каждого шага должно в среднем быть уменьшено на 0,002 с. Очевидно, для получения достоверного результата, погрешность измерения длительности шага не должна превышать 0.0001 с.

4.2. Этапы измерений

В исследовании какого-либо явления существуют три этапа:

  1. Измерение механических характеристик.

Измерение механических характеристик осуществляется на основе описываемых в этой лекции методов.

  1. Обработка результатов исследования.

В настоящее время для обработки результатов используют специальные компьютерные программы. Так. Например, компьютерная программа Video Motion, предназначенная для атлетизма, позволяет на основе данных видеосъемки рассчитать траекторию, скорость и ускорение движения любой точки тела спортсмена, в том числе и грифа штанги.

  1. Биомеханический анализ и синтез.

На заключительном этапе измерений на основе полученных механических характеристик оценивается техника двигательных действий спортсмена и даются рекомендации по ее совершенствованию.

4.3. Состав измерительной системы

Измерительная система включает в себя:

  • Датчик информации;
  • Линию связи;
  • Регистрирующее устройство;
  • Компьютер;
  • Устройство для вывода данных.

Датчик – элемент измерительной системы, который непосредственно измеряет (воспринимает) определенную биомеханическую характеристику движения спортсмена. Датчики могут крепиться на спортсмене, спортивном инвентаре и оборудовании, а также опорных поверхностях.

Линия связи служит для передачи информации от датчика к регистрирующему устройству. Линия связи может быть проводной и телеметрической. Проводная связь представляет собой передачу информации через многожильный кабель. Ее достоинством является простота и надежность, недостатком – помехи движениям спортсмена. Телеметрическая связь – передача данных через радиоканал. В этом случае на спортсмене чаще всего расположена передающая антенна, а у регистрирующего устройства есть приемная антенна, посредством которой сигнал воспринимается.

Регистрирующее устройство – прибор, в котором происходит процесс регистрации биомеханических характеристик движений спортсмена.

Долгое время существовала аналоговая форма записи сигнала. Например, аналоговая запись сигнала в видеокамерах на магнитную ленту. В настоящее время широко распространена цифровая форма записи сигнала (в виде последовательности цифр на определенный цифровой носитель, например, DVD-диск).

АЦП – аналого-цифровой преобразователь – устройство, преобразующее аналоговый сигнал в цифровую форму.

ПК – персональный компьютер, в котором происходит обработка поступающего сигнала посредством определенной компьютерной программы. После этого информация о биомеханических характеристиках спортсмена выводится на принтер или монитор.

В настоящее время в области атлетизма (тяжелая атлетика, пауэрлифтинг, бодибилдинг) нашли широкое применение следующие методики исследования:

  • Оптические методы (кино- и видеосъемка с последующим анализом, оптоэлектронная циклография);
  • динамометрия;
  • акселерометрия;
  • электромиграфия.

Именно об этих методах мы поговорим подробнее.

4.4. Оптические методы исследования

Киносъемка – оптический метод исследования. Этот метод относится к бесконтактным средствам измерения. Основы этого метода заложили Ж.Л.Дагер, Э.Ж.Маре, Э. Майбридж. Это особенно важно, поскольку система не мешает спортсмену при выполнении двигательных действий. Основным техническим средством является кинокамера. Для проведения биомеханических исследований чаще всего применяется кинокамеры с высокой частотой съемки (от 100 кадров в секунду и выше). Недостаток киносъемки является необходимость специальной обработки кинопленки. Поэтому в настоящее время в биомеханических исследованиях чаще всего применяются два других оптических метода: видеосъемка и оптоэлектронная циклография.

Видеосъемка – оптический метод исследования, позволяющий фиксировать двигательное действие на видеопленке или электронной матрице видеокамеры. В настоящее время для биомеханических исследований применяют высокоскоростные видеокамеры, позволяющие выполнять съемку до 1000 кадров в секунду и выше.

Примером такой камеры может служить цифровая фотокамера CASIO EXILIM PRO EX-F1 (рис.4.1), позволяющая выполнять скоростную съемку с частотой до 1200 кадр/с. Разрешение матрицы фотокамеры составляет 6,6 Мегапикселов. Для регистрации выполнения спортсменом силовых упражнений данной камерой может использоваться видеосъемка, которую нужно производить с разрешением 1920x1080 пикселей с частотой кадров 60 кадр/с.

Рис. 4.1. Цифровая фотокамера Casio Exlim Pro EX F1

Важнейшей деталью механических динамометров является пружина, которая должна работать в области линейной деформации. Это означает, что измеряемая сила прямо пропорциональна удлинению пружины. При измерениях в спорте очень часто применяются кистевые и становые (рис. 4.2) динамометры. Так, например, для измерения силы тяги в пауэрлифтинге используется становой динамометр. Диапазон измерений составляет от 100 Н до1800 Н с погрешностью +/-2 % по всей шкале. Вес 1.8 кг, размер 25,4х6,35 см. Ручка из прочного алюминия с удобным местом для захвата.

Рис.4.2. Становой динамометр

Недостатком механических динамометров является оценка одного, чаще всего максимального значения силы. В связи с этим, если необходимо изучить изменение усилия, развиваемого мышечной группой или спортсменом, применяются электронные динамометры. В этом случае датчиком является не пружина, а тензодатчик, а сама методика называется тензодинамометрия.

Метод тензодинамометрии позволяет зарегистрировать усилия, развиваемые спортсменом при выполнении различных физических упражнений.

В процессе выполнения спортивных движений спортсмен оказывает механическое воздействие на самые разнообразные предметы: спортивный снаряд, пол, дорожку, которые в результате этого деформируются. Для того, чтобы измерить значения развиваемых спортсменом усилий, используют специальные тензодатчики, преобразующие механическую деформацию в электрический сигнал. В основе работы тензодатчиков лежит тензоэффект. Суть тензоэффекта – изменение сопротивления проводника при его удлинении.

Тензодатчик представляет собой заклеенную между двумя полосками бумаги проволоку диаметром 0.02-0,05 мм. Он наклеивается на упругий элемент, воспринимающий усилие, задаваемое спортсменом.

В 1938 году были разработаны первые тензодатчики, которые работали на основе тензоэффекта. В 1947 году тензометрия впервые стала применяться в физических исследованиях

В спорте впервые в 1954 году М.П. Михайлюк закрепил тензодатчик на грифе штанги, П.И. Никифоров (1957) разработал тензоплатформу для записи усилий при отталкивании в прыжках в высоту. В 1963 году В.К. Бальсевич использовал тензодинамометрические стельки для анализа бега спринтеров различной квалификации. Им было установлено несколько типов отталкивания.

Методика тензодинамометрии активно применяется в тяжелой атлетике. Одна из ключевых задач тренера заключается в предоставлении информации об ошибках, то есть обратная связь от тренера к спортсмену. Обратная связь является важным элементом обучения. Спортсмен должен получать на регулярной основе информацию, которая позволяет сравнить собственную деятельность с идеалом или моделью. В результате такого сравнения, спортсмен получит знания о своей деятельности и имеет возможность работать на исправление своих ошибок.

Такая методика разработана А.Н. Фураевым (1988) и модернизирована И.П. Кожекиным (1998). Автоматизированный стенд включает в себя тензодинамометрическую платформу, АЦП (аналого-цифровой преобразователь) и компьютер. В экспертной системе компьютера заложены образцы, характеризующие правильное и неправильное выполнение двигательного действия (рывка, прыжка вверх и прыжка в глубину. Сопоставляя полученные результаты, экспертная система, построенная на анализе тензодинамограммы, позволяет спортсмену в реальном масштабе времени получить информацию об ошибках в технике двигательного действия и ввести корректировки чтобы их устранить.

4.6. Акселерометрия

Акселерометрия – биомеханический метод регистрации ускорений движения тела спортсмена, или его отдельных частей, а также ускорений спортивных снарядов. Например, в тяжелой атлетике информативным показателем техники движений спортсмена является ускорение центра масс штанги.

В качестве датчиков используются специальные акселерометры. Принцип действия датчика-акселерометра следующий. К исследуемому объекту прикрепляется масса при помощи связи, обладающей определенной жесткостью. Затем на основе известной массы и жесткости связи определяется ускорение. Основными характеристиками акселерометров являются диапазон и предельная частота изменения измеряемых ускорений.

Если используется трехкомпонентный акселерометр, можно зарегистрировать три составляющих ускорения. Выполняя дифференцирование полученного сигнала, можно рассчитать скорость и перемещение спортивного снаряда, например, грифа штанги. Используя трехкомпонентный акселерометрический датчик А.В.Самсонова с соавт. (2015) зарегистрировали ускорение головы спортсмена при выполнении силовых приемов в хоккее с шайбой.

4.7. Электромиография

Электромиографи я – способ регистрации и анализа биоэлектрической активности мышц.

Суть явления заключается в регистрации электрических потенциалов мышц, которые появляются при возбуждении мышцы. Таким образом, электромиография, является надежным методом регистрации активности мышц.

Чаще всего регистрируются следующие параметры ЭМГ (электромиограммы); длительность электрической активности мышц, частота биопотенциалов, амплитуда биопотенциалов и суммарная электрическая активность мышц.

Длительность электрической активности мышц характеризует время, в течение которого мышца была возбуждена.

Частота и амплитуда биопотенциалов мышцы характеризует степень возбуждения мышцы и характер активности различных ДЕ. Суммарная электрическая активность дает представление об общем уровне напряжения и силы развиваемой мышцей. Чем больше суммарная электрическая активность, тем больше степень напряжения, развиваемая мышцей.

Датчиками, используемыми для регистрации электрической активности, служат серебряные электроды, выполненные в виде небольших кружков (чашечек). Их диаметр составляет не более 10 мм. Внутри этих чашечек для лучшей электропроводности помещается специальная электропроводящая паста. В настоящее время регистрирующим прибором является персональный компьютер, рис.4.3.

Рис.4.3. Электромиографическая методика

Одной из первых работ, в которой электромиографическая методика применялась в исследовании двигательных действий штангиста, следует признать диссертационную работу А.С. Степанова (1957). В этом исследовании А.С. Степанов (1957) подверг детальному электромиографическому анализу основные соревновательные упражнения штангистов: толчок, рывок и жим.

В исследовании С.С. Лапенкова (1985) был проведен биомеханический анализ тяжелоатлетических и вспомогательных упражнений с использованием методики электромиографии. При сравнительном анализе движений использовались следующие характеристики ЭМГ: время электрической активности, которое характеризует длительность приложения усилий, развиваемых мышцами, средняя амплитуда ЭМГ, которая взаимосвязана с уровнем развития мышечных усилий. Использование ЭМГ методики и структурного метода распознавания образов позволило оценить эффективность вспомогательных упражнений.

За рубежом серьезные исследования силовых упражнений с применением электромиографической методики были предприняты R.F. Escamilla et al. (2001). Подробному электромиографическому и биомеханическому анализу были подвергнуты присед со штангой на плечах и жим ногами лежа (рис. 4.4).

Рис.4.4. ЭМГ-регистрация силового упражнения жим лежа с верхней и нижней расстановкой стоп (R.F. Escamilla et al., 2001)

Было установлено, что при выполнении приседания активность четырехглавой мышцы бедра и мышц задней поверхности бедра выше, чем при выполнении жима ногами. При этом присед, выполняемый с узкой расстановкой стоп, вызывает большую электрическую активность икроножной мышцы по сравнению с широкой расстановкой стоп.

Был проведен также анализ работы мышц при выполнении силовых упражнений: приседа со штангой на плечах (Н.Б. Кичайкина, А.В. Самсонова, Г.А. Самсонов, 2011). Установлено, что в нижней точке (НТ) электрическая активность большой ягодичной мышцы и мышц-разгибателей бедра (двуглавой бедра и полусухожильной) минимальна . А.В. Самсонова (2010) изучала особенности электрической активности мышц нижних конечностей при выполнении силовых упражнений. Полученные результаты свидетельствуют о том, что при выполнении силового упражнения увеличение массы внешнего отягощения приводит к уменьшению доли суммарной электрической активности четырехглавой мышцы бедра, соответствующей эксцентрическому режиму. При выполнении силовых упражнений в "отказном цикле" значительно увеличивается длительность и амплитуда электрической активности широкой латеральной мышцы бедра рис.4.5.

Рис. 3. Суммарная электрическая активность m. vastus lateralis при выполнении 2, 3 и 4 стандартных циклов (А) и отказного цикла (Б) силового упражнения с отягощением в 40% от 1ПМ. Вертикальные линии соответствуют началу цикла (А.В.Самсонова, Е.А.Косьмина, 2011)

Положительной особенностью электромиографии являлось то, что она позволяла в разных движениях оценить степень активности скелетных мышц. С этой целью чаще всего применяется изучение суммарной электрической активности мышцы. Кроме того, появилась возможность оценить последовательность активности мышц при выполнении двигательного действия.

Однако электромиографическая методика не позволяет сопоставить напряжение, развиваемое разными мышцами спортсмена при выполнении силового упражнения. То есть количественно оценить, какая мышца проявляет большее или меньшее усилие. Это связано с тем, что на уровень силы, оцениваемой по ЭМГ, влияет ряд технических факторов, а именно, качество наклейки электродов, сопротивление кожи, степень усиления и т.д. Поэтому только на основе регистрации электрической активности мышц при выполнении силового упражнения очень сложно сопоставить «вклад» каждой мышцы в результат, тем не менее, электромиографическая методика остается до настоящего времени наиболее адекватной для решения этих проблем.

Литература

  1. Биленко А.Г., Говорков Л.П., Ципин Л.Л. Измерения в биомеханике физических упражнений. Практический курс: Учебное пособие /А.Г. Биленко, Л.П. Говорков, Л.Л. Ципин /НГУ физической культуры, спорта и здоровья им. П.Ф. Лесгафта, 2010.– 166 с.
  2. Биомеханические методы исследования в спорте: Учебное пособие /Под ред. Г.П. Ивановой.– Ленинград, 1976.– 96 с.
  3. Кичайкина, Н.Б. Периферические механизмы организации движения в изучении техники приседания со штангой в пауэрлифтинге /Н.Б. Кичайкина, А.В. Самсонова, Г.А. Самсонов //Труды кафедры биомеханики Университета им. П.Ф. Лесгафта.- Вып. 5.– СПб, 2011.- С. 42-65.
  4. Кожекин И.П. Совершенствование двигательных действий тяжелоатлетов методом управления их биомеханической структурой: 13.00.04: Автореф. дис. . канд. пед. наук / Кожекин Игорь Петрович. – Малаховка: МОГИФК, 1998. - 19 с.
  5. Попов Г.И., Самсонова А.В. Биомеханика двигательной деятельности /Учебник для студентов учреждений высшего проф. Образования /Г.И. Попов. А.В. Самсонова.– М.: Академия, 2011.– 320 с.
  6. Самсонова, А.В. История биомеханики /А.В. Самсонова // Труды кафедры биомеханики: Междисциплинарный сборник статей /НГУ им. П.Ф. Лесгафта, Санкт-Петербург; сост. А.В. Самсонова, С.А. Пронин.- СПб.: Из-во "Олимп", 2009.– Вып.2.– С. 4-15.
  7. Самсонова А.В. Характеристика суммарной электрической активности мышц при выполнении силовых упражнений //Вiсник Чернiгiвського державного педагогiчного унiверситету. Випуск 81. Серiя: Педагогiчнi науки. Фiзичне виховання та спорт.- Чернiгiв, 2010.- 427-431.
  8. Самсонова, А.В. Срочные тренировочные эффекты воздействия силовых упражнений методом до "отказа" на скелетные мышцы человека / А.В. Самсонова, Е.А. Косьмина //Вiсник Чернiгiвського державного педагогiчного унiверситету. Випуск 91. Том 1 Серiя: Педагогiчнi науки. Фiзичне виховання та спорт.- Чернiгiв, 2011.– 407-410.
  9. Самсонова, А.В. Ускорение головы спортсмена при выполнении силовых приемов в хоккее с шайбой / А.В.Самсонова, Л.В.Михно, Л.Л.Ципин, Г.А.Самсонов, И.А.Чичелов // Российский журнал биомеханики, 2015.- Т.19.- № 3.- С. 307-315.
  10. Фураев А.Н. Оперативное регулирование тренировочного процесса тяжелоатлетов с использованием автоматизированной системы контроля биомеханических параметров.: Автореф. дис… канд. пед. наук / А.Н. Фураев.– М.: Малаховка: 1988.–23 с.
  11. Escamilla, R.F. Effects of technique variations on knee biomechanics during the squat and leg press / R.F. Escamilla, G.S. Fleisig, N. Zheng, J.E. Lander, S.W. Barrentine, J.R. Andrews, B.W. Bergemann, C.T. Moorman III //Med. Sci Sports Exerc., 2001.– V.33.– N. 9.– P. 1552-1566.

В настоящее время биомеханика обладает значительным арсеналом методов исследования локомоторной функции, как в статике, так и в динамике, причем изучается не только внешняя картина движения, но и механизмы управления, жизнеобеспечение организма, что дает возможность выявить целый комплекс параметров, характеризующих двигательный образ. В это понятие включаются не только внешние (механические) проявления движения и реакций окружающей среды, но и условия организации управления движениями, согласованная деятельность всех органов и систем организма. Получаемая в результате биомеханических исследований информация служит основой для определения нормы, позволяет количественно определить степень нарушения локомоторной функции при различных патологических состояниях. Биомеханические исследования достаточно широко используются не только в клинической медицине (функциональная диагностика, ортопедия, травматология, протезирование), но и в спорте, и при разработке различных антропоморфных механизмов (роботы, манипуляторы), и при решении других прикладных задач. Методическая база биомеханических исследований постоянно совершенствуется, используя новейшие достижения науки.

Методы исследования, получившие наибольшее распространение в настоящее время, в клинической биомеханике могут быть классифицированы следующим образом:

I. Соматометричские: антропометрия, фотограмметрия, рентгенография.

II. Кинезиологические: оптические, потенциометрия, электроподография, тензометрия, ихнография.

III. Клинико-физиологические: калориметрия, электромиография, электроэнцефалография и другие методы функциональной диагностики.

Соматометрия

Анропометрия

При клиническом и биомеханическом обследовании используются методы антропометрии с целью получения информации о половых и возрастных особенностях испытуемых об особенностях строения опорно-двигательного аппарата в норме и при патологии, важной информации об осанке. Обычно перед проведением специальных биомеханических исследований измеряют рост пациента стоя и сидя, длину конечностей, амплитуду движений в крупных суставах, определяют массу его тела. При помощи отвесов производят зарисовку диаграммы стояния - проекции на горизонтальную плоскость осей суставов нижних конечностей и таза. Это дает возможность составить представление об архитектонике нижних конечностей при удобном стоянии, определить величину разворота осей суставов в проекции на горизонтальную плоскость, угол разворота стоп, расстояние между внутренними поверхностями ног на различных уровнях и т.д.

Фотограмметрия

Поверхность спины при исследовании методом компьютерной топографии. А. - норма; Б. - кифосколиоз грудного отдела; В. - гиперлордоз поясничного отдела; Г. - выступающие крыловидные лопатки.

К антропометрическим методам сбора и анализа информации относится способ изучения схемы построения опорно-двигательного аппарата в виде так называемой фотограмметрии. Кратко техника фотограмметрии состоит в следующем: обследуемому предлагают принять естественную, наиболее привычную, удобную позу стояния. Перед ним устанавливают кадровую рамку с сантиметровыми делениями по горизонтальным и одной из вертикальных сторон. Через середину рамки натянута нить, служащая отвесом. Фотографируют и для графического анализа изготавливают фотоснимки, на которых измеряют расстояние в сантиметрах между передневерхними остями таза, наклон бедер по анатомическим осям относительно вертикали, расстояние между центрами коленных суставов, наклон голеней по анатомическим осям, угол физиологического вальгуса голеней, расстояние между центрами опоры стоп. Этот метод даст возможность определить возрастные особенности схемы построения опорно-двигательного аппарата в норме и при различных патологических состояниях.

Метод оптической компьютерной топографии

Стереофоторграммметрия с мнимым базисом. Геометрическая модель стереофотографии. Координаты фиксированной точки: X=90, Y=112, Z=-24 мм.

Важную информацию о геометрии тела человека, об особенностях и нарушении осанки можно получить при исследовании специальным методом компьютерной топографии. Этот современный и самый точный метод позволяет количественно с высокой точностью определить координаты любой анатомической точки поверхности тела. Продолжительность обследования составляет 1 - 2 минуты, поэтому этот метод с успехом применяется для массовых исследований.

Кинезиологические методы

Целенаправленные движения человека (локомоции) представляют собой устойчивый паттерн движения, характеризующийся определенными кинематическими, динамическими, временными и пространственными параметрами. Вся совокупность последних может рассматриваться как биомеханическое проявление двигательного образа, который складывается для каждого конкретного человека в период постнатального онтогенетического развития и претерпевает изменения в результате изменений на любом уровне двигательного анализатора в зависимости от возраста и условий функционирова¬ния жизнеобеспечивающих систем организма. Естественно, что регистрация кинезиологических параметров движения является необходимой для его характеристики, и при нарушениях функции опорно-двигательного аппарата, и при изучении локомоции спортсмена. Наиболее достоверные сведения о движении могут быть получены с помощью оптических методов, которые обеспечивают комплексную регистрацию любого количества точек тела человека и внешней обстановки относительно пространственно-временной координатной сетки и дают информацию о кинематике исследуемых точек в форме, удобной для математического анализа. Координаты же, как известно, есть тот материал, из анализа которого может быть почерпнуто максимальное количество сведений о протекании снятого движения. Циклография (от цикла… и…графия), метод изучения движений человека путём последовательного фотографирования (до сотен раз в секунду) меток или лампочек, укрепленных на движущихся частях тела. Впервые фотографирование фаз движения было предложено в 80-х гг. 19 в. французским учёным Э. Мареем. Н.А. Бернштейн в 20-х гг. 20 в. усовершенствовал и модифицировал Ц., например он предложил кимоциклографию - съёмку на передвигающуюся плёнку. На основе анализа циклограмм - циклограмметрии - для ряда движений были получены данные о траектории отдельных точек тела, о скоростях и ускорениях движущихся частей тела, что дало возможность вычислить величины сил, обусловливающих данное движение. Эти сведения легли в основу современных представлений о принципах управления движениями человека, использованы при изучении спортивных движений, двигательных нарушений и др. К Ц. близок метод киносъёмки движений с последующей обработкой кадров наподобие циклограмм. Наиболее простым и часто применяемым на практике видом киносъемки является фотограмметрия. Эта съемка представляет собой регистрацию движений человека и объектов окружающей среды в плоскости, перпендикулярной оптической оси аппарата. При этом аппарат устанавливается так, чтобы в его поле зрения находилось все, что будет подвергнуто изучению и последующему анализу. Полученные с помощью оптических методов регистрации экспериментальные данные подвергаются математической обработке. В качестве датчиков («светящихся точек») для получения кинематических характеристик движений конечностей применяют метки или электрические лампочки, которые укрепляют на исследуемых суставах. Снаряжение испытуемого почти невесомо, поэтому оно не вносит никаких изменений в структуру двигательного образа. Конвергентная стереофотограмметрическая съемка и зеркальная циклограмметрия тождественны. Действительно, зеркальная циклограмметрическая съемка под углом а (угол между главной оптической осью киноаппарата и плоскостью зеркала - угол съемки) есть не что иное, как съемка двумя аппаратами, оптические оси которых конвергируют под углом а. Вычисление пространственных координат производится по формулам математической зависимости между пространственными координатами помещения (в случае, если съемка производится в камеральных условиях) и координатами перспективных изображений. Кроме аналитических методов, в настоящее время нашли широкое распространение различные номографические приемы, основанные на известных положениях синтетической геометрии. Номограмма, с помощью которой осуществляется обработка изоинформации, представляет собой функциональную сетку и служит для получения реальных (действительных) координат любой фиксированной точки на сегменте или суставе конечности.

Электромеханические методы

В настоящее время в биомеханических исследованиях ши¬рокое распространение получили, наряду с оптическими, и электрические методы регистрации. Это можно объяснить в первую очередь тем, что информация, представленная в виде электрических сигналов, является удобной для обработки радио- и электронными приборами. Кроме того, большинство процессов, протекающих в живых организмах, сопровождается различными электрическими явлениями, что облегчает получение информации в виде электрических сигналов.

Кинематические схемы потенциометрических датчиков для измерения амплитуды движений в суставах нижних конечностей. А - в плюснефаланговом; б - в подтаранном; В-в тазобедренном, коленном и голеностопном.

При использовании электрических методов регистрации неэлектрических величин (каковыми являются кинематические и динамические составляющие движения) в практике биомеханических исследований применяют измерение и регистрацию кинематических составляющих движения осуществляются с помощью линейных потенциометрических датчиков 2 типов: с входной функцией в виде углового и линейного механического перемещения. Потенциометрические датчики преобразуют функцию механического перемещения в аналоговый электрический сигнал, который затем регистрируется в соответствующем масштабе.

Исследование динамических составляющих движения осуществляют с помощью тензоменрических методов. В качестве тензочувствительного элемента используют различные тензодатчики - датчики давления. Тензодатчики применяются для определения вертикальных составляющих реакции опоры при ходьбе (ихнография) или для регистрации стабилограмм. Подография - регистрация времени опоры отдельных участков стопы при ходьбе с целью изучения функции переката исследуется при помощи специальных датчиков, вмонтированных в подошву обуви.

Стабилограмма попеременного стояния на правой и левой ноге.

Стабилография - объективный метод регистрации положения и проекции общего центра масс на плоскость опоры - важный параметр механизма поддержания вертикальной позы. Обычно регистрируют площадь миграции общего центра масс (ОЦМ) в проекции горизонтальной плоскости, совмещенный с очерком стопы.

Клинико-физиологические методы

Информация о функциональной анатомии опорно-двигательного аппарата человека и биомеханических параметрах движения не может достаточно полно охарактеризовать весь комплекс процессов, происходящих в организме в условиях двигательной активности. С целью изучения механизма управления движениями, их энергообеспеченности в биомеханических исследованиях применяются некоторые физиологические методы. Из обширного арсенала методов современной физиологии избираются те средства функциональной оценки жизнеобеспечивающих систем организма, которые в сочетании со специальными биомеханическими методами дают возможность глубже изучить процесс формирования двигательного навыка и реакции организма па реализацию движения. В связи с этим наиболее широко в клинико-биомеханических исследованиях используются различные варианты кардиографии, электроэнцефалография, электромиография, косвенная калориметрия и другие методы функциональной диагностики.

Калориметрия.

Энергия, освобождаемая организмом в процессе жизнедеятельности, переходит непосредственно в работу механическую, электрическую, физико-химическую и т.д., при этом освобождается некоторое количество тепла. Все тепло, отдаваемое организмом, дает сумму энергетических превращений за определенный промежуток времени. Количество выделяемого тепла может быть определено непосредственно в специальной калориметрической камере, в которую помещают испытуемого. Впервые такая камера была по¬строена в 1880-1886 гг. на кафедре общей патологии Военно-медицинской академии им. С.М. Кирова В.В. Пашутиным. Однако в настоящее время применяется более простой метод непрямой калориметрии, который состоит в исследовании легоч¬ного газообмена и последующем пересчете количества потребляемого кислорода в единицы тепловой энергии. Теоретические обоснования метода непрямой калориметрии базируются на том, что вся энергия, освобождающаяся в процессе жизнедеятельности человека, есть результат распада (окисления) жиров, белков и углеводов. Экспериментально установлено среднее количество тепла, освобождающегося при окислении 1 г каждого из указанных веществ. Установлен и тепловой эквивалент кислорода при окислении этих веществ. Энергетические траты здорового человека складываются из: 1) основного обмена, 2) прироста обмена вследствие специфически-динамического действия принятой пищи, 3) прироста обмена в результате мышечной работы. Основной обмен составляет наименьшую интенсивность обмена веществ, которая необходима для обеспечения жизнеспособности. Энергетически он выражается в величинах теплопродукции в состоянии покоя. Основной обмен определяется не ранее, чем через 12-18 ч после приема пищи, в условиях полного мышечного и психического покоя, при температуре окружающего воздуха 18-20° С. Наиболее распространенным в настоящее время методом непрямой калориметрии является метод Дугласа - Холдена. Суть его заключается в том, что испытуемый дышит атмосферным воздухом, причем выдыхаемый воздух собирается в мешок из прорезиненной ткани емкостью 100-150 л. Количество выдыхаемого воздуха за данное время измеряется газовыми часами, а качественный состав исследуется в газоанализаторе Холдена.

Электромиграфия

Для изучения деятельности мышц в процессе выполнения двигательного акта используется электромиогоафия. Еще в 1884 г. Н.Е. Введенским описан опыт телефонического прослушивания потенциалов действия мышц человека, а в 1907 г. немецкий физиолог Н. Piper впервые зарегистрировал их с помощью струпного гальванометра. Однако практическую значимость электромиографические исследования приобрели лишь с 30-х годов после создания специализированных усилителей биопотенциалов и концентрических игольчатых электродов, позволивших не только исследовать функцию двигательной единицы, по и расшифровать значение компонентов электромиограммы (ЭМГ), снятой накожными электродами. Отведение электромиограммы в настоящее время осуществляется двумя способами: накожными и игольчатыми электродами, позволяющими избирательно регистрировать активность одной двигательной единицы. Применение накожного биполярного отведения с межэлектродным расстоянием 20-25 мм позволяет регистрировать суммарную активность многих двигательных единиц. Развитие электромиографии привело к появлению специальной области клинической электрофизиологии - клинической электромиографии, находящей широкое применение в нервной и хирургической клиниках, в ортопедии и протезировании, в клинической и спортивной биомеханике. В последние годы область применения метода электромиографии существенно расширилась за счет использования биопотенциалов мышц в качестве показателя в системах адаптивного регулирования мышечного тонуса.

История

История биомеханики неразрывно связана с историей техники, физики, биологии и медицины, а также с историей физической культуры и спорта. Многие достижения этих наук определяли развитие учения о движении живых существ. Современную биомеханику нельзя представить без законы механики, открытых Архимедом, Галилеем, Ньютоном, без физиологии Павлова, Сеченова, Анохина, так как и без современных компьютерных технологий.

Истоки биомеханики

Биомеханика - одна из самых старых ветвей биологии. Её истоками были работы [Аристотель|Аристотеля]], Галена, Леонардо да Винчи.

В своих естественнонаучных трудах «Части движения и перемещение животных», Аристотель заложил основу того, что в дальнейшем, спустя 2300 лет назовут наукой биомеханикой. В своих научных трактатах он свойственной ему мышлением описывает животный мир и закономерности движения животных и человека. Он писал о частях тела, необходимых для перемещения в пространстве (локомоции), о произвольных и непроизвольных движениях, о мотивации движений животных и человека, о сопротивлении окружающей среды, о цикличности ходьбы и бега, о способности живых существ приводить себя в движение…

Величайшим ученым-медиком античного времени (после Гиппократа) был Клавдий Гален (131-201 гг. н.э.). В соответствии с мировоззрением античного времени, Гален понимал целостность организма. Он писал:

«В общей совокупности частей, все находится во взаимном согласии и … все содействует деятельности каждой из них».

Изучение нервов позволило Галену сделать вывод о том, что нервы по своей функциональной особенности делятся на три группы: те, что идут к органам чувств, выполняют функцию восприятия, идущие к мышцам ведают движением, а идущие к органам охраняют их от повреждения. Основной его труд - О назначении частей человеческого тела. Гален экспериментально показал, что конечность попеременно то сгибается внутренними, то разгибается наружными мышцами. Так, описывая пятую мышцу, самую большую, по его мнению, из всех мышц тела, приводящую бедро и состоящую из большой, средней и малой мышц, прикрепляющихся к внутренним и задним частям бедренной кости и нисходящей вниз почти до коленного сочленения, он, анализируя ее функцию, писал:

«Задние волокна этой мышцы, идущие от седалищной кости, укрепляют ногу, напрягая сустав. Не менее сильно это действие производится нижней порцией волокон, идущих от лобковой кости, к чему присоединяется еще легкое вращательное движение внутрь. Выше их лежащие волокна приводят бедро внутрь точно так же, как самые верхние приводят и в то же время несколько поднимают бедро»

На развитие механики в средние века оказали существенное влияние исследования Леонардо да Винчи (1452-1519 г.) по теории механизмов, трению и другим вопросам. Изучая функции органов, он рассматривал организм как образец «природной механики». Впервые описал ряд костей и нервов, особое внимание уделял проблемам сравнительной анатомии, стремясь ввести экспериментальный метод и в биологию. Этот великий художник, математик, механик и инженер впервые высказал важнейшую для будущей биомеханики мысль:

«Наука механика потому столь благородна и полезна более всех прочих наук, что все живые тела, имеющие способность к движению, действуют по ее законам».

Его успех как великого художника также немало зависит от биомеханической направленности его картин, - в них детально прорисована техника движения. Его наблюдения, очевидные в наши дни, в средние века были революционными. Например,

«Мускулы начинаются и оканчиваются всегда в соприкасающихся костях, и никогда они не начинаются и не оканчиваются на одной и той же кости, так как они ничего не могли бы двигать, разве только самих себя»

Леонардо, безусловно, является основоположником функциональной анатомии, составной части биомеханики. Он не только описал топографию мышц, но и значение каждой мышцы для движения тела.

АВТОМАТИЗАЦИЯ БИОМЕХАНИЧЕСКОГО КОНТРОЛЯ

Биомеханический контроль можно осуществлять по-разному Самое простое — наблюдать и записывать результаты наблюдений. Но при этом многое будет упущено и никто не сможет поручиться за точность полученных результатов.

Гораздо плодотворнее, хотя и сложнее, автоматизированный контроль. Можно сказать, что в наши дни ленинская формула «от живого созерцания —к абстрактному мышлению и от него — к практике» приобрела новый смысл. Сегодня процесс «живого созерцания», наблюдения за объектом исследования немыслим без использования измерительной аппаратуры.

Все измерительные системы в биомеханике включают в себя датчики биомеханических характеристик с усилителями и преобразователями, канал связи и регистрирующее устройство. В последние годы все чаще используют запоминающие и вычислительные устройства, значительно расширяющие возможности педагога. Для повышения точности биомеханического контроля привлекаются все новинки инженерной мысли: радиотелеметрия, лазеры, ультразвук, инфракрасное излучение, радиоактивность, телевидение, видеомагнитофоны, вычислительная техника.

Датчики биомеханических характеристик

Датчик — первое звено измерительной системы. Датчики непосредственно воспринимают изменения измеряемого показателя и закрепляются либо на теле человека, либо вне его.

Датчик, закрепляемый на человеке, должен иметь минимальный вес и габариты, высокую механическую прочность, удобство крепления и вместе с тем не должен стеснять движений и создавать какого-либо дискомфорта. На теле человека размещаются: маркеры суставов (рис. 35, 36), электромиографические электроды (см. рис. 3), датчики суставного угла (Их чаще называют гониометрическими (от слов gonios — угол, metreo — измеряю); кроме измерения суставных углов, гониометрические датчики применяются для измерения угловых перемещений в спортивном инвентаре, например угла поворота весла в уключине) и ускорения (рис. 37).

Но уже давно замечено, что точность биомеханического контроля выше, если движения человека ничем не стеснены. Поэтому биомеханические датчики стараются размещать на спортивном инвентаре, чтобы условия, в которых осуществляется контроль, не отличались от естественных условий тренировок и соревнований.

Популярными стали динамографические платформы. Они устанавливаются скрытно в секторе для прыжков или метаний, под покрытием беговой дорожки, гимнастического помоста, игровой площадки и т. п. Наиболее совершенные динамоплатформы позволяют измерить все три составляющие силы (вертикальную и две горизонтальные) и, кроме того, скручивающий момент в точке приложения силы, причем результат измерения не зависит от того, к какой точке приложена сила.

Чувствительными элементами в динамографической платформе служат пьезоэлектрические датчики (похожие на тот, что находится в звукоснимателе электропроигрывателя) или менее хрупкие датчики силы — тензометрические (тензодатчики) (Об устройстве биомеханических датчиков и о физических явлениях, лежащих в основе их конструкции, можно прочитать в кн.: Утки н В. Л. Измерения в спорте (введение в спортивную метрологию).— М., 1978.—-С. 103—120; Миненков Б. В. Техника и методика тензометрических исследований в биологии и медицине.— М., 1976).

Рис. 37. «Экзоскелет» — система для крепления гониометрических (1) и акселерометрических (2) датчиков на теле человека; предусмотрена возможность подгонки экзоскелета к длинам сегментов руки и ноги (по А. Н. Лапутину)

Тензодатчики применяются для измерения силы во многих видах спорта. В гимнастике их наклеивают на перекладину, брусья, кольца, ручки коня и т. д. В тяжелой атлетике — на гриф штанги. В стрелковом спорте и биатлоне — на спусковой крючок, ложе и приклад. В гребле — на конус уключины или весло (между рукояткой и уключиной), на подножку и на банку. В велосипедном, конькобежном и лыжном спорте для измерения силы немного видоизменяют конструкцию педали, конька, лыжи и лыжной палки, причем эти изменения никак не сказываются на естественной технике движений. В легкой атлетике применяют тензостельки, которые вкладывают в спортивную обувь. Интересно, что появились кроссовки с тензостельками и миниатюрным компьютером, который автоматически подсчитывает темп и силу отталкивания и сигнализирует тренирующемуся человеку, если сила отталкивания и частота шагов выше или ниже оптимальной.

Тензодатчики используют не только для измерения силы, но и для измерения ускорения, а также для регистрации колебаний тела (рис. 38). В этом случае Тензодатчики наклеивают на вертикальный стержень, соединяющий центры нижней и верхней площадки стабилографической платформы. Стабилограмма показывает, сколь велика способность человека сохранять устойчивость тела, которая служит важным фактором достижений в гимнастике, акробатике, гребле, фигурном катании и т. д. Кроме того, стабилография полезна при лечении людей с нарушенной способностью сохранять равновесие, при тестировании состояния нервной системы (например, перед соревнованиями).

Подобно тензодатчикам, не искажают естественных движений и фотоэлектрические датчики, в которых электрический ток возникает под действием света. Они используются для измерения скорости ходьбы и бега. Бегун (а также конькобежец, лыжник и др.) во время движения прерывает световые лучи, падающие на фотоэлементы (рис. 39). Поскольку каждая оптронная пара (источник света — фотоэлемент) находится на определенном расстоянии (S) от следующей, а время (Dt) преодоления этого расстояния измеряется, легко вычислить среднюю скорость на этом отрезке дистанции:

Если источник света (например, лазер) дает узконаправленный луч, то можно измерить длительность и длину каждого шага. Эта информация полезна при подготовке спринтеров, прыгунов и барьеристов.

Телеметрия и методы регистрации биомеханических характеристик

Для того чтобы использовать информацию от биомеханических датчиков, ее нужно передать по телеметрическому каналу и зарегистрировать.

Термин «телеметрия», составленный из греческих слов tele —далеко и metron —мера, означает «измерение на расстоянии». Информацию о результатах измерений можно передавать по проводам, по радио, посредством лучей света и инфракрасных (тепловых) лучей.

Проводная телеметрия проста и устойчива при помехах. Ее основной недостаток—невозможность передавать по проводам сигналы с датчиков, размещенных на теле человека, находящегося в движении. Поэтому проводную телеметрию следует использовать в сочетании с динамографической платформой или стационарно установленным спортивным инвентарем, оснащенным датчиками биомеханических характеристик.

Приведем пример. Для регистрации динамограммы воднолыжника (рис. 40) нужно приклеить тензодатчики к установленной на корме катера вертикальной стойке. К верхней части стойки прикрепляется конец фала, за другой конец которого держится воднолыжник. В этом случае электрический сигнал от тензодатчиков к регистрирующему прибору (который также размещен на катере) целесообразно передать по проводам.

Радиотелеметрия — это отрасль радиотехники, обеспечивающая передачу по радио информации о результатах измерений.

Радиотелеметрия дает возможность контролировать технико-тактическое мастерство человека в естественных условиях двигательной деятельности. Для этого он должен нести на себе биомеханические датчики и миниатюрное передающее устройство радиотелеметрической системы. Пример радиотелеметрической записи биомеханической информации представлен на рис. 41. Изображенные на нем электромиограммы получены в легкоатлетическом манеже, под беговой дорожкой которого уложена приемная антенна радиотелеметрической системы.

Рис. 41. Радиотелеметрическая запись электромиограмм у бегущего человека:

1 — большая ягодичная м.; 2 — прямая м. бедра; 3 — латеральная широкая м. бедра? 4 — двуглавая м. бедра; 5 — передняя большеберцовая м.; 6 — икроножная м.; 7 — камбаловидная м.; одинарная косая штриховка — уступающая работа; двойная косая штриховка — преодолевающая работа (по И. М. Козлову)

Вопрос для самоконтроля знаний

Какие варианты телеметрии могут быть использованы для регистрации силы отталкивания от опоры:

а) в лыжных гонках;

б) в прыжках в длину;

в) в художественной гимнастике?

Регистрация электрических сигналов, содержащих информацию о результатах биомеханического контроля, осуществляется самописцами и индикаторами различных конструкций. При записи результатов измерений остается документ (график на бумаге, магнитная запись, фотография и т. п.). В отличие от записи индикация состоит в восприятии получаемой информации зрительно или на слух.

Самописцы помогают узнать, как один или сразу несколько измеряемых показателей изменяются во времени (см. рис. 40, 41). Но есть и двухкоординатные самописцы, вычерчивающие график зависимости одного показателя от другого. Они дают педагогу дополнительные возможности. Так, на рис. 42 помещены автоматически вычерченные зависимости силы, прикладываемой к веслу, от горизонталь-; ного перемещения весла. Площадь, ограниченная такой. кривой, пропорциональна величине внешней механической работы.

Задание для самоконтроля и закрепления знаний Подвергните последнее утверждение критическому анализу и докажите его справедливость или ошибочность.

Регистрация изображения издавна приносит большую практическую пользу в физическом воспитании и спорте.

Спортивные соревнования — увлекательное зрелище. В таких видах спорта, как гимнастика и фигурное катание, успех спортсмена прямо зависит от красоты и выразительности движений. В других видах спорта внешняя картина движений имеет хотя и второстепенное, но тоже очень важное значение, поскольку от нее зависит сила, быстрота и точность двигательных действий. Да и в повседневной жизни важно умение красиво двигаться.

Кинематику движений регистрируют оптическими методами, которые непрерывно совершенствуются начиная с 1839 г., когда Франсуа Араго на заседании Французской академии наук сообщил об открытии фотографии («светописи»). Уже в 1882 г. Э. Ж. Марей установил перед объективом фотоаппарата вращающийся диск с прорезями и впервые получил на одной фотопластинке несколько поз движущегося человека («хронофотограмму»).

Другое нововведение, названное впоследствии Н. А. Бернштейном циклосъемкой, состояло в том, чтобы регистрировать лишь схематическое изображение тела. С этой целью на голове и суставах человека или в определенных точках спортивного снаряда укрепляют миниатюрные электрические лампочки или отражатели света (см. рис. 35, 36). При этом на фотопластинке фиксируется последовательность светящихся точек («циклограмма»). Соединив точки, относящиеся к какому-либо суставу, получим траекторию этого сустава (рис. 43).

Рис. 42. Графическая регистрация (самописцем) или индикация (на электронно-лучевом индикаторе) зависимости между силой, прикладываемой к рукоятке весла, и горизонтальным перемещением весла в двух циклах гребли; внизу — лодка, оборудованная измерительной аппаратурой:

1 — вычислительное устройство и электронно-лучевой индикатор; 2 — датчик углового перемещения весла; 3 — тензодатчик (по А. П. Ткачуку)

По мере совершенствования измерительной аппаратуры были освоены стереосъемка, позволяющая получать трехмерное изображение, и высокоскоростная съемка, дающая возможность регистрировать быстропротекающие процессы (рис. 44).

Многообразие способов оптических измерений наглядно иллюстрирует рис. 45. Из слов, написанных на рисунке, могут быть составлены названия большинства известных способов регистрации внешней картины движений. Например, низкоскоростная плоскостная видеоциклосъемка — это съемка маркеров на теле человека одной видеокамерой с обычной частотой кадров.

Рис. 44. Кинограмма отскока теннисного мяча от площадки; при высокоскоростной съемке (4000 кадров в секунду) видно, как меняется форма мяча (по Hay)

Обратите внимание, что современная видеотехника постепенно вытесняет методы кино- и фотоизмерений. Благодаря видеозаписи возможен тщательный и объективный анализ техники и тактики. Это и мощное обучающее средство. Видеомагнитофон дает возможность посмотреть на себя со стороны. А ведь «лучше один раз увидеть, чем семь раз услышать». Многократный просмотр видеозаписи, стоп-кадр; замедленное воспроизведение позволяют обнаружить ошибки и наметить пути их устранения. Наконец, видеозапись долговечнее кинопленки. И при всех этих достоинствах современные цветные видеомагнитофоны (например, «Электроника ВМ-12») сравнительно дешевы и общедоступны.

Биомеханический контроль и ЭВМ

Биомеханический контроль — необходимая, но очень трудоемкая работа. И это главная причина, почему он не применяется в каждой школе и спортивной команде.

На рис. 46 схематически изображены 10 поз бегущего человека, масса тела которого 70 кг. Эти графики получены в результате плоскостной циклосъемки. Вертикальные и горизонтальные координаты шести суставов, центра масс головы и кончика стопы помещены в таблицу 9.

Приведенных данных достаточно для того, чтобы вычислить скорости и ускорения основных сегментов тела, определить координаты общего центра масс в каждой позе, построить кинематические графики (Кинематическими графиками принято называть графики, показывающие, как изменяются во времени координаты, скорости и ускорения частей тела).

Рис. 46. Киноциклограмма бега человека (по Д. Д. Донскому, Л. С. Зайцевой)

Задание для самостоятельной работы

Выполнить все перечисленные расчеты и построения.

Выполнив это задание, вы убедились в том, что трудоемкость биомеханического контроля действительно очень велика. Но немало времени ушло и на составление таблицы 9. А теперь представьте себе, что всю необходимую информацию вы получили не затрачивая труда, сразу после того, как исследуемый человек закончил выполнять упражнение. Не правда ли, это уже из области научной фантастики? Тем не менее сегодня такая фантастическая возможность стала реальной, и случилось это благодаря достижениям электронно-вычислительной техники.

С созданием ЭВМ, значение которых академик Н. Н. Моисеев сравнивает с покорением огня, связан важнейший этап научно-технической революции XX в. «Совершенствуя в течение тысячелетий свои рабочие органы и органы чувств, человек до середины XX в. сохранял за своим мозгом функцию промежуточного звена между ними.

Но при современном уровне развития науки и техники умственная нагрузка человека... стала огромной, а подчас изнурительной и непосильной. Дальнейшее развитие человечества потребовало «достройки» естественной системы управления — человеческого мозга... Из этой потребности и родилась... электронно-вычислительная техника» (Цитата (с сокращениями) заимствована из книги И. М. Фейгенберга «Мозг, психика, здоровье» (М., 1972.— С. 32)).

Примечание. В числителе горизонтальные, в знаменателе вертикальные координаты маркеров, см.

Как известно, ЭВМ делятся на универсальные и специализированные. Универсальные ЭВМ (в том числе персональные компьютеры) дают возможность решать многие задачи биомеханического контроля. В том числе:

— вычисления и графические работы, подобные тем, что вы сделали, выполняя задание на с. 75 и более сложные;

— тестирование двигательных качеств;

— выявление оптимальных вариантов техники и тактики путем их математического и имитационного моделирования на ЭВМ (см. рис. 23, 24);

— контроль за эффективностью техники и тактики.

Последнее проиллюстрируем представленными на рис. 47 результатами динамографического контроля за симметричностью позы при стоянии человека. Такой контроль не только позволяет дать полезные для здоровья рекомендации, но и необходим при индивидуальном пошиве спортивной обуви. Рисунок показывает, что два пальца левой ноги не взаимодействуют с опорой. Следовательно, под эти пальцы следует положить супинатор.

Даже эти немногие примеры дают представление о том, насколько применение вычислительной техники в биомеханическом контроле расширяет возможности педагога. Недаром умение пользоваться ЭВМ называют второй грамотностью.



Рис. 4. Определение объема движений в суставах: 1 измерение объема движений в плечевом суставе (а измерение угла отве­дения, б измерение угла сгибания); 2 измерение подвижности в локтевом суставе, 3 измерение угла приведения кисти, 4 измерение подвижности в та­зобедренном суставе, 5 измерение подвижности в тазобедренном суставе при сгибательной контрактуре, 6 измерение величины отведения бедра, 7 изме­рение угла сгибания в коленном суставе, 8 измерение подвижности стопы







Рис. 9. Расположение условной оси голеностопного сустава (а): 1 нормальное положение стопы; 2 отклонение стопы кнаружи; 3 отклонение стопы внутри. Нормальные и патофизиологические изменения стопы (черным помечены зоны контакта стопы с поверхностью) (б): 1 нормальное; 2 плоскостопие; 3 косолапость












Соотношение массы к поверхности тела ребенка в зависимости от возраста. Слайд 16 Таблица 1. Возраст Масса тела, кг Поверх­ ность тела, м 2 % к средним показателям взрослых масса телаповерхность тела Новорожденные 3,50, мес 5,00, » 7.50, год 10,00, года 15,00, лет 23,00, » -27,01, » , » * Взрослые 651,73100


Средние значения изометрической силы некоторых мышечных групп в зависимости от возраста (по Е. Азтиззеп, 1968). Слайд 17. Таблица 2. Показатель (кг) Возраст, лет 20"2535"4555 мужжен.муж.жен.муж.жен.г^жжен.мужжен. Сила кисти (±16%)* 55,937,559,938,558,838,055,635,651,632,7 Сила разгиба­ телей туловища (±16%) 81,656,6 -87,458,390,759,289,857,785,749,1 Сила сгибате­ лей туловища (±17%) 60,640,964,242,266,742,466,041,563,033,6 Сила разгиба­ телей ног сидя (±18,5%) 295" *. " * Коэффициент вариации


Рассмотрим один полуцикл ходьбы, т. к. во втором полуцикле фазы и граничные позы те же, только в их названиях правую ногу нужно заменить левой, а левую – правой: 1. - отрыв стопы правой ноги от опоры; I - подседание на левой (опорной) ноге, ееё сгибание в коленном суставе 2 – начало разгибания левой ноги; II – выпрямление левой ноги, ее разгибание в коленном суставе; 3. – момент, когда правая нога в процессе переноса начала опережать левую ногу; III – вынос правой ноги с опорой на всю стопу левой ноги; 4 - отрыв пятки левой ноги от опоры; IV – вынос правой ноги с опорой на носок левой ноги; 5 – постановка правой ноги на опору; V - двойная опора, переход опоры с левой ноги на правую; Слайд 18.


В случае, если речь идет о фазовом составе двигательного действия, имеют в виду движения всего тела. При рассмотрении фазового состава ходьбы или бега имеется в виду движения ног, что необходимо для выяснения механизмов этих локомоций, т.е. как и от чего человека двигается. В беге имеется четыре фазы (римские цифры) и четыре, отделенных друг от друга граничными позами: 1. - отрыв левой стопы от опоры; I. - разведение стоп; 2. – начало выноса левой ноги вперед; II – сведение стоп с выносом левой ноги вперед; 3. – постановка правой стопы на опору; III. – амортизация, или подседание со сгибанием правой (опорной ноги); 4. – начало разгибания правой ноги; IV. - отталкивание с выпрямлением правой ноги до отрыва от опоры. слайд 18