Метод Гаусса для чайников: примеры решений. Способы оценки ошибок

Итак, метод Гаусса применим к любой системе линейных уравнений, он идеально подходит для решения систем, содержащих больше трех линейных уравнений. Метод Гаусса решения СЛАУ с числовыми коэффициентами в силу простоты и однотипности выполняемых операций пригоден для счета на электронно-вычислительных машинах.

Достоинства метода:

a) менее трудоёмкий по сравнению с другими методами;

b) позволяет однозначно установить, совместна система или нет, и если совместна, найти её решение;

c) позволяет найти максимальное число линейно независимых уравнений - ранг матрицы системы.

Существенным недостатком этого метода является невозможность сформулировать условия совместности и определенности системы в зависимости от значений коэффициентов и свободных членов. С другой стороны, даже в случае определенной системы этот метод не позволяет найти общие формулы, выражающие решение системы через ее коэффициенты и свободные члены, которые необходимо иметь при теоретических исследованиях.

Помимо аналитического решения СЛАУ, метод Гаусса также применяется для:

a) нахождения матрицы, обратной к данной (к матрице справа приписывается единичная такого же размера, что и исходная: , после чего приводится к виду единичной матрицы методом Гаусса-Жордана; в результате на месте изначальной единичной матрицы справа оказывается обратная к исходной матрица:);

b) определения ранга матрицы (согласно следствию из теоремы Кронекера-Капелли ранг матрицы равен числу её главных переменных);

c) численного решения СЛАУ в вычислительной технике (ввиду погрешности вычислений используется Метод Гаусса с выделением главного элемента, суть которого заключена в том, чтобы на каждом шаге в качестве главной переменной выбирать ту, при которой среди оставшихся после вычёркивания очередных строк и столбцов стоит максимальный по модулю коэффициент).

Существуют и другие методы решения и исследования систем линейных уравнений, которые лишены отмеченных недостатков. Эти методы основаны на теории матриц и определителей.

Комбинаторика.

Сколькими способами трое мальчиков - Алмас, Болат, Сабыр - могут стоять в одном ряду? - Это не трудно, напишем все возможные случаи (комбинации): АБС, АСБ, БАС, БСА, САБ, СБА. Всего шесть комбинаций.

Допустим к ним присоединился еще один мальчик Даурен. Каковы будут способы расположения в этом случае? В возможных шести случаях Даурен может стоять первым, вторым, третьим и последним:

ДАБС, ДАСБ, ДБАС, ДБСА, ДСАБ, ДСБА;
АДБС, АДСБ, БДАС, БДСА, СДАБ, СДБА;
АБДС, АСДБ, БАДС, БСДА, САДБ, СБДА;
АБСД, АСБД, БАСД, БСАД, САБД, СБАД.

Всего 24 разных способов. А если еще увеличить количество детей? Каждый раз писать и выводить общее количество трудно. Нам нужно определить число способов, а не виды способов. Нет ли других методов для определение этого число? - Есть. И в теории вероятностей нас больше интересует количество способов расположения, чем виды расположения. Раздел математики, называемый комбинаторикой, дает возможность сразу определить количество таких способов. Ознакомимся с основными понятиями комбинаторики, необходимыми для решения задач теории вероятностей. Это - перестановка, размещение и сочетания. Остановимся на каждом в отдельности.

1. Перестановка. Рассмотрим число случаев в предыдущей задаче. Мы переставили местами буквы А, Б, С и посчитали число всевозможных комбинаций, оно равнялось 6. А когда число мальчиков увеличилось на единицу, переставь местами буквы А, Б, С, Д, мы нашли число всевозможных комбинаций, оно равнялось 24.

ОПРЕДЕЛЕНИЕ. Перестановкой из n различных элементов называются комбинации, которые состоят из n элементов и отличаются друг от друга только порядком их расположения.

Число перестановок из n различных элементов обозначают P n и подсчитывают по формуле:

здесь n! (читается "эн факториал") означает произведение всех натуральных чисел от 1 до n:

Понятно, что один факториал равен единице, 1! = 1, вместе с этим, в математике принято считать что и ноль факториал равен единице. И так 0! = 1.

Вернемся к примеру. Здесь n=3. Следовательно, можно найти искомое число перестановок по формуле (1): P 3 =3!=1 2 3=6. Аналогично, число перестановок из четырех букв равно: P 4 =4!=1 2 3 4=24

Пример 7. Найдем значение выражения с факториалами 8!/6! 2!

Сначала преобразуем 8!=1 2 3 4 5 6 7 8=6! 7 8

Это преобразование подставим в выражение и упростим. 8!/6! 2=6! 7 8/6! 2=7 8/2=28

2. Размещения. Рассмотрим пример. Сколько двузначных чисел (цифры не повторяются) можно записать с помощью цифр 7, 8, 9. Это можно сделать в двух этапах: первый этап - определение количество подбора разрядов десятков числа, он равен 3 (любая из данных 3 цифр может занять разряд десятков); второй этап - определение количество подбора разрядов единиц числа, он равен 2 (любая цифра из оставшихся двух может занять разряд единиц). По правилу умножения из трех чисел можно составить всего 3 2=6 различных двузначных чисел. Действительно, можно в этом убедиться непосредственно записывая эти числа 78, 79, 87, 89, 97, 98, При решении задачи мы расположили по два элемента из трех, причем эти комбинации отличаются либо составом (78, 98), либо порядком их расположения (78, 87).

ОПРЕДЕЛЕНИЕ. Размещением из n элементов по m элементов (m n) называются комбинации, состоящие из m элементов, взятых из данных n различных элементов, отличающихся друг от друга либо самими элементами, либо порядком их расположения.

Число размещений из n элементов по m элементов обозначают и читают так: "А из эн по эм". Чтобы найти используют формулу:

(15)

Рассмотрим еще один пример. В 5 классе изучают 10 предметов. Сколькими способами можно составить расписание, если в этот день должно быть 4 различных урока?

Чтобы найти число способов расположения 10-ти предметов по четыре предмета, воспользуемся формулой (15) нахождения числа размещений из 10 элементов по 4 элемента:

Итак, 10 предметов по 4 предмета можно расположить 5040 различными способами.

3. Сочетания. Пример. Нужно составить произведения двух различных чисел из данных трех чисел 7, 8, 9.

Учитывая переместительное свойство умножения, имеем: 7 8=56, 7 9=63, 8 9=72. При решении задачи мы отобрали по два элемента из трех, причем эти комбинации отличаются только составом (78, 98), а их расположения не влияют на произведение.

ОПРЕДЕЛЕНИЕ. Сочетанием из n элементов по m элементов (m n) называются комбинации, состоящие из m элементов, взятых из данных n различных элементов, отличающиеся друг от друга только составом.

Число сочетаний из n элементов по m элементов обозначают и читают так: "це из эн по эм". Чтобы найти используют формулу:

(16)

В нашем примере n=3, а m=2. Тогда

Рассмотрим еще пример. В классе 25 учеников, из них 12 мальчиков. а) Нужно составить дежурство по два человека, причем пары должны состоят либо из мальчиков, либо из девочек. б) Сколько можно создать групп для дежурства, из двух мальчиков и одной девочки?

Решение. а) При решении этой задачи воспользуемся правилом сложения и формулой сочетания. Сначала посчитаем сколько пар можно создать из мальчиков (m 1) и из девочек (m 2), после найдем их сумму (m=m 1 +m 2).

Чтобы определить сколько пар можно создать из 12 мальчиков воспользуемся формулой для подсчета числа сочетаний из 12 элементов по 2 элемента

Из девочек можно создать 78 различных пар. Тогда по два мальчика и по две девочки всего можно создать m=66+78=144 различных пар.

б) При решении этой задачи воспользуемся правилом умножения и формулой сочетания. В группе два мальчика и одна девочка. Сначала посчитаем сколькими способами можно выбрать из 12 мальчиков по два мальчика (m 1) и из 13 девочек одну девочку (m 2), затем перемножим полученные результаты (m=m 1 m 2).
Из 12 мальчиков 2 мальчика можно выбрать 66 различными способами. А из 13 девочек 1 девочку можно выбрать следующим образом:

Тогда группу из двух мальчиков и из одной девочки можно создать m=66 13=856 различными способами.

Определение матрицы. Определители второго и третьего порядков, их основные свойства. Миноры и алгебраические дополнения, разложение определителя по строке (столбцу). Методы вычисления определителей. Понятие об определителе n-го порядка.

Определение 1.1 . Матрицей называется прямоугольная таблица чисел.

Обозначения: А – матрица, - элемент матрицы, номер строки, в которой стоит данный элемент, номер соответствующего столбца; m – число строк матрицы, n – число ее столбцов.

Определение 1.2 . Числа m и n называются размерностями матрицы.

Определение 1.3. Матрица называется квадратной , если m = n. Число n в этом случае называют порядком квадратной матрицы.

Каждой квадратной матрице можно поставить в соответствие число, определяемое единственным образом с использованием всех элементов матрицы. Это число называется определителем.

Определение 1.4. Определителем второго порядка называется число, полученное с помощью элементов квадратной матрицы 2-го порядка следующим образом:

.

При этом из произведения элементов, стоящих на так называемой главной диагонали матрицы (идущей из левого верхнего в правый нижний угол) вычитается произведение элементов, находящихся на второй, или побочной, диагонали.

1. 2.

Определение 1.5 . Определителем третьего порядка называется число, определяемое с помощью элементов квадратной матрицы 3-го порядка следующим образом:

А` , называемая транспонированной по отношению к матрице А , элементы которой связаны с элементамиА соотношением a` ij = a ji .

Метод Гаусса, называемый также методом последовательного исключения неизвестных, состоит в следующем. При помощи элементарных преобразований систему линейных уравнений приводят к такому виду, чтобы её матрица из коэффициентов оказалась трапециевидной (то же самое, что треугольной или ступенчатой) или близкой к трапециевидной (прямой ход метода Гаусса, далее - просто прямой ход). Пример такой системы и её решения - на рисунке сверху.

В такой системе последнее уравнение содержит только одну переменную и её значение можно однозначно найти. Затем значение этой переменной подставляют в предыдущее уравнение (обратный ход метода Гаусса , далее - просто обратный ход), из которого находят предыдущую переменную, и так далее.

В трапециевидной (треугольной) системе, как видим, третье уравнение уже не содержит переменных y и x , а второе уравнение - переменной x .

После того, как матрица системы приняла трапециевидную форму, уже не представляет труда разобраться в вопросе о совместности системы, определить число решений и найти сами решения.

Преимущества метода:

  1. при решении систем линейных уравнений с числом уравнений и неизвестных более трёх метод Гаусса не такой громоздкий, как метод Крамера , поскольку при решении методом Гаусса необходимо меньше вычислений;
  2. методом Гаусса можно решать неопределённые системы линейных уравнений, то есть, имеющие общее решение (и мы разберём их на этом уроке), а, используя метод Крамера, можно лишь констатировать, что система неопределённа;
  3. можно решать системы линейных уравнений, в которых число неизвестных не равно числу уравнений (также разберём их на этом уроке);
  4. метод основан на элементарных (школьных) методах - методе подстановки неизвестных и методе сложения уравнений, которых мы коснулись в соответствующей статье.

Чтобы все прониклись простотой, с которой решаются трапециевидные (треугольные, ступенчатые) системы линейных уравнений, приведём решение такой системы с применением обратного хода. Быстрое решение этой системы было показано на картинке в начале урока.

Пример 1. Решить систему линейных уравнений, применяя обратный ход:

Решение. В данной трапециевидной системе переменная z однозначно находится из третьего уравнения. Подставляем её значение во второе уравнение и получаем значение переменой y :

Теперь нам известны значения уже двух переменных - z и y . Подставляем их в первое уравнение и получаем значение переменной x :

Из предыдущих шагов выписываем решение системы уравнений:

Чтобы получить такую трапециевидную систему линейных уравнений, которую мы решили очень просто, требуется применять прямой ход, связанный с элементарными преобразованиями системы линейных уравнений. Это также не очень сложно.

Элементарные преобразования системы линейных уравнений

Повторяя школьный метод алгебраического сложения уравнений системы, мы выяснили, что к одному из уравнений системы можно прибавлять другое уравнение системы, причём каждое из уравнений может быть умножено на некоторые числа. В результате получаем систему линейных уравнений, эквивалентную данной. В ней уже одно уравнение содержало только одну переменную, подставляя значение которой в другие уравнений, мы приходим к решению. Такое сложение - один из видов элементарного преобразования системы. При использовании метода Гаусса можем пользоваться несколькими видами преобразований.

На анимации выше показано, как система уравнений постепенно превращается в трапециевидную. То есть такую, которую вы видели на самой первой анимации и сами убедились в том, что из неё просто найти значения всех неизвестных. О том, как выполнить такое превращение и, конечно, примеры, пойдёт речь далее.

При решении систем линейных уравнений с любым числом уравнений и неизвестных в системе уравнений и в расширенной матрице системы можно :

  1. переставлять местами строки (это и было упомянуто в самом начале этой статьи);
  2. если в результате других преобразований появились равные или пропорциональные строки, их можно удалить, кроме одной;
  3. удалять "нулевые" строки, где все коэффициенты равны нулю;
  4. любую строку умножать или делить на некоторое число;
  5. к любой строке прибавлять другую строку, умноженное на некоторое число.

В результате преобразований получаем систему линейных уравнений, эквивалентную данной.

Алгоритм и примеры решения методом Гаусса системы линейных уравнений с квадратной матрицей системы

Рассмотрим сначала решение систем линейных уравений, в которых число неизвестных равно числу уравнений. Матрица такой системы - квадратная, то есть в ней число строк равно числу столбцов.

Пример 2. Решить методом Гаусса систему линейных уравнений

Решая системы линейных уравнений школьными способами, мы почленно умножали одно из уравнений на некоторое число, так, чтобы коэффициенты при первой переменной в двух уравнениях были противоположными числами. При сложении уравнений происходит исключение этой переменной. Аналогично действует и метод Гаусса.

Для упрощения внешнего вида решения составим расширенную матрицу системы :

В этой матрице слева до вертикальной черты расположены коэффициенты при неизвестных, а справа после вертикальной черты - свободные члены.

Для удобства деления коэффициентов при переменных (чтобы получить деление на единицу) переставим местами первую и вторую строки матрицы системы . Получим систему, эквивалентную данной, так как в системе линейных уравнений можно переставлять местами уравнения:

С помощью нового первого уравнения исключим переменную x из второго и всех последующих уравнений . Для этого ко второй строке матрицы прибавим первую строку, умноженную на (в нашем случае на ), к третьей строке – первую строку, умноженную на (в нашем случае на ).

Это возможно, так как

Если бы в нашей системе уравнений было больше трёх, то следовало бы прибавлять и ко всем последующим уравнениям первую строку, умноженную на отношение соответствующих коэффициентов, взятых со знаком минус.

В результате получим матрицу эквивалентную данной системе новой системы уравнений, в которой все уравнения, начиная со второго не содержат переменнную x :

Для упрощения второй строки полученной системы умножим её на и получим вновь матрицу системы уравнений, эквивалентной данной системе:

Теперь, сохраняя первое уравнение полученной системы без изменений, с помощью второго уравнения исключаем переменную y из всех последующих уравнений. Для этого к третьей строке матрицы системы прибавим вторую строку, умноженную на (в нашем случае на ).

Если бы в нашей системе уравнений было больше трёх, то следовало бы прибавлять и ко всем последующим уравнениям вторую строку, умноженную на отношение соответствующих коэффициентов, взятых со знаком минус.

В результате вновь получим матрицу системы, эквивалентной данной системе линейных уравнений:

Мы получили эквивалентную данной трапециевидную систему линейных уравнений:

Если число уравнений и переменных больше, чем в нашем примере, то процесс последовательного исключения переменных продолжается до тех пор, пока матрица системы не станет трапециевидной, как в нашем демо-примере.

Решение найдём "с конца" - обратный ход . Для этого из последнего уравнения определим z :
.
Подставив это значение в предшествующее уравнение, найдём y :

Из первого уравнения найдём x :

Ответ: решение данной системы уравнений - .

: в этом случае будет выдан тот же ответ, если система имеет однозначное решение. Если же система имеет бесконечное множество решений, то таков будет и ответ, и это уже предмет пятой части этого урока.

Решить систему линейных уравнений методом Гаусса самостоятельно, а затем посмотреть решение

Перед нами вновь пример совместной и определённой системы линейных уравнений, в которой число уравнений равно числу неизвестных. Отличие от нашего демо-примера из алгоритма - здесь уже четыре уравнения и четыре неизвестных.

Пример 4. Решить систему линейных уравнений методом Гаусса:

Теперь нужно с помощью второго уравнения исключить переменную из последующих уравнений. Проведём подготовительные работы. Чтобы было удобнее с отношением коэффициентов, нужно получить единицу в во втором столбце второй строки. Для этого из второй строки вычтем третью, а полученную в результате вторую строку умножим на -1.

Проведём теперь собственно исключение переменной из третьего и четвёртого уравнений. Для этого к третьей строке прибавим вторую, умноженную на , а к четвёртой - вторую, умноженную на .

Теперь с помощью третьего уравнения исключим переменную из четвёртого уравнения. Для этого к четвёртой строке прибавим третью, умноженную на . Получаем расширенную матрицу трапециевидной формы.

Получили систему уравнений, которой эквивалентна заданная система:

Следовательно, полученная и данная системы являются совместными и определёнными. Окончательное решение находим «с конца». Из четвёртого уравнения непосредственно можем выразить значение переменной "икс четвёртое":

Это значение подставляем в третье уравнение системы и получаем

,

,

Наконец, подстановка значений

В первое уравнение даёт

,

откуда находим "икс первое":

Ответ: данная система уравнений имеет единственное решение .

Проверить решение системы можно и на калькуляторе, решающем методом Крамера : в этом случае будет выдан тот же ответ, если система имеет однозначное решение.

Решение методом Гаусса прикладных задач на примере задачи на сплавы

Системы линейных уравнений применяются для моделирования реальных объектов физического мира. Решим одну из таких задач - на сплавы. Аналогичные задачи - задачи на смеси, стоимость или удельный вес отдельных товаров в группе товаров и тому подобные.

Пример 5. Три куска сплава имеют общую массу 150 кг. Первый сплав содержит 60% меди, второй - 30%, третий - 10%. При этом во втором и третьем сплавах вместе взятых меди на 28,4 кг меньше, чем в первом сплаве, а в третьем сплаве меди на 6,2 кг меньше, чем во втором. Найти массу каждого куска сплава.

Решение. Составляем систему линейных уравнений:

Умножаем второе и третье уравнения на 10, получаем эквивалентную систему линейных уравнений:

Составляем расширенную матрицу системы:

Внимание, прямой ход. Путём сложения (в нашем случае - вычитания) одной строки, умноженной на число (применяем два раза) с расширенной матрицей системы происходят следующие преобразования:

Прямой ход завершился. Получили расширенную матрицу трапециевидной формы.

Применяем обратный ход. Находим решение с конца. Видим, что .

Из второго уравнения находим

Из третьего уравнения -

Проверить решение системы можно и на калькуляторе, решающем методом Крамера : в этом случае будет выдан то же ответ, если система имеет однозначное решение.

О простоте метода Гаусса говорит хотя бы тот факт, что немецкому математику Карлу Фридриху Гауссу на его изобретение потребовалось лишь 15 минут. Кроме метода его имени из творчества Гаусса известно изречение "Не следует смешивать то, что нам кажется невероятным и неестественным, с абсолютно невозможным" - своего рода краткая инструкция по совершению открытий.

Во многих прикладных задачах может и не быть третьего ограничения, то есть, третьего уравнения, тогда приходится решать методом Гаусса систему двух уравнений с тремя неизвестными, или же, наоборот - неизвестных меньше, чем уравнений. К решению таких систем уравнений мы сейчас и приступим.

С помощью метода Гаусса можно установить, совместна или несовместна любая система n линейных уравнений с n переменными.

Метод Гаусса и системы линейных уравнений, имеющие бесконечное множество решений

Следующий пример - совместная, но неопределённая система линейных уравнений, то есть имеющая бесконечное множество решений.

После выполнения преобразований в расширенной матрице системы (перестановки строк, умножения и деления строк на некоторое число, прибавлению к одной строке другой) могли появиться строки вида

Если во всех уравнениях имеющих вид

Свободные члены равны нулю, то это означает, что система неопределённа, то есть имеет бесконечное множество решений, а уравнения этого вида – «лишние» и их исключаем из системы.

Пример 6.

Решение. Составим расширенную матрицу системы. Затем с помощью первого уравнения исключим переменную из последующих уравнений. Для этого ко второй, третьей и четвёртой строкам прибавим первую, умноженную соответственно на :

Теперь вторую строку прибавим к третьей и четвёртой.

В результате приходим к системе

Последние два уравнения превратились в уравнения вида . Эти уравнения удовлетворяются при любых значениях неизвестных и их можно отбросить.

Чтобы удовлетворить второму уравнению, мы можем для и выбрать произвольные значения , тогда значение для определится уже однозначно: . Из первого уравнения значение для также находится однозначно: .

Как заданная, так и последняя системы совместны, но неопределённы, и формулы

при произвольных и дают нам все решения заданной системы.

Метод Гаусса и системы линейных уравнений, не имеющие решений

Следующий пример - несовместная система линейных уравнений, то есть не имеющая решений. Ответ на такие задачи так и формулируется: система не имеет решений.

Как уже говорилось в связи с первым примером, после выполнения преобразований в расширенной матрице системы могли появиться строки вида

соответствующие уравнению вида

Если среди них есть хотя бы одно уравнение с отличным от нуля свободным членом (т.е. ), то данная система уравнений является несовместной, то есть не имеет решений и на этом её решение закончено.

Пример 7. Решить методом Гаусса систему линейных уравнений:

Решение. Составляем расширенную матрицу системы. С помощью первого уравнения исключаем из последующих уравнений переменную . Для этого ко второй строке прибавляем первую, умноженную на , к третьей строке - первую, умноженную на , к четвёртой - первую, умноженную на .

Теперь нужно с помощью второго уравнения исключить переменную из последующих уравнений. Чтобы получить целые отношения коэффициентов, поменяем местами вторую и третью строки расширенной матрицы системы.

Для исключения из третьего и четвёртого уравнения к третьей строке прибавим вторую, умноженную на , а к четвёртой - вторую, умноженную на .

Теперь с помощью третьего уравнения исключим переменную из четвёртого уравнения. Для этого к четвёртой строке прибавим третью, умноженную на .

Заданная система эквивалентна, таким образом, следующей:

Полученная система несовместна, так как её последнее уравнение не может быть удовлетворено никакими значениями неизвестных. Следовательно, данная система не имеет решений.

Пусть требуется решить линейную систему уравнений вида:

или в другой форме

В курсе линейной алгебры решения системы уравнений (5.2) представляются по правилу Крамера в виде отношений соответствующих определителей. Если использовать наиболее оптимальный способ расчета определителя, то по правилу Крамера требуется примерно -|п! арифметических операций. Однако существует более оптимальный способ решения системы уравнений (5.2) - метод исключения Гаусса, в рамках которого требуется -|п 3 арифметических действий.

Начнем исследование системы уравнений (5.2) с частного случая, когда матрица системы является верхней треугольной, т. е. все ее элементы ниже главной диагонали равны нулю. Выполняя в командном окне MATLAB oneрацию spy(triu(randn(25))) сгенерируем верхнюю треугольную матрицу и ее графический образ. На рис. 5.1 приведен соответствующий пример верхней треугольной матрицы.

Из последнего уравнения системы с верхней треугольной матрицей находим Х л, подставляя его в предпоследнее уравнение, находим Х„ _i и т. д. - находим все решение. Общая формула для определения Xj-ro имеет вид:

Метод Гаусса выражается в процедуре приведения матрицы системы уравнений к треугольному виду (например, к верхнему треугольному виду на рис. 5.1). Это можно сделать следующим образом. Вычтем из второго уравнения первое, умноженное на такое число, чтобы коэффициент при X] обратился в нуль, аналогично вычтем первое уравнение из второго, третьего и т. д. вплоть до П-го. В результате должна получиться новая система уравнений, в которой в первом столбце везде нули, кроме диагонального элемента а ц. Затем с помощью второго уравнения путем такой же процедуры обнуляем элементы второго столбца, лежащие ниже главной диагонали. Продолжая эту процедуру для третьего и всех последующих уравнений, преобразуем матрицу системы к верхнему треугольному виду.

Рис. 5.1.

Пусть проведено исключение элементов из k- 1 столбца. Остальные уравнения с не обнуленными столбцами можно записать в виде:

Умножим к-к) строку на число С тк = / оIf 1 , т > к, и вычтем из ш-й

строки. Первый ненулевой элемент этой строки обратиться в нуль, а другие элементы можно пересчитать по формулам:

Проведение алгоритма (5.4), (5.5) обнуления каждого столбца матрицы ниже главной диагонали заканчивается (п - 1)-м столбцом, при этом вся процедура называется прямым ходом исключения.

Собрав (5.4), (5.5) вместе, будем иметь

или в развернутой форме

Система уравнений (5.6) легко решается обратным ходом по формулам (5.3).

Возможное нарушение в работе алгоритма (5.4), (5.5) может быть связано с тем, что на главной диагонали оказался нулевой элемент а кк " = 0. В этом случае необходимо среди строк матрицы ниже к -й найти такую, у которой на к- м месте находится отличный от нуля элемент. Такая строка обязательно должна найтись, если она не находится, то это значит, что в к- м столбце, начиная с к-го номера все элементы нулевые, а значит, и детерминант матрицы А равен нулю. Перестановкой строк можно переместить подходящую строку в нужное положение.

Если оказывается, что элемент на главной диагонали мал, то коэффициенты С т к становятся большими числами, и при пересчете элементов матрицы согласно (5.5) может быть значительная потеря точности на ошибках округления при вычитании больших чисел. Чтобы этого не происходило, среди элементов столбца а^ к, т>к, находят главный или максимальный и перестановкой строк переводят его на главную диагональ. Этот метод называется методом Гаусса с выбором главного элемента. С выбором главного элемента ошибки округления в методе Гаусса обычно невелики.

Метод Гаусса с выбором главного элемента наиболее прост, надежен и выгоден и по этой причине наиболее востребован при решении линейных систем уравнений с плотно заполненной матрицей порядка п

Рассмотрим процедуру решения линейной системы уравнений в среде MATLAB. Покажем экспериментально, что в среднем количество операций, осуществляемое центральным процессором при решении линейной системы уравнений, пропорционально кубу порядка матрицы. Покажем, что асимптотически отношение time(n)/n 3 стремится к некоторой предстепенной константе при п -> оо, где time(n) - время работы центрального процессора при данном порядке матрицы п.

В листинге 5.1 приведен код соответствующей программы.

Листинг 5.1

“/«Программа изучения затрат времени “/«центрального процессора при решении %систем линейных уравнений %очищаем рабочее пространство clear all

“/«определяем максимальный порядок “/«обращаемых матриц

птах =1 0 0 0; к =0;

“/«организуем цикл решений систем “/«уравнений вида А X = Ь for п = 1: 10: птах k =к +1; order) к) =п;

“/оформируем случайну матрицу А %и правую часть Ь A=r andn(n); b=randn(n, 1) ;

“/«запоминаем начальный момент времени “/оработы центрального процессора 10 =с рut i me;

“/орешаем линейную систему уравнений %А X = Ь по формуле: X =А Ь А Ь;

“/онаходим последующий момент времени,

“/овычитаем из него предыдущий и “/оделим на куб порядка матрицы

t (к) =(с put i me-10) / n л3; end

“/«строим график зависимости предстепенной “/оконстанты от порядка матрицы А semilogy(order,t);

Рис. 5.2.

На рис. 5.2 приведен график зависимости предстепенной константы отношения времени работы центрального процессора к кубу порядка матрицы от порядка матрицы. Видно, что при П -> оо действительно отношение time(n)/n 3 стремится к некоторой константе, что и подтверждает кубическую зависимость числа операций в методе Гаусса от порядка матрицы.

Определитель и обратная матрица также могут быть найдены методом исключения Гаусса. В процессе исключения вычитание строк не меняет определитель, но может измениться сто знак при перестановке строк. После приведения матрицы к треугольному виду, можем найти детерминант матрицы в виде произведения ее диагональных элементов:

где выбор "+" или зависит от того, четной или нечетной была суммарная перестановка строк.

Процедуру поиска детерминанта матрицы (5.7) изучим на примере стандартной функции MATLAB - det(A), где А - произвольная матрица пхп. Изучим зависимость величины детерминанта матрицы со случайными элементами, распределенными по нормальному закону со средним 0 и стандартным отклонением 1, в зависимости от порядка матрицы.

В листинге 5.2 приведен код соответствующей программы.

Листинг 52

%Программа изучения процедуры поиска детерминанта %матрицы, элементы которой случайные величины,

“/«распределенные по нормальному закону со средним О %и стандартным отклонением 1 %очищаем рабочее пространство clear all

“/«определяем максимальный порядок %анализируемых матриц

птах =3 0 0;

%организуем цикл поиска детерминанта %матрицы А - det(A) for n=l: 5: nmax k =k +1; order) k) =n;

%формируем случайную матрицу A A=r a n d n (n) ;

%вычисляем детерминант матрицы A

%переходим в логарифмическую шкалу %при фиксации значений детерминанта d(k) =si gn(d(к)) *1 оg 10(d(к)); end

%строим график зависимости значений %детерминанта матрицы от порядка матрицы

plot (order, d);

На рис. 5.3 приведен график зависимости логарифма детерминанта случайной матрицы от порядка матрицы. Видно, что детерминант случайной матрицы экспоненциально растет с ростом порядка матрицы.


Рис. 5.3.

Для вычисления обратной матрицы обозначим ее элементы через а 1т, 1,т = 1 , и будем исходить из соотношения АА 1 = Е, тогда верна следующая запись:

Согласно (5.8) /-й столбец обратной матрицы можно рассматривать в качестве неизвестного вектора линейной системы уравнений с матрицей А со специальной правой частью. Таким образом, обращение матрицы сводится к решению линейной системы уравнений п раз с одной и той же матрицей, но с разными правыми частями. Приведение системы к треугольному виду осуществляется только 1 раз, поэтому количество арифметических операций при обращении матрицы лишь в три раза больше, чем при решении системы линейных уравнений, т. е. порядка * 2П 3 .

Рассмотрим теперь функцию inv(A) в среде MATLAB, которая возвращает обратную к А матрицу. В листинге 5.3 приведен код соответствующей программы.

Листинг 53

%Программа изучения процедуры поиска обратной матрицы, Роэлементы которой - случайные величины, распределенные %по нормальному закону со средним 0 и стандартным %отклонением 1

Роочищаем рабочее пространство

%определяем максимальный порядок %анализируемых матриц

пшах=1 0 00; к =0;

Реорганизуем цикл поиска обратной Роматрицы к А - i ПV(А) for п=1: 5: птах k =к +1; о г d е г (к) =п;

Реформируем случайну матрицу А

Ровычисляем обратную к А матрицу Ai nv=i nv(А);

Ренаходим ошибку обращения Е =еуе(п);

е г (к) =п о г ш(A* Ai nv- Е) ; end

Состроим график зависимости значений ошибок

%обращения матриц от порядка матриц

semilogy(order.er);

На рис. 5.4 приведена зависимость ошибки обращения матрицы от ее порядка. Видно, что по мере роста порядка матрицы от 1 до 800 ошибка обращения, выраженная в определенной норме, выросла на пять порядков.


Рассмотрим один из самых распространенных методов решения систем линейных алгебраических уравнений - метод Гаусса. Этот метод (который называют также методом последовательного исключения неизвестных) известен в различных вариантах уже более 2000 лет.

Вычисления с помощью метода Гаусса состоят из двух основных этапов, называемых прямым ходом и обратным ходом (обратной подстановкой). Прямой ход метода Гаусса заключается в последовательном исключении неизвестных из системы (5.1) для преобразования ее к эквивалентной системе с верхней треугольной матрицей. Вычисления значений неизвестных производят на этапе обратного хода.

1. Схема единственного деления.

Рассмотрим сначала простейший вариант метода Гаусса, называемый схемой единственного деления.

Прямой ход состоит из шагов исключения.

1-й шаг. Целью этого шага является исключение неизвестного из уравнений с номерами Предположим, что коэффициент Будем называть его главным (или ведущим) элементом 1-го шага.

Найдем величины

называемые множителями 1-ю шага. Вычтем последовательно из второго, третьего, уравнений системы (5.1) первое уравнение, умноженное соответственно на Это позволит обратить в

нуль коэффициенты при во всех уравнениях, кроме первого. В результате получим эквивалентную систему

в которой вычисляются по формулам

2-й шаг. Целью этого шага является исключение неизвестного из уравнений с номерами Пусть где - коэффициент, называемый главным (или ведущим) элементом шага. Вычислим множители 2-го шага

и вычтем последовательно из третьего, четвертого, уравнений системы (5.30) второе уравнение, умноженное соответственно на . В результате получим систему

Здесь коэффициенты вычисляются по формулам

Аналогично проводятся остальные шаги. Опишем очередной шаг.

k-й шаг. В предположении, что главный (ведущий) элемент шага отличен от нуля, вычислим множители шага

и вычтем последовательно из уравнений полученной на предыдущем шаге системы уравнение, умноженное соответственно на

После шага исключения получим систему уравнений

матрица которой является верхней треугольной. На этом вычисления прямого хода заканчиваются.

Обратный ход. Из последнего уравнения системы (5.33) находим Подставляя найденное значение в предпоследнее уравнение, получим Осуществляя обратную подстановку, далее последовательно находим Вычисления неизвестных здесь проводятся по формулам

Трудоемкость метода. Оценим число арифметических операций, необходимых для реализации схемы единственного деления.

Вычисления 1-го шага исключения по формулам (5.29), (5.31) требуют выполнения деления, умножений и вычитаний, т. е. общее число арифметических операций составляет Аналогично, на шаге требуется операций, а на шаге - операций.

Подсчитаем теперь приближенно общее число арифметических операций прямого хода, считая размерность системы достаточно большой:

Как нетрудно видеть, для реализации обратного хода по формулам (5.34) нужно всего операций, что при больших пренебрежимо мало по сравнению с числом операций прямого хода.

Таким образом, для реализации метода Гаусса требуется примерно арифметических операций, причем подавляющее число этих действий совершается на этапе прямого хода.

Пример 5.7. Методом Гаусса решим систему

Прямой ход. 1-й шаг. Вычислим множители Вычитая из второго, третьего и четвертого уравнений системы (5.35) первое уравнение, умноженное на соответственно получим

2-й шаг. Вычислим множители Вычитая из третьего и четвертого уравнений системы (5.36) второе уравнение, умноженное на соответственно, приходим к системе

3-й шаг. Вычисляя множитель и вычитая из четвертого уравнения системы (5.37) третье уравнение, умноженное на приводим систему к треугольному виду:

Обратный ход. Из последнего уравнения системы находим Подставляя значение в третье уравнение, находим

Результаты вычислений можно свести в следующую таблицу.

Таблица 5.2 (см. скан)

Необходимость выбора главных элементов. Заметим, что вычисление множителей, а также обратная подстановка требуют деления на главные элементы Поэтому если один из главных элементов сказывается равным нулю, то схема единственного деления не может быть реализована. Здравый смысл подсказывает, что и в ситуации, когда все главные элементы отличны от нуля, но среди них есть близкие к нулю, возможен неконтролируемый рост погрешности.

Пример 5.8. Используя метод Гаусса, решим систему уравнений

на -разрядной десятичной ЭВМ.

Прямой ход. 1-й шаг. Вычисляем множители и преобразуем систему к виду

Все вычисления на этом шаге выполняются без округлений.

2-й шаг. После вычисления множителя последнее уравнение системы должно быть преобразовано к виду где Однако на используемой ЭВМ будет получено уравнение

Действительно, коэффициент определяется точно, так как при его вычислении не возникает чисел, мантиссы которых имеют более 6 разрядов. В то же время при вычислении умножение коэффициента 3.0001 на дает 7-разрядное число 105003.5, после округления которого до 6 разрядов получится 105004. Вычисление 62) завершается выполнением операции вычитания: . После округления последнего числа до 6 разрядов мантиссы приходим к уравнению (5.41).

Обратный ход. Из уравнения (5.41) находим и 1.00001. Сравнение с истинным значением показывает, что эта величина получена с очень высокой для используемой ЭВМ точностью. Дальнейшие вычисления дают

После округления имеем .

Как нетрудно видеть, найденные значения неизвестных имеют мало общего с истинными значениями решения

В чем же причина появления такой значительной погрешности? Говорить о накоплении ошибок округления не приходится, так как всего было выполнено 28 арифметических операций и лишь в 4 случаях потребовалось округление. Предположение о плохой обусловленности системы не подтверждается; вычисление дает значение и 100.

В действительности причина состоит в использовании на шаге малого ведущего элемента Следствием этого стало появление большого

множителя и существенное возрастание коэффициента в последнем уравнении системы.

Таким образом, изложенный выше вариант метода Гаусса (схема единственного деления) оказался некорректным и, следовательно, непригодным для вычислений на ЭВМ. Этот метод может привести к аварийному останову (если при некотором и вычисления по нему могут оказаться неустойчивыми.

2. Метод Гаусса с выбором главного элемента по столбцу (схема частичного выбора).

Описание метода. На шаге прямого хода коэффициенты уравнений системы с номерами преобразуются по формулам

Интуитивно ясно, что во избежание сильного роста коэффициентов системы и связанных с этим ошибок нельзя допускать появления больших множителей

В методе Гаусса с выбором главного элемента по столбцу гарантируется, что для всех к Отличие этого варианта метода Гаусса от схемы единственного деления заключается в том, что на шаге исключения в качестве главного элемента выбирают максимальный по модулю коэффициент а. при неизвестной в уравнениях с номерами Затем соответствующее выбранному коэффициенту уравнение с номером меняют местами с уравнением системы для того, чтобы главный элемент занял место коэффициента

После этой перестановки исключение неизвестного производят, как в схеме единственного деления.

Пример 5.9. Решим систему уравнений (5.39) методом Гаусса с выбором главного элемента по столбцу на -разрядной десятичной ЭВМ.

Прямой ход. 1-й шаг. Максимальный в первом столбце элемент матрицы находится в первой строке, поэтому перестановка уравнений не нужна. Здесь 1-й шаг проводится точно так же, как и в примере 5.8.

2-й шаг. Среди элементов матрицы системы (5.40) максимальный принадлежит третьему уравнению. Меняя местами второе и третье уравнения, получим систему

После вычисления последнее уравнение системы преобразуется к виду

Обратный ход. Из последнего уравнения находим Далее, имеем В данном случае ответ получился точным.

Заметим, что дополнительная работа по выбору главных элементов в схеме частичного выбора требует порядка действий, что практически не влияет на общую трудоемкость метода.

Вычислительная устойчивость схемы частичного выбора. Детальное исследование метода Гаусса показывает, что действительной причиной неустойчивости схемы единственного деления является возможность неограниченного роста элементов промежуточных матриц в процессе прямого хода. Так как на шаге схемы частичного выбора 1, то для вычисленных по формулам (5.42) элементов справедлива оценка Следовательно, максимальное по модулю значение элементов матрицы возрастает на одном шаге не более чем в 2 раза и в самом неблагоприятном случае шаг прямого хода даст коэффициент роста

Гарантия ограниченности роста элементов матрицы делает схему частичного выбора вычислительно устойчивой. Более того, для нее оказывается справедливой следующая оценка погрешности:

Здесь вычисленное на ЭВМ решение системы; его относительная погрешность; число обусловленности матрицы ем - машинное эпсилон; наконец, причем некоторая медленно растущая функция, зависящая от порядка системы (типа степенной функции с небольшим показателем), коэффициент роста.

Наличие в оценке (5.43) множителя указывает на то, что при большом схема частичного выбора может оказаться плохо обусловленной и возможна существенная потеря точности. Однако практика матричных вычислений показывает, что существенный рост элементов матрицы происходит крайне редко. В подавляющем большинстве случаев действительное значение коэффициента роста не превышает 8-10. Если система хорошо обусловлена, то погрешность вычисленного решения оказывается, как правило, малой.

Иногда для проверки качества приближенного решения х

вычисляют невязку и о степени близости приближенного решения к точному пытаются судить по тому, насколько мала невязка. Этот метод ненадежен по отношению к схеме частичного выбора, так как известно, что она гарантированно дает малые невдэки. Более точно это утверждение можно сформулировать так: справедлива оценка

где то же, что и в оценке (5.43). Заметим, что в неравенство (5.44) не входит число обусловленности.

3. Метод Гаусса с выборок главного элемента по всей матрице (схема полного выбора).

В этой схеме допускается нарушение естественного порядка исключения неизвестных.

На 1-м шаге метода среди элементов определяют максимальный по модулю элемент Первое уравнение системы и уравнение с номером меняют местами. Далее стандартным образом производят исключение неизвестного х, из всех уравнений, кроме первого. (что значительно меньше соответствующего значения для схемы частичного выбора). Подчеркнем, что до сих пор еще не найдено матрицы, для которой полный выбор дал бы значение Таким образом, для хорошо обусловленных систем этот вариант метода Гаусса является хорошо обусловленным.

Однако гарантия хорошей обусловленности достигается здесь ценой значительных затрат на выбор главных элементов. Для этого дополнительно к арифметических действий требуется произвести примерно операций сравнения, что может ощутимо замедлить процесс решения задачи на ЭВМ. Поэтому в большинстве случаев на практике предпочтение отдается все же схеме частичного выбора. Как уже отмечено, ситуации, когда при использовании этого варианта метода Гаусса происходит существенный рост элементов, встречаются чрезвычайно редко. Более того, эти ситуации могут быть легко выявлены с помощью заложенных в современных программах эффективных методов слежения за ростом элементов матриц.

4. Случаи, когда выбор главных элементов не нужен.

Известно, что для некоторых классов матриц при использовании схемы единственного деления главные элементы гарантированно располагаются на главной диагонали и потому применять частичный выбор нет необходимости. Так, например, обстоит дело для систем с положительно определенными матрицами, а также с матрицами, обладающими следующим свойством диагонального преобладания:

Матрицы, удовлетворяющие условию (5.45), таковы, что в каждой из строк модуль элемента расположенного на главной диагонали, больше суммы модулей всех остальных элементов строки.

5. Масштабирование.

Перед началом решения целесообразно масштабировать систему так, чтобы ее коэффициенты были величинами порядка единицы.

Существуют два естественных способа масштабирования системы Первый заключается в умножении каждого из уравнений на некоторый масштабирующий множитель Второй состоит в умножении на масштабирующий множитель каждого столбца матрицы, что соответствует замене переменных (фактически - это замена единиц измерения). В реальных ситуациях чаще всего масштабирование может быть выполнено без существенных трудностей. Однако подчеркнем, что в общем случае удовлетворительного способа масштабирования пока не найдено.

На практике масштабирование обычно производят с помощью деления каждого уравнения на его наибольший по модулю коэффициент. Это вполне удовлетворительный способ для большинства реально встречающихся задач.

В данной статье метод рассматривается как способ решения систем линейных уравнений (СЛАУ). Метод является аналитическим, то есть позволяет написать алгоритм решения в общем виде, а потом уже подставлять туда значения из конкретных примеров. В отличие от матричного метода или формул Крамера, при решении системы линейных уравнений методом Гаусса можно работать и с теми, что имеют решений бесконечно много. Или не имеют его вовсе.

Что значит решить методом Гаусса?

Для начала необходимо нашу систему уравнений записать в Выглядит это следующим образом. Берется система:

Коэффициенты записываются в виде таблицы, а справа отдельным столбиком - свободные члены. Столбец со свободными членами отделяется для удобства Матрица, включающая в себя этот столбец, называется расширенной.

Далее основную матрицу с коэффициентами нужно привести к верхней треугольной форме. Это основной момент решения системы методом Гаусса. Проще говоря, после определенных манипуляций матрица должна выглядеть так, чтобы в ее левой нижней части стояли одни нули:

Тогда, если записать новую матрицу опять как систему уравнений, можно заметить, что в последней строке уже содержится значение одного из корней, которое затем подставляется в уравнение выше, находится еще один корень, и так далее.

Это описание решения методом Гаусса в самых общих чертах. А что получится, если вдруг у системы нет решения? Или их бесконечно много? Чтобы ответить на эти и еще множество вопросов, необходимо рассмотреть отдельно все элементы, использующиеся при решении методом Гаусса.

Матрицы, их свойства

Никакого скрытого смысла в матрице нет. Это просто удобный способ записи данных для последующих операций с ними. Бояться их не надо даже школьникам.

Матрица всегда прямоугольная, потому что так удобнее. Даже в методе Гаусса, где все сводится к построению матрицы треугольного вида, в записи фигурирует прямоугольник, только с нулями на том месте, где нет чисел. Нули можно не записывать, но они подразумеваются.

Матрица имеет размер. Ее "ширина" - число строк (m), "длина" - число столбцов (n). Тогда размер матрицы A (для их обозначения обычно используются заглавные латинские буквы) будет обозначаться как A m×n . Если m=n, то эта матрица квадратная, и m=n - ее порядок. Соответственно, любой элемент матрицы A можно обозначить через номер его строки и столбца: a xy ; x - номер строки, изменяется , y - номер столбца, изменяется .

В - это не основной момент решения. В принципе, все операции можно выполнять непосредственно с самими уравнениями, однако запись получится куда более громоздкая, и в ней будет гораздо легче запутаться.

Определитель

Еще у матрицы есть определитель. Это очень важная характеристика. Выяснять его смысл сейчас не стоит, можно просто показать, как он вычисляется, а потом рассказать, какие свойства матрицы он определяет. Наиболее простой способ нахождения определителя - через диагонали. В матрице проводятся воображаемые диагонали; элементы, находящиеся на каждой из них, перемножаются, а затем полученные произведения складываются: диагонали с наклоном вправо - со знаком "плюс", с наклоном влево - со знаком "минус".

Крайне важно отметить, что вычислять определитель можно только у квадратной матрицы. Для прямоугольной матрицы можно сделать следующее: из количества строк и количества столбцов выбрать наименьшее (пусть это будет k), а затем в матрице произвольным образом отметить k столбцов и k строк. Элементы, находящиеся на пересечении выбранных столбцов и строк, составят новую квадратную матрицу. Если определитель такой матрицы будет числом, отличным от нуля, то назовется базисным минором первоначальной прямоугольной матрицы.

Перед тем как приступить к решению системы уравнений методом Гаусса, не мешает посчитать определитель. Если он окажется нулевым, то сразу можно говорить, что у матрицы количество решений либо бесконечно, либо их вообще нет. В таком печальном случае надо идти дальше и узнавать про ранг матрицы.

Классификация систем

Существует такое понятие, как ранг матрицы. Это максимальный порядок ее определителя, отличного от нуля (если вспомнить про базисный минор, можно сказать, что ранг матрицы - порядок базисного минора).

По тому, как обстоят дела с рангом, СЛАУ можно разделить на:

  • Совместные. У совместных систем ранг основной матрицы (состоящей только из коэффициентов) совпадает с рангом расширенной (со столбцом свободных членов). Такие системы имеют решение, но необязательно одно, поэтому дополнительно совместные системы делят на:
  • - определенные - имеющие единственное решение. В определенных системах равны ранг матрицы и количество неизвестных (или число столбцов, что есть одно и то же);
  • - неопределенные - с бесконечным количеством решений. Ранг матриц у таких систем меньше количества неизвестных.
  • Несовместные. У таких систем ранги основной и расширенной матриц не совпадают. Несовместные системы решения не имеют.

Метод Гаусса хорош тем, что позволяет в ходе решения получить либо однозначное доказательство несовместности системы (без вычисления определителей больших матриц), либо решение в общем виде для системы с бесконечным числом решений.

Элементарные преобразования

До того как приступить непосредственно к решению системы, можно сделать ее менее громоздкой и более удобной для вычислений. Это достигается за счет элементарных преобразований - таких, что их выполнение никак не меняет конечный ответ. Следует отметить, что некоторые из приведенных элементарных преобразований действительны только для матриц, исходниками которых послужили именно СЛАУ. Вот список этих преобразований:

  1. Перестановка строк. Очевидно, что если в записи системы поменять порядок уравнений, то на решение это никак не повлияет. Следовательно, в матрице этой системы также можно менять местами строки, не забывая, конечно, про столбец свободных членов.
  2. Умножение всех элементов строки на некоторый коэффициент. Очень полезно! С помощью него можно сократить большие числа в матрице или убрать нули. Множество решений, как обычно, не изменится, а выполнять дальнейшие операции станет удобнее. Главное, чтобы коэффициент не был равен нулю.
  3. Удаление строк с пропорциональными коэффициентами. Это отчасти следует из предыдущего пункта. Если две или более строки в матрице имеют пропорциональные коэффициенты, то при умножении/делении одной из строк на коэффициент пропорциональности получаются две (или, опять же, более) абсолютно одинаковые строки, и можно убрать лишние, оставив только одну.
  4. Удаление нулевой строки. Если в ходе преобразований где-то получилась строка, в которой все элементы, включая свободный член, - ноль, то такую строку можно назвать нулевой и выкинуть из матрицы.
  5. Прибавление к элементам одной строки элементов другой (по соответствующим столбцам), умноженных на некоторый коэффициент. Самое неочевидное и самое важное преобразование из всех. На нем стоит остановиться поподробнее.

Прибавление строки, умноженной на коэффициент

Для простоты понимания стоит разобрать этот процесс по шагам. Берутся две строки из матрицы:

a 11 a 12 ... a 1n | b1

a 21 a 22 ... a 2n | b 2

Допустим, необходимо ко второй прибавить первую, умноженную на коэффициент "-2".

a" 21 = a 21 + -2×a 11

a" 22 = a 22 + -2×a 12

a" 2n = a 2n + -2×a 1n

Затем в матрице вторая строка заменяется на новую, а первая остается без изменений.

a 11 a 12 ... a 1n | b1

a" 21 a" 22 ... a" 2n | b 2

Необходимо заметить, что коэффициент умножения можно подобрать таким образом, чтобы в результате сложения двух строк один из элементов новой строки был равен нулю. Следовательно, можно получить уравнение в системе, где на одну неизвестную будет меньше. А если получить два таких уравнения, то операцию можно проделать еще раз и получить уравнение, которое будет содержать уже на две неизвестных меньше. А если каждый раз превращать в ноль один коэффициент у всех строк, что стоят ниже исходной, то можно, как по ступенькам, спуститься до самого низа матрицы и получить уравнение с одной неизвестной. Это и называется решить систему методом Гаусса.

В общем виде

Пусть существует система. Она имеет m уравнений и n корней-неизвестных. Записать ее можно следующим образом:

Из коэффициентов системы составляется основная матрица. В расширенную матрицу добавляется столбец свободных членов и для удобства отделяется чертой.

  • первая строка матрицы умножается на коэффициент k = (-a 21 /a 11);
  • первая измененная строка и вторая строка матрицы складываются;
  • вместо второй строки в матрицу вставляется результат сложения из предыдущего пункта;
  • теперь первый коэффициент в новой второй строке равен a 11 × (-a 21 /a 11) + a 21 = -a 21 + a 21 = 0.

Теперь выполняется та же серия преобразований, только участвуют первая и третья строки. Соответственно, в каждом шаге алгоритма элемент a 21 заменяется на a 31 . Потом все повторяется для a 41 , ... a m1 . В итоге получается матрица, где в строках первый элемент равен нулю. Теперь нужно забыть о строке номер один и выполнить тот же алгоритм, начиная со второй строки:

  • коэффициент k = (-a 32 /a 22);
  • с "текущей" строкой складывается вторая измененная строка;
  • результат сложения подставляется в третью, четвертую и так далее строки, а первая и вторая остаются неизменными;
  • в строках матрицы уже два первых элемента равны нулю.

Алгоритм надо повторять, пока не появится коэффициент k = (-a m,m-1 /a mm). Это значит, что в последний раз алгоритм выполнялся только для нижнего уравнения. Теперь матрица похожа на треугольник, или имеет ступенчатую форму. В нижней строчке имеется равенство a mn × x n = b m . Коэффициент и свободный член известны, и корень выражается через них: x n = b m /a mn . Полученный корень подставляется в верхнюю строку, чтобы найти x n-1 = (b m-1 - a m-1,n ×(b m /a mn))÷a m-1,n-1 . И так далее по аналогии: в каждой следующей строке находится новый корень, и, добравшись до "верха" системы, можно отыскать множество решений . Оно будет единственным.

Когда нет решений

Если в одной из матричных строк все элементы, кроме свободного члена, равны нулю, то уравнение, соответствующее этой строке, выглядит как 0 = b. Оно не имеет решения. И поскольку такое уравнение заключено в систему, то и множество решений всей системы - пустое, то есть она является вырожденной.

Когда решений бесконечное количество

Может получиться так, что в приведенной треугольной матрице нет строк с одним элементом-коэффициентом уравнения, и одним - свободным членом. Есть только такие строки, которые при переписывании имели бы вид уравнения с двумя или более переменными. Значит, у системы имеется бесконечное число решений. В таком случае ответ можно дать в виде общего решения. Как это сделать?

Все переменные в матрице делятся на базисные и свободные. Базисные - это те, которые стоят "с краю" строк в ступенчатой матрице. Остальные - свободные. В общем решении базисные переменные записываются через свободные.

Для удобства матрица сначала переписывается обратно в систему уравнений. Потом в последнем из них, там, где точно осталась только одна базисная переменная, она остается с одной стороны, а все остальное переносится в другую. Так делается для каждого уравнения с одной базисной переменной. Потом в остальные уравнения, там, где это возможно, вместо базисной переменной подставляется полученное для нее выражение. Если в результате опять появилось выражение, содержащее только одну базисную переменную, она оттуда опять выражается, и так далее, пока каждая базисная переменная не будет записана в виде выражения со свободными переменными. Это и есть общее решение СЛАУ.

Можно также найти базисное решение системы - дать свободным переменным любые значения, а потом для этого конкретного случая посчитать значения базисных переменных. Частных решений можно привести бесконечно много.

Решение на конкретных примерах

Вот система уравнений.

Для удобства лучше сразу составить ее матрицу

Известно, что при решении методом Гаусса уравнение, соответствующее первой строке, в конце преобразований останется неизменным. Поэтому выгодней будет, если левый верхний элемент матрицы будет наименьшим - тогда первые элементы остальных строк после операций обратятся в ноль. Значит, в составленной матрице выгодно будет на место первой строки поставить вторую.

вторая строка: k = (-a 21 /a 11) = (-3/1) = -3

a" 21 = a 21 + k×a 11 = 3 + (-3)×1 = 0

a" 22 = a 22 + k×a 12 = -1 + (-3)×2 = -7

a" 23 = a 23 + k×a 13 = 1 + (-3)×4 = -11

b" 2 = b 2 + k×b 1 = 12 + (-3)×12 = -24

третья строка: k = (-a 3 1 /a 11) = (-5/1) = -5

a" 3 1 = a 3 1 + k×a 11 = 5 + (-5)×1 = 0

a" 3 2 = a 3 2 + k×a 12 = 1 + (-5)×2 = -9

a" 3 3 = a 33 + k×a 13 = 2 + (-5)×4 = -18

b" 3 = b 3 + k×b 1 = 3 + (-5)×12 = -57

Теперь, чтобы не запутаться, необходимо записать матрицу с промежуточными результатами преобразований.

Очевидно, что такую матрицу можно сделать более удобной для восприятия с помощью некоторых операций. Например, из второй строки можно убрать все "минусы", умножая каждый элемент на "-1".

Стоит также заметить, что в третьей строке все элементы кратны трем. Тогда можно сократить строку на это число, умножая каждый элемент на "-1/3" (минус - заодно, чтобы убрать отрицательные значения).

Выглядит гораздо приятнее. Теперь надо оставить в покое первую строку и поработать со второй и третьей. Задача - прибавить к третьей строке вторую, умноженную на такой коэффициент, чтобы элемент a 32 стал равен нулю.

k = (-a 32 /a 22) = (-3/7) = -3/7 (если в ходе некоторых преобразований в ответе получилось не целое число, рекомендуется для соблюдения точности вычислений оставить его "как есть", в виде обыкновенной дроби, а уже потом, когда получены ответы, решать, стоит ли округлять и переводить в другую форму записи)

a" 32 = a 32 + k×a 22 = 3 + (-3/7)×7 = 3 + (-3) = 0

a" 33 = a 33 + k×a 23 = 6 + (-3/7)×11 = -9/7

b" 3 = b 3 + k×b 2 = 19 + (-3/7)×24 = -61/7

Снова записывается матрица с новыми значениями.

1 2 4 12
0 7 11 24
0 0 -9/7 -61/7

Как видно, полученная матрица уже имеет ступенчатый вид. Поэтому дальнейшие преобразования системы по методу Гаусса не требуются. Что здесь можно сделать, так это убрать из третьей строки общий коэффициент "-1/7".

Теперь все красиво. Дело за малым - записать матрицу опять в виде системы уравнений и вычислить корни

x + 2y + 4z = 12 (1)

7y + 11z = 24 (2)

Тот алгоритм, по которому сейчас будут находиться корни, называется обратным ходом в методе Гаусса. В уравнении (3) содержится значение z:

y = (24 - 11×(61/9))/7 = -65/9

И первое уравнение позволяет найти x:

x = (12 - 4z - 2y)/1 = 12 - 4×(61/9) - 2×(-65/9) = -6/9 = -2/3

Такую систему мы имеем право назвать совместной, да еще и определенной, то есть имеющей единственное решение. Ответ записывается в следующей форме:

x 1 = -2/3, y = -65/9, z = 61/9.

Пример неопределенной системы

Вариант решения определенной системы методом Гаусса разобран, теперь необходимо рассмотреть случай, если система неопределенная, то есть для нее можно найти бесконечно много решений.

х 1 + х 2 + х 3 + х 4 + х 5 = 7 (1)

3х 1 + 2х 2 + х 3 + х 4 - 3х 5 = -2 (2)

х 2 + 2х 3 + 2х 4 + 6х 5 = 23 (3)

5х 1 + 4х 2 + 3х 3 + 3х 4 - х 5 = 12 (4)

Сам вид системы уже настораживает, потому что количество неизвестных n = 5, а ранг матрицы системы уже точно меньше этого числа, потому что количество строк m = 4, то есть наибольший порядок определителя-квадрата - 4. Значит, решений существует бесконечное множество, и надо искать его общий вид. Метод Гаусса для линейных уравнений позволяет это сделать.

Сначала, как обычно, составляется расширенная матрица.

Вторая строка: коэффициент k = (-a 21 /a 11) = -3. В третьей строке первый элемент - еще до преобразований, поэтому не надо ничего трогать, надо оставить как есть. Четвертая строка: k = (-а 4 1 /а 11) = -5

Умножив элементы первой строки на каждый их коэффициентов по очереди и сложив их с нужными строками, получаем матрицу следующего вида:

Как можно видеть, вторая, третья и четвертая строки состоят из элементов, пропорциональных друг другу. Вторая и четвертая вообще одинаковые, поэтому одну из них можно убрать сразу, а оставшуюся умножить на коэффициент "-1" и получить строку номер 3. И опять из двух одинаковых строк оставить одну.

Получилась такая матрица. Пока еще не записана система, нужно здесь определить базисные переменные - стоящие при коэффициентах a 11 = 1 и a 22 = 1, и свободные - все остальные.

Во втором уравнении есть только одна базисная переменная - x 2 . Значит, ее можно выразить оттуда, записав через переменные x 3 , x 4 , x 5 , являющиеся свободными.

Подставляем полученное выражение в первое уравнение.

Получилось уравнение, в котором единственная базисная переменная - x 1 . Проделаем с ней то же, что и с x 2 .

Все базисные переменные, которых две, выражены через три свободные, теперь можно записывать ответ в общем виде.

Также можно указать одно из частных решений системы. Для таких случаев в качестве значений для свободных переменных выбирают, как правило, нули. Тогда ответом будет:

16, 23, 0, 0, 0.

Пример несовместной системы

Решение несовместных систем уравнений методом Гаусса - самое быстрое. Оно заканчивается сразу же, как только на одном из этапов получается уравнение, не имеющее решения. То есть этап с вычислением корней, достаточно долгий и муторный, отпадает. Рассматривается следующая система:

x + y - z = 0 (1)

2x - y - z = -2 (2)

4x + y - 3z = 5 (3)

Как обычно, составляется матрица:

1 1 -1 0
2 -1 -1 -2
4 1 -3 5

И приводится к ступенчатому виду:

k 1 = -2k 2 = -4

1 1 -1 0
0 -3 1 -2
0 0 0 7

После первого же преобразования в третьей строке содержится уравнение вида

не имеющее решения. Следовательно, система несовместна, и ответом будет пустое множество.

Преимущества и недостатки метода

Если выбирать, каким методом решать СЛАУ на бумаге ручкой, то метод, который был рассмотрен в этой статье, выглядит наиболее привлекательно. В элементарных преобразованиях гораздо труднее запутаться, чем в том случается, если приходится искать вручную определитель или какую-нибудь хитрую обратную матрицу. Однако, если использовать программы для работы с данными такого типа, например, электронные таблицы, то оказывается, что в таких программах уже заложены алгоритмы вычисления основных параметров матриц - определитель, миноры, обратная и и так далее. А если быть уверенным в том, что машина посчитает эти значения сама и не ошибется, целесообразней использовать уже матричный метод или формул Крамера, потому что их применение начинается и заканчивается вычислением определителей и обратными матрицами.

Применение

Поскольку решение методом Гаусса представляет из себя алгоритм, а матрица - это, фактически, двумерный массив, его можно использовать при программировании. Но поскольку статья позиционирует себя, как руководство "для чайников", следует сказать, что самое простое, куда метод можно запихнуть - это электронные таблицы, например, Excel. Опять же, всякие СЛАУ, занесенные в таблицу в виде матрицы, Excel будет рассматривать как двумерный массив. А для операций с ними существует множество приятных команд: сложение (складывать можно только матрицы одинаковых размеров!), умножение на число, перемножение матриц (также с определенными ограничениями), нахождение обратной и транспонированной матриц и, самое главное, вычисление определителя. Если это трудоемкое занятие заменить одной командой, можно гораздо быстрее определять ранг матрицы и, следовательно, устанавливать ее совместность или несовместность.