Преобразование дробей. Тождественные преобразования выражений, их виды

Числа и выражения, из которых составлено исходное выражение, можно заменять тождественно равными им выражениями. Такое преобразование исходного выражения приводит к тождественно равному ему выражению.

Например, в выражении 3+x число 3 можно заменить суммой 1+2 , при этом получится выражение (1+2)+x , которое тождественно равно исходному выражению. Другой пример: в выражении 1+a 5 степень a 5 можно заменить тождественно равным ей произведением, например, вида a·a 4 . Это нам даст выражение 1+a·a 4 .

Данное преобразование, несомненно, искусственно, и обычно является подготовкой к каким-либо дальнейшим преобразованиям. Например, в сумме 4·x 3 +2·x 2 , учитывая свойства степени, слагаемое 4·x 3 можно представить в виде произведения 2·x 2 ·2·x . После такого преобразования исходное выражение примет вид 2·x 2 ·2·x+2·x 2 . Очевидно, слагаемые в полученной сумме имеют общий множитель 2·x 2 , таким образом, мы можем выполнить следующее преобразование - вынесение за скобки. После него мы придем к выражению: 2·x 2 ·(2·x+1) .

Прибавление и вычитание одного и того же числа

Другим искусственным преобразованием выражения является прибавление и одновременное вычитание одного и того же числа или выражения. Такое преобразование является тождественным, так как оно, по сути, эквивалентно прибавлению нуля, а прибавление нуля не меняет значения.

Рассмотрим пример. Возьмем выражение x 2 +2·x . Если к нему прибавить единицу и отнять единицу, то это позволит в дальнейшем выполнить еще одно тождественное преобразование - выделить квадрат двучлена : x 2 +2·x=x 2 +2·x+1−1=(x+1) 2 −1 .

Список литературы.

  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 17-е изд., доп. - М.: Мнемозина, 2013. - 175 с.: ил. ISBN 978-5-346-02432-3.

Основные свойства сложения и умножения чисел.

Переместительное свойство сложения: от перестановки слагаемых значение суммы не меняется. Для любых чисел a и b верно равенство

Сочетательное свойство сложения: чтобы к сумме двух чисел прибавить третье число, можно к первому числу прибавить сумму второго и третьего. Для любых чисел a, b и c верно равенство

Переместительное свойство умножения: от перестановки множителей значение произведения не изменяется. Для любых чисел а, b и c верно равенство

Сочетательное свойство умножения: чтобы произведение двух чисел умножить на третье число, можно первое число умножить на произведение второго и третьего.

Для любых чисел а, b и c верно равенство

Распределительное свойство: чтобы умножить число на сумму, можно умножить это число на каждое слагаемое и сложить полученные результаты. Для любых чисел a, b и c верно равенство

Из переместительного и сочетательного свойств сложения следует: в любой сумме можно как угодно переставлять слагаемые и произвольным образом объединять их в группы.

Пример 1 Вычислим сумму 1,23+13,5+4,27.

Для этого удобно объединить первое слагаемое с третьим. Получим:

1,23+13,5+4,27=(1,23+4,27)+13,5=5,5+13,5=19.

Из переместительного и сочетательного свойств умножения следует: в любом произведении можно как угодно переставлять множители и произвольным образом объединять их в группы.

Пример 2 Найдём значение произведения 1,8·0,25·64·0,5.

Объединив первый множитель с четвёртым, а второй с третьим, будем иметь:

1,8·0,25·64·0,5=(1,8·0,5)·(0,25·64)=0,9·16=14,4.

Распределительное свойство справедливо и в том случае, когда число умножается на сумму трёх и более слагаемых.

Например, для любых чисел a, b, c и d верно равенство

a(b+c+d)=ab+ac+ad.

Мы знаем, что вычитание можно заменить сложением, прибавив к уменьшаемому число, противоположное вычитаемому:

Это позволяет числовое выражение вида a-b считать суммой чисел a и -b, числовое выражение вида a+b-c-d считать суммой чисел a, b, -c, -d и т. п. Рассмотренные свойства действий справедливы и для таких сумм.

Пример 3 Найдём значение выражения 3,27-6,5-2,5+1,73.

Это выражение является суммой чисел 3,27, -6,5, -2,5 и 1,73. Применив свойства сложения, получим: 3,27-6,5-2,5+1,73=(3,27+1,73)+(-6,5-2,5)=5+(-9) =-4.

Пример 4 Вычислим произведение 36·().

Множитель можно рассматривать как сумму чисел и -. Используя распределительное свойство умножения, получим:

36()=36·-36·=9-10=-1.

Тождества

Определение. Два выражения, соответственные значения которых равны при любых значениях переменных, называются тождественно равными.

Определение. Равенство, верное при любых значениях переменных, называется тождеством.

Найдём значения выражений 3(x+y) и 3x+3y при x=5, y=4:

3(x+y)=3(5+4)=3·9=27,

3x+3y=3·5+3·4=15+12=27.

Мы получили один и тот же результат. Из распределительного свойства следует, что вообще при любых значениях переменных соответственные значения выражений 3(x+y) и 3x+3y равны.

Рассмотрим теперь выражения 2x+y и 2xy. При x=1, y=2 они принимают равные значения:

Однако можно указать такие значения x и y, при которых значения этих выражений не равны. Например, если x=3, y=4, то

Выражения 3(x+y) и 3x+3y являются тождественно равными, а выражения 2x+y и 2xy не являются тождественно равными.

Равенство 3(x+y)=x+3y, верное при любых значениях x и y, является тождеством.

Тождествами считают и верные числовые равенства.

Так, тождествами являются равенства, выражающие основные свойства действий над числами:

a+b=b+a, (a+b)+c=a+(b+c),

ab=ba, (ab)c=a(bc), a(b+c)=ab+ac.

Можно привести и другие примеры тождеств:

a+0=a, a+(-a)=0, a-b=a+(-b),

a·1=a, a·(-b)=-ab, (-a)(-b)=ab.

Тождественные преобразования выражений

Замену одного выражения другим, тождественно равным ему выражением называют тождественным преобразованием или просто преобразованием выражения.

Тождественные преобразования выражений с переменными выполняются на основе свойств действий над числами.

Чтобы найти значение выражения xy-xz при заданных значениях x, y, z, надо выполнить три действия. Например, при x=2,3, y=0,8, z=0,2 получаем:

xy-xz=2,3·0,8-2,3·0,2=1,84-0,46=1,38.

Этот результат можно получить, выполнив лишь два действия, если воспользоваться выражением x(y-z), тождественно равным выражению xy-xz:

xy-xz=2,3(0,8-0,2)=2,3·0,6=1,38.

Мы упростили вычисления, заменив выражение xy-xz тождественно равным выражением x(y-z).

Тождественные преобразования выражений широко применяются при вычислении значений выражений и решении других задач. Некоторые тождественные преобразования уже приходилось выполнять, например, приведение подобных слагаемых, раскрытие скобок. Напомним правила выполнения этих преобразований:

чтобы привести подобные слагаемые, надо сложить их коэффициенты и результат умножить на общую буквенную часть;

если перед скобками стоит знак "плюс", то скобки можно опустить, сохранив знак каждого слагаемого, заключённого в скобки;

если перед скобками стоит знак "минус", то скобки можно опустить, изменив знак каждого слагаемого, заключённого в скобки.

Пример 1 Приведём подобные слагаемые в сумме 5x+2x-3x.

Воспользуемся правилом приведения подобных слагаемых:

5x+2x-3x=(5+2-3)x=4x.

Это преобразование основано на распределительном свойстве умножения.

Пример 2 Раскроем скобки в выражении 2a+(b-3c).

Применив правило раскрытия скобок, перед которыми стоит знак "плюс":

2a+(b-3c)=2a+b-3c.

Проведённое преобразование основано на сочетательном свойстве сложения.

Пример 3 Раскроем скобки в выражении a-(4b-c).

Воспользуемся правилом раскрытия скобок, перед которыми стоит знак "минус":

a-(4b-c)=a-4b+c.

Выполненное преобразование основано на распределительном свойстве умножения и сочетательном свойстве сложения. Покажем это. Представим в данном выражении второе слагаемое -(4b-c) в виде произведения (-1)(4b-c):

a-(4b-c)=a+(-1)(4b-c).

Применив указанные свойства действий, получим:

a-(4b-c)=a+(-1)(4b-c)=a+(-4b+c)=a-4b+c.

Данный обобщенный материал известен из школьного курса математики. Тут рассматриваем дроби общего вида с числами, степенями, корнями, логарифмами, тригонометрическими функция ми или другими объектами. Будут рассмотрены основные преобразования дробей вне зависимости от их вида.

Что такое дробь?

Определение 1

Существует еще несколько определений.

Определение 2

Горизонтальная наклонная черта, которая разделяет A и B , называют чертой дроби или дробной чертой.

Определение 3

Выражение, которое находится над чертой дроби, называют числителем, а под – знаменателем .

От обыкновенных дробей к дробям общего вида

Знакомство с дробью происходит еще в 5 классе, когда проходят обыкновенные дроби. Из определения видно, что числителем и знаменателем являются натуральные числа.

Пример 1

К примеру 1 5 , 2 6 , 12 7 , 3 1 , которые можно записать как 1 / 5 , 2 / 6 , 12 / 7 , 3 / 1 .

После изучения действий с обыкновенными дробями имеем дело с дробями, которые имеют в знаменателе не одно натуральное число, а выражения с натуральными числами.

Пример 2

Например, 1 + 3 5 , 9 - 5 16 , 2 · 7 9 · 12 .

Когда имеем дело с дробями, где есть буквы или буквенные выражения, то записывается таким образом:

a + b c , a - b c , a · c b · d .

Определение 4

Зафиксируем правила сложения, вычитания, умножения обыкновенных дробей a c + b c = a + b c , a c - b c = a - b c , a b · v d = a · c b · d

Для вычисления зачастую необходимо приходить к переводу смешанных чисел в обыкновенные дроби. Когда целую часть обозначим как a , тогда дробная имеет вид b / c , получаем дробь вида a · c + b c , откуда понятно появления таких дробей 2 · 11 + 3 11 , 5 · 2 + 1 2 и так далее.

Черта дроби расценивается как знак деления. Поэтому запись можно преобразовать по-другому:

1: a - (2 · b + 1) = 1 a - 2 · b + 1 , 5 - 1 , 7 · 3: 2 · 3 - 4: 2 = 5 - 1 , 7 · 3 2 · 3 - 4: 2 , где частное 4: 2 можно заменить на дробь, тогда получим выражение вида

5 - 1 , 7 · 3 2 · 3 - 4 2

Вычисления с рациональными дробями занимают особое место в математике, так как в числителе и знаменателе могут быть не просто числовые значения, а многочлены.

Пример 3

Например, 1 x 2 + 1 , x · y - 2 · y 2 0 , 5 - 2 · x + y 3 .

Рациональные выражения рассматриваются как дроби общего вида.

Пример 4

Например, x · x + 1 4 x 2 · x 2 - 1 2 · x 3 + 3 , 1 + x 2 · y · (x - 2) 1 x + 3 · x 1 + 2 - x 4 · x 5 + 6 · x .

Изучение корней, степеней с рациональными показателями, логарифмов, тригонометрических функций говорит о том, что их применение появляется в заданных дробях вида:

Пример 5

a n b n , 2 · x + x 2 3 x 1 3 - 12 · x , 2 x 2 + 3 3 x 2 + 3 , ln (x - 3) ln e 5 , cos 2 α - sin 2 α 1 - 1 cos 2 α .

Дроби могут быть комбинированными, то есть иметь вид x + 1 x 3 log 3 sin 2 x + 3 , lg x + 2 lg x 2 - 2 · x + 1 .

Виды преобразований дробей

Для ряда тождественных преобразований рассматривают несколько видов:

Определение 5

  • преобразование, характерное для работы с числителем и знаменателем;
  • изменение знака перед дробным выражением;
  • приведение к общему знаменателю и сокращение дроби;
  • представление дроби в виде суммы многочленов.

Преобразование выражений в числителе и знаменателе

Определение 6

При тождественно равных выражениях имеем, что полученная дробь является тождественно равной исходной.

Если дана дробь вида A / B , то A и B являются некоторыми выражениями. Тогда при замене получим дробь вида A 1 / B 1 . Необходимо доказать справедливость равенства A / A 1 = B / B 1 при любом значении переменных, удовлетворяющих ОДЗ.

Имеем, что A и A 1 и B и B 1 тождественно равны, тогда их значения тоже равны. Отсюда следует, что при любом их значении A / B и A 1 / B 1 данные дроби будут равны.

Такое преобразование упрощает работу с дробями, если необходимо преобразовывать отдельно числитель и отдельно знаменатель.

Пример 6

Для примера возьмем дробь вида 2 / 18 , которую преобразуем к 2 2 · 3 · 3 . Для этого знаменатель раскладываем на простые множители. Дробь x 2 + x · y x 2 + 2 · x · y + y 2 = x · x + y (x + y) 2 имеет числитель вида x 2 + x · y , означает, что необходимо произвести замену на x · (x + y) , которое будет получено при вынесении за скобки общего множителя x . Знаменатель заданной дроби x 2 + 2 · x · y + y 2 свернуть по формуле сокращенного умножения. Тогда получим, что его тождественно равным выражением является (x + y) 2 .

Пример 7

Если дана дробь вида sin 2 3 · φ - π + cos 2 3 · φ - π φ · φ 5 6 ,тогда для упрощения необходимо числитель заменить 1 по формуле, а знаменатель привести к виду φ 11 12 . Тогда получим, что 1 φ 11 12 равна заданной дроби.

Изменение знака перед дробью, в ее числителе, знаменателе

Преобразования дробей – это также и замена знаков перед дробью. Рассмотрим некоторые правила:

Определение 7

  • при изменении знака числителя получаем дробь, которая равна заданной, причем буквенно это выглядит как _ - A - B = A B , где А и В являются некоторыми выражениями;
  • при изменении знака перед дробью и перед числителем, получаем, что - - A B = A B ;
  • при замене знака перед дробью и его знаменателя, получаем, что - A - B = A B .

Доказательство

Знак минуса в большинстве случаев рассматривается как коэффициент со знаком - 1 , а дробная черта является делением. Отсюда получаем, что - A - B = - 1 · A: - 1 · B . Сгруппировав множители, имеем, что

1 · A: - 1 · B = ((- 1) : (- 1) · A: B = = 1 · A: B = A: B = A B

После доказательства первого утверждения, обосновываем оставшиеся. Получим:

A B = (- 1) · (((- 1) · A) : B) = (- 1 · - 1) · A: B = = 1 · (A: B) = A: B = A B - A - B = (- 1) · (A: - 1 · B) = ((- 1) : (- 1)) · (A: B) = = 1 · (A: B) = A: B = A B

Рассмотрим примеры.

Пример 8

Когда необходимо выполнить преобразование дроби 3 / 7 к виду - 3 - 7 , - - 3 7 , - 3 - 7 , тогда аналогично выполняется с дробью вида - 1 + x - x 2 2 2 3 - ln (x 2 + 3) x + sin 2 x · 3 x .

Преобразования выполняются следующим образом:

1) - 1 + x - x 2 2 2 3 - ln (x 2 + 3) x + sin 2 x · 3 x = = - (- 1 + x - x 2) - 2 2 3 - ln x 2 + 3 x + sin 2 x · 3 x = = 1 - x + x 2 - 2 2 3 + ln (x 2 + 3) x - s i n 2 x · 3 x 2) - 1 + x - x 2 2 2 3 - ln (x 2 + 3) x + sin 2 x · 3 x = = - - (- 1 + x - x 2) 2 2 3 - ln (x 2 + 3) x + sin 2 x · 3 x = = - 1 - x + x 2 2 2 3 - ln (x 2 + 3) x + sin 2 x · 3 x 3) - 1 + x - x 2 2 2 3 - ln (x 2 + 3) x + sin 2 x · 3 x = = - - 1 + x - x 2 - 2 2 3 - ln (x 2 + 3) x + sin 2 x · 3 x = = - - 1 + x - x 2 - 2 2 3 + ln (x 2 + 3) x - sin 2 x · 3 x

Приведение дроби к новому знаменателю

При изучении обыкновенных дробей, мы коснулись основного свойства дробей, которое позволяет умножать, делить числитель и знаменатель на одно и то же натуральное число. Это видно из равенства a · m b · m = a b и a: m b: m = a b , где a , b , m являются натуральными числами.

Это равенство действительно для любых значений a , b , m и всех a , кроме b ≠ 0 и m ≠ 0 . То есть мы получаем, что если числитель дроби А / В с A и C , которые являются некоторыми выражениями, умножить или разделить на выражение M , не равное 0 , тогда получим дробь, тождественно равную начальной. Получаем, что A · M B · M = A B и A: M B: M = A B .

Отсюда видно, что преобразования основываются на 2 преобразованиях: приведении к общему знаменателю, сокращении.

При приведении к общему знаменателю производится умножение на одно и то же число или выражение числитель и знаменатель. То есть мы переходим к решению тождественной равной преобразованной дроби.

Рассмотрим примеры.

Пример 9

Если взять дробь x + 1 0 , 5 · x 3 и умножить на 2 , тогда получим, что новый знаменатель получится 2 · 0 , 5 · x 3 = x 3 , а выражение примет вид 2 · x + 1 x 3 .

Пример 10

Для приведения дроби 1 - x 2 · x 2 3 · 1 + ln x к другому знаменателю вида 6 · x · 1 + ln x 3 нужно, чтобы числитель и знаменатель быль умножен на 3 · x 1 3 · (1 + ln x) 2 . В итоге получаем дробь 3 · x 1 3 · 1 + ln x 2 · 1 - x 6 · x · (1 + ln x) 3

Такое преобразование как избавление от иррациональности в знаменателе также применимо. Оно избавляет от наличия корня в знаменателе, что упрощает процесс решения.

Сокращение дробей

Основное свойство – это преобразование, то есть ее непосредственное сокращение. При сокращении мы получаем упрощенную дробь. Рассмотрим на примере:

Пример 11

Или дробь вида x 3 · x 3 · x 2 · (2 x 2 + 1 + 3) x 3 · x 3 · 2 x 2 + 1 + 3 · 3 + 1 3 · x , где сокращение производится при помощи x 3 , x 3 , 2 x 2 + 1 + 3 или на выражение вида x 3 · x 3 · 2 x 2 + 1 + 3 . Тогда получим дробь x 2 3 + 1 3 · x

Сокращение дроби является простым, когда общие множители сразу явно видны. Практически это встречается не часто, поэтому предварительно необходимо проводить некоторые преобразования выражений такого вида. Бывают случаи, когда необходимо находить общий множитель.

Если имеется дробь вида x 2 2 3 · (1 - cos 2 x) 2 · sin x 2 · cos x 2 2 · x 1 3 , тогда необходимо применять тригонометрические формулы и свойства степеней для того, чтобы можно было преобразовать дробь к виду x 1 3 · x 2 1 3 · sin 2 x sin 2 x · x 1 3 . Это даст возможность сократить ее на x 1 3 · sin 2 x .

Представление дроби в виде суммы

Когда числитель имеет алгебраическую сумму выражений типа A 1 , A 2 , … , A n , а знаменатель обозначается B , тогда эта дробь может быть представлена как A 1 / B , A 2 / B , … , A n / B .

Определение 8

Для этого зафиксируем это A 1 + A 2 + . . . + A n B = A 1 B + A 2 B + . . . + A n B .

Данное преобразование в корне отличается от сложения дробей с одинаковыми показателями. Рассмотрим пример.

Пример 12

Дана дробь вида sin x - 3 · x + 1 + 1 x 2 , которую мы представим как алгебраическая сумма дробей. Для этого представим как sin x x 2 - 3 · x + 1 x 2 + 1 x 2 или sin x - 3 · x + 1 x 2 + 1 x 2 или sin x x 2 + - 3 · x + 1 + 1 x 2 .

Любая дробь, имеющая вид А / В представляется в виде суммы дробей любым способом. Выражение A в числителе может быть уменьшено или увеличено на любое число или выражение А 0 , которое даст возможность прейти к A + A 0 B - A 0 B .

Разложение дроби на простейшие является частным случаем для преобразования дроби в сумму. Чаще всего его применяют при сложных вычислениях для интегрирования.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Десятичные числа, такие как 0,2; 1,05; 3,017 и т.п. как слышатся, так и пишутся. Ноль целых две десятых, получаем дробь . Одна целая пять сотых, получаем дробь . Три целых семнадцать тысячных, получаем дробь . Цифры до запятой в десятичном числе - это целая часть дроби. Цифра после запятой - числитель будущей дроби. Если после запятой однозначное число - в знаменателе будет 10, если двухзначное - 100, трехзначное - 1000 и т.д. Некоторые полученные дроби можно сократить . В наших примерах

Преобразование дроби в десятичное число

Это обратное предыдущему преобразованию. Десятичная дробь чем характерна? У неё в знаменателе всегда стоит 10, или 100, или 1000, или 10000 и так далее. Если ваша обычная дробь имеет такой знаменатель, проблем нет. Например, или

Если дробь, например . В этом случае необходимо воспользоваться основным свойством дроби и преобразовать знаменатель до 10 или 100, или 1000 ... В нашем примере, если домножить числитель и знаменатель на 4, получим дробь , которую возможно записать в виде десятичного числа 0,12.

Некоторые дроби проще разделить, чем преобразовать знаменатель. Например,

Некоторые дроби невозможно преобразовать в десятичные числа!
Например,

Преобразование смешанной дроби в неправильную

Смешанную дробь, например , легко преобразовать в неправильную. Для этого необходимо целую часть умножить на знаменатель (низ) и сложить с числителем (верх), знаменатель (низ) оставить без изменения. То есть

При преобразовании смешанной дроби в неправильную, можно вспомнить, что Можно использовать сложение дробей

Преобразование неправильной дроби в смешанную (выделение целой части)

Неправильную дробь можно перевести в смешанную, выделив целую часть. Рассмотрим пример, . Определяем, сколько целых раз "3" вмещается в "23". Или 23 делим на 3 на калькуляторе, целое число до запятой - искомое. Это "7". Далее определяем числитель уже будущей дроби: полученную "7" умножаем на знаменатель "3" и из числителя "23" вычитаем полученное. Как бы находим то лишнее, что остается от числителя "23", если изъять максимальное количество "3". Знаменатель оставляем без изменения. Все сделано, записываем результат

Среди различных выражений, которые рассматриваются в алгебре, важное место занимают суммы одночленов. Приведем примеры таких выражений:
\(5a^4 - 2a^3 + 0,3a^2 - 4,6a + 8 \)
\(xy^3 - 5x^2y + 9x^3 - 7y^2 + 6x + 5y - 2 \)

Сумму одночленов называют многочленом. Слагаемые в многочлене называют членами многочлена. Одночлены также относят к многочленам, считая одночлен многочленом, состоящим из одного члена.

Например, многочлен
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 \)
можно упростить.

Представим все слагаемые в виде одночленов стандартного вида:
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 = \)
\(= 8b^5 - 14b^5 + 3b^2 -8b -3b^2 + 16 \)

Приведем в полученном многочлене подобные члены:
\(8b^5 -14b^5 +3b^2 -8b -3b^2 + 16 = -6b^5 -8b + 16 \)
Получился многочлен, все члены которого являются одночленами стандартного вида, причем среди них нет подобных. Такие многочлены называют многочленами стандартного вида .

За степень многочлена стандартного вида принимают наибольшую из степеней его членов. Так, двучлен \(12a^2b - 7b \) имеет третью степень, а трехчлен \(2b^2 -7b + 6 \) - вторую.

Обычно члены многочленов стандартного вида, содержащих одну переменную, располагают в порядке убывания показателей ее степени. Например:
\(5x - 18x^3 + 1 + x^5 = x^5 - 18x^3 + 5x + 1 \)

Сумму нескольких многочленов можно преобразовать (упростить) в многочлен стандартного вида.

Иногда члены многочлена нужно разбить на группы, заключая каждую группу в скобки. Поскольку заключение в скобки - это преобразование, обратное раскрытию скобок, то легко сформулировать правила раскрытия скобок:

Если перед скобками ставится знак «+», то члены, заключаемые в скобки, записываются с теми же знаками.

Если перед скобками ставится знак «-», то члены, заключаемые в скобки, записываются с противоположными знаками.

Преобразование (упрощение) произведения одночлена и многочлена

С помощью распределительного свойства умножения можно преобразовать (упростить) в многочлен произведение одночлена и многочлена. Например:
\(9a^2b(7a^2 - 5ab - 4b^2) = \)
\(= 9a^2b \cdot 7a^2 + 9a^2b \cdot (-5ab) + 9a^2b \cdot (-4b^2) = \)
\(= 63a^4b - 45a^3b^2 - 36a^2b^3 \)

Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

Этот результат обычно формулируют в виде правила.

Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

Мы уже неоднократно использовали это правило для умножения на сумму.

Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

Обычно пользуются следующим правилом.

Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения \((a + b)^2, \; (a - b)^2 \) и \(a^2 - b^2 \), т. е. квадрат суммы, квадрат разности и разность квадратов. Вы заметили, что названия указанных выражений как бы не закончены, так, например, \((a + b)^2 \) - это, конечно, не просто квадрат суммы, а квадрат суммы а и b. Однако квадрат суммы а и b встречается не так уж часто, как правило, вместо букв а и b в нем оказываются различные, иногда довольно сложные выражения.

Выражения \((a + b)^2, \; (a - b)^2 \) нетрудно преобразовать (упростить) в многочлены стандартного вида, собственно, вы уже встречались с таким заданием при умножении многочленов:
\((a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2 = \)
\(= a^2 + 2ab + b^2 \)

Полученные тождества полезно запомнить и применять без промежуточных выкладок. Помогают этому краткие словесные формулировки.

\((a + b)^2 = a^2 + b^2 + 2ab \) - квадрат суммы равен сумме квадратов и удвоенного произведения.

\((a - b)^2 = a^2 + b^2 - 2ab \) - квадрат разности равен сумме квадратов без удвоенного произведения.

\(a^2 - b^2 = (a - b)(a + b) \) - разность квадратов равна произведению разности на сумму.

Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно - правые части левыми. Самое трудное при этом - увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.