Самый крупный радиотелескоп в мире. Какой самый большой телескоп в мире и где он находится? Большой Бинокулярный Телескоп

Вдали от огней и шума цивилизации, на вершинах гор и в безлюдных пустынях живут титаны, чьи многометровые глаза всегда обращены к звездам. Naked Science подобрал 10 крупнейших наземных телескопов: одни созерцают космос уже много лет, другим лишь предстоит увидеть «первый свет».

10. Large Synoptic Survey Telescope

Диаметр главного зеркала: 8,4 метра

Местонахождение: Чили, пик горы Серо-Пачон, 2682 метра над уровнем моря

Тип: рефлектор, оптический

Хотя LSST будет располагаться в Чили, это проект США и его строительство целиком финансируют американцы, в том числе Билл Гейтс (лично вложил 10 миллионов долларов из необходимых 400).

Предназначение телескопа - фотографирование всего доступного ночного неба раз в несколько ночей, для этого аппарат оснащен 3,2 гигапиксельной фотокамерой. LSST выделяется очень широким углом обзора в 3,5 градуса (для сравнения - Луна и Солнце, как они видны с Земли, занимают всего 0,5 градуса). Подобные возможности объясняются не только внушающим диаметром главного зеркала, но и уникальностью конструкции: вместо двух стандартных зеркал LSST использует три.

Среди научных целей проекта заявлены поиск проявлений темной материи и темной энергии, картографирование Млечного пути, детектирование кратковременных событий вроде взрывов новых или сверхновых, а также регистрация малых объектов Солнечной системы вроде астероидов и комет, в частности, вблизи Земли и в Поясе Койпера.

Ожидается, что LSST увидит «первый свет» (распространенный на Западе термин, означает момент, когда телескоп впервые используется по прямому назначению) в 2020 году. На данный момент идет строительство, выход аппарата на полное функционирование запланирован на 2022 год.

Large Synoptic Survey Telescope, концепт / LSST Corporation

9. South African Large Telescope

Диаметр главного зеркала: 11 x 9,8 метров

Местонахождение: ЮАР, вершина холма недалеко от поселения Сутерланд, 1798 метров над уровнем моря

Тип: рефлектор, оптический

Самый большой оптический телескоп южного полушария располагается в ЮАР, в полупустынной местности недалеко от города Сутерланд. Треть из 36 миллионов долларов, необходимых для конструирования телескопа, вложило правительство ЮАР; остальная часть поделена между Польшей, Германией, Великобританией, США и Новой Зеландией.

Свой первый снимок SALT сделал в 2005 году, немногим после окончания строительства. Его конструкция довольно нестандартна для оптических телескопов, однако широко распространена среди поколения новейших «очень больших телескопов»: главное зеркало не едино и состоит из 91 шестиугольного зеркала диаметром в 1 метр, угол наклона каждого из которых может регулироваться для достижения определенной видимости.

Предназначен для проведения визуального и спектрометрического анализа излучения астрономических объектов, недоступных телескопам северного полушария. Сотрудники SALT занимаются наблюдениями квазаров, близких и далеких галактик, а также следят за эволюцией звезд.

Аналогичный телескоп есть в Штатах, он называется Hobby-Eberly Telescope и расположен в Техасе, в местечке Форт Дэвис. И диаметр зеркала, и его технология почти полностью совпадают с SALT.


South African Large Telescope / Franklin Projects

8. Keck I и Keck II

Диаметр главного зеркала: 10 метров (оба)

Местонахождение: США, Гавайи, гора Мауна Кеа, 4145 метров над уровнем моря

Тип: рефлектор, оптический

Оба этих американских телескопа соединены в одну систему (астрономический интерферометр) и могут работать вместе, создавая единое изображение. Уникальное расположение телескопов в одном из лучших мест на Земле с точки зрения астроклимата (степень вмешательства атмосферы в качество астрономических наблюдений) превратило Keck в одну из самых эффективных обсерваторий в истории.

Главные зеркала Keck I и Keck II идентичны между собой и подобны по своей структуре телескопу SALT: они состоят из 36 шестиугольных подвижных элементов. Оборудование обсерватории позволяет наблюдать небо не только в оптическом, но и в ближнем инфракрасном диапазоне.

Помимо основной части широчайшего спектра исследований, Keck является на данный момент одним из самых эффективных наземных инструментов в поиске экзопланет.


Keck на закате / SiOwl

7. Gran Telescopio Canarias

Диаметр главного зеркала: 10,4 метров

Местонахождение: Испания, Канарские острова, остров Ла Пальма, 2267 метров над уровнем моря

Тип: рефлектор, оптический

Строительство GTC закончилось в 2009 году, тогда же обсерватория и была официально открыта. На церемонию приехал даже король Испании Хуан Карлос I. Всего на проект было потрачено 130 миллионов евро: 90% профинансировала Испания, а остальные 10% поровну поделили Мексика и Университет Флориды.

Телескоп способен наблюдать за звездами в оптическом и среднем инфракрасном диапазоне, обладает инструментами CanariCam и Osiris, которые позволяют GTC проводить спектрометрические, поляриметрические и коронографические исследования астрономических объектов.


Gran Telescopio Camarias / Pachango

6. Arecibo Observatory

Диаметр главного зеркала: 304,8 метров

Местонахождение: Пуэрто-Рико, Аресибо, 497 метров над уровнем моря

Тип: рефлектор, радиотелескоп

Один из самых узнаваемых телескопов в мире, радиотелескоп в Аресибо не раз попадал в объективы кинокамер: к примеру, обсерватория фигурировала в качестве места финальной конфронтации между Джеймсом Бондом и его антагонистом в фильме «Золотой Глаз», а также в научно-фантастической экранизации романа Карла Сагана «Контакт».

Этот радиотелескоп попал даже в видеоигры - в частности, в одной из карт сетевого режима Battlefield 4, которая называется Rogue Transmission, военное столкновение между двумя сторонами происходит как раз вокруг конструкции, полностью скопированной с Аресибо.

Выглядит Аресибо действительно необычно: гигантская тарелка телескопа диаметром почти в треть километра помещена в естественную карстовую воронку, окруженную джунглями, и покрыта алюминием. Над ней подвешен подвижный облучатель антенны, поддерживаемый 18 тросами с трех высоких башен по краям тарелки-рефлектора. Гигантская конструкция позволяет Аресибо ловить электромагнитное излучение относительно большого диапазона - с длиной волны от от 3 см до 1 м.

Введенный в строй еще в 60-х годах, этот радиотелескоп использовался в бесчисленных исследованиях и успел помочь сделать ряд значительных открытий (вроде первого обнаруженного телескопом астероида 4769 Castalia). Однажды Аресибо даже обеспечил ученых Нобелевской премией: в 1974 году были награждены Халс и Тейлор за первое в истории обнаружение пульсара в двойной звездной системе (PSR B1913+16).

В конце 1990-х годов обсерватория также стала использоваться в качестве одного из инструментов американского проекта по поиску внеземной жизни SETI.


Arecibo Observatory / Wikimedia Commons

5. Atacama Large Millimeter Array

Диаметр главного зеркала: 12 и 7 метров

Местонахождение: Чили, пустыня Атакама, 5058 метров над уровнем моря

Тип: радиоинтерферометр

На данный момент этот астрономический интерферометр из 66 радиотелескопов 12-и и 7-метрового диаметра является самым дорогим действующим наземным телескопом. США, Япония, Тайвань, Канада, Европа и, конечно, Чили потратили на него около 1,4 миллиарда долларов.

Поскольку предназначением ALMA является изучение миллиметровых и субмиллиметровых волн, наиболее благоприятным для такого аппарата является сухой и высокогорный климат; этим объясняется расположение всех шести с половиной десятков телескопов на пустынном чилийском плато в 5 км над уровнем моря.

Телескопы доставлялись постепенно: первая радиоантенна начала функционировать в 2008 году, а последняя - в марте 2013 года, когда ALMA и был официально запущен на полную запланированную мощность.

Главной научной целью гигантского интерферометра является изучение эволюции космоса на самых ранних стадиях развития Вселенной; в частности, рождения и дальнейшей динамики первых звезд.


Радиотелескопы системы ALMA / ESO/C.Malin

4. Giant Magellan Telescope

Диаметр главного зеркала: 25,4 метров

Местонахождение: Чили, обсерватория Лас-Кампанас, 2516 метров над уровнем моря

Тип: рефлектор, оптический

Далеко к юго-западу от ALMA в той же пустыне Атакама строится еще один крупный телескоп, проект США и Австралии - GMT. Главное зеркало будет состоять из одного центрального и шести симметрично окружающих его и чуть изогнутых сегментов, образуя единый рефлектор диаметром более чем в 25 метров. Помимо огромного рефлектора, на телескоп будет установлена новейшая адаптивная оптика, которая позволит максимально устранить искажения, создаваемые атмосферой при наблюдениях.

Ученые рассчитывают, что эти факторы позволят GMT получать изображения в 10 раз более четкие, чем снимки Hubble, и вероятно даже более совершенные, чем у его долгожданного наследника - космического телескопа James Webb.

Среди научных целей GMT значится очень широкий спектр исследований - поиск и снимки экзопланет, исследование планетарной, звездной и галактической эволюции, изучение черных дыр, проявлений темной энергии, а также наблюдение самого первого поколения галактик. Рабочий диапазон телескопа в связи с заявленными целями - оптический, ближний и средний инфракрасный.

Закончить все работы предполагается к 2020 году, однако заявлено, что GMT может увидеть «первый свет» уже с 4 зеркалами, как только они окажутся введены в конструкцию. В данный момент идет работа по созданию уже четвертого зеркала.


Концепт Giant Magellan Telescope / GMTO Corporation

3. Thirty Meter Telescope

Диаметр главного зеркала: 30 метров

Местонахождение: США, Гавайи, гора Мауна Кеа, 4050 метров над уровнем моря

Тип: рефлектор, оптический

По своим целям и характеристикам TMT похож на GMT и гавайские телескопы Keck. Именно на успехе Keck и основан более крупный TMT с той же технологией разделенного на множество шестиугольных элементов главного зеркала (только в этот раз его диаметр в три раза больше), а заявленные исследовательские цели проекта почти полностью совпадают с задачами GMT, вплоть до фотографирования самых ранних галактик чуть ли не на краю Вселенной.

СМИ называют разную стоимость проекта, она варьируется от 900 миллионов до 1,3 миллиарда долларов. Известно, что желание участвовать в TMT выразили Индия и Китай, которые согласны взять на себя часть финансовых обязательств.

В данный момент выбрано место для строительства, однако до сих пор ведется противодействие некоторых сил в администрации Гавайев. Гора Мауна Кеа является священным местом для коренных гавайцев, и многие среди них категорически против строительства сверхкрупного телескопа.

Предполагается, что все административные проблемы уже очень скоро будут решены, а полностью завершить строительство планируется примерно к 2022 году.


Концепт Thirty Meter Telescope / Thirty Meter Telescope

2. Square Kilometer Array

Диаметр главного зеркала: 200 или 90 метров

Местонахождение: Австралия и Южная Африка

Тип: радиоинтерферометр

Если этот интерферометр будет построен, то он станет в 50 раз более мощным астрономическим инструментом, чем крупнейшие радиотелескопы Земли. Дело в том, что своими антеннами SKA должен покрыть площадь примерно в 1 квадратный километр, что обеспечит ему беспрецедентную чувствительность.

По структуре SKA очень напоминает проект ALMA, правда, по габаритам будет значительно превосходить своего чилийского собрата. На данный момент есть две формулы: либо строить 30 радиотелескопов с антеннами в 200 метров, либо 150 с диаметром в 90 метров. Так или иначе, протяженность, на которой будут размещены телескопы, будет составлять, согласно планам ученых, 3000 км.

Чтобы выбрать страну, где будет строиться телескоп, был проведен своего рода конкурс. В «финал» вышли Австралия и ЮАР, и в 2012 году специальная комиссия объявила свое решение: антенны будут распределены между Африкой и Австралией в общую систему, то есть SKA будет размещен на территории обеих стран.

Заявленная стоимость мегапроекта - 2 миллиарда долларов. Сумма разделена между целым рядом стран: Великобританией, Германией, Китаем, Австралией, Новой Зеландией, Нидерландами, ЮАР, Италией, Канадой и даже Швецией. Предполагается, что строительство будет полностью завершено к 2020 году.


Художественное изображение 5-километрового ядра SKA / SPDO/Swinburne Astronomy Production

1. European Extremely Large Telescope

Диаметр главного зеркала: 39.3 метра

Местонахождение: Чили, вершина горы Серро Армазонес, 3060 метров

Тип: рефлектор, оптический

На пару лет - возможно. Однако к 2025 году на полную мощность выйдет телескоп, который превзойдет TMT на целый десяток метров и который, в отличии от гавайского проекта, уже находится на стадии строительства. Речь идет о бесспорном лидере среди новейшего поколения крупных телескопов, а именно о Европейском очень большом телескопе, или E-ELT.

Его главное почти 40-метровое зеркало будет состоять из 798 подвижных элементов диаметром в 1,45 метра. Это вместе с самой современной системой адаптивной оптики позволит сделать телескоп настолько мощным, что он, по мнению ученых, сможет не только находить планеты, подобные Земле по размерам, но и сможет с помощью спектрографа изучить состав их атмосферы, что открывает совершенно новые перспективы в изучении планет вне солнечной системы.

Помимо поиска экзопланет, E-ELT займется исследованием ранних стадий развития космоса, попробует измерить точное ускорение расширения Вселенной, проверит физические константы на, собственно, постоянство во времени; также этот телескоп позволит ученым глубже чем когда-либо погрузиться в процессы формирования планет и их первичный химический состав в поисках воды и органики - то есть, E-ELT поможет ответить на целый ряд фундаментальных вопросов науки, включая те, что затрагивают возникновение жизни.

Заявленная представителями Европейской южной обсерватории (авторами проекта) стоимость телескопа - 1 миллиард евро.


Концепт European Extremely Large Telescope / ESO/L. Calçada


Сравнение размеров E-ELT и египетских пирамид / Abovetopsecret

Телескоп «Джеймс Уэбб» - это орбитальная инфракрасная обсерватория, которая должна заменить тот самый знаменитый космический телескоп «Хаббл».

Это очень сложный механизм. Работа над его идет около 20 лет! «Джеймс Уэбб» будет обладать составным зеркалом 6,5 метров в диаметре и стоить около 6.8 млрд долларов. Для сравнения, диаметр зеркала «Хаббла» - «всего» 2.4 метра.

Посмотрим?


1. Телескоп «Джеймс Уэбб» должен быть размещен на гало-орбите в точке Лагранжа L2 системы Солнце - Земля. А в космосе холодно. Здесь показаны испытания, проводимые 30 марта 2012, направленные на изучение возможности противостоять холодным температурам пространства. (Фото Chris Gunn | NASA):

2. «Джеймс Уэбб» будет обладать составным зеркалом 6.5 метров в диаметре с площадью собирающей поверхности 25 м². Много это, или мало? (Фото Chris Gunn):

3. Сравним с «Хабблом». Зеркало «Хаббла» (слева) и «Уэбба» (справа) в одном масштабе:

4. Полномасштабная модель космического телескопа Джеймса Уэбба в Остине, штат Техас, 8 марта 2013. (Фото Chris Gunn):

5. Проект телескопа представляет собой международное сотрудничество 17 стран, во главе которых стоит NASA, со значительным вкладом Европейского и Канадского космических агентств. (Фото Chris Gunn):

6. Изначально запуск намечался на 2007 год, в дальнейшем переносился на 2014 и на 2015 год. Однако первый сегмент зеркала был установлен на телескоп лишь в конце 2015 года, а полностью главное составное зеркало было собрано только в феврале 2016 года.(Фото Chris Gunn):

7. Чувствительность телескопа и его разрешающая способность напрямую связаны с размером площади зеркала, которое собирает свет от объектов. Учёные и инженеры определили, что минимальный диаметр главного зеркала должен быть 6.5 метра, чтобы измерить свет от самых далёких галактик.

Простое изготовление зеркала, подобного зеркалу телескопа «Хаббл», но большего размера, было неприемлемо, так как его масса была бы слишком большой, чтобы можно было запустить телескоп в космос. Команде учёных и инженеров необходимо было найти решение, чтобы новое зеркало имело 1/10 массы зеркала телескопа «Хаббл» на единицу площади. (Фото Chris Gunn):

8. Не только у нас всё дорожает от начальной сметы. Так, стоимость телескопа «Джеймс Уэбб» превысила изначальные расчёты по меньшей мере в 4 раза. Планировалось, что телескоп обойдётся в 1,6 млрд долл. и будет запущен в 2011 году, однако по новым оценкам стоимость может составить 6.8 млрд, при этом запуск состоится не ранее 2018 года. (Фото Chris Gunn):

9. Это спектрограф ближнего инфракрасного диапазона. Он будет анализировать спектр источников, что позволит получать информацию как о физических свойствах исследуемых объектов (например, температуре и массе), так и об их химическом составе. (Фото Chris Gunn):

Телескоп позволит обнаруживать относительно холодные экзопланеты с температурой поверхности до 300 К (что практически равно температуре поверхности Земли), находящиеся дальше 12 а. е. от своих звёзд, и удалённые от Земли на расстояние до 15 световых лет. В зону подробного наблюдения попадут более двух десятков ближайших к Солнцу звезд. Благодаря «Джеймсу Уэббу» ожидается настоящий прорыв в экзопланетологии - возможностей телескопа будет достаточно не только для того, чтобы обнаруживать сами экзопланеты, но даже спутники и спектральные линии этих планет.

11. Инженеры тестируют в камере. систему подъема телескопа, 9 сентября 2014. (Фото Chris Gunn):

12. Исследование зеркал, 29 сентября 2014. Шестиугольная форма сегментов была выбрана не случайно. Она обладает высоким коэффициентом заполнения и имеет симметрию шестого порядка. Высокий коэффициент заполнения означает, что сегменты подходят друг к другу без зазоров. Благодаря симметрии 18 сегментов зеркала можно разделить на три группы, в каждой из которых настройки сегментов идентичны. Наконец, желательно, чтобы зеркало имело форму, близкую к круговой - для максимально компактного фокусирования света на детекторах. Овальное зеркало, например, дало бы вытянутое изображение, а квадратное послало бы много света из центральной области. (Фото Chris Gunn):

13. Очистка зеркала сухим льдом из двуокиси углерода. Тряпками здесь никто не трет. (Фото Chris Gunn):

14. Камера A — это гигантская испытательная камера с вакуумом, которая будет моделировать космическое пространства при испытаниях телескопа «Джеймса Уэбба», 20 мая 2015. (Фото Chris Gunn):


31 декабря 2015 года. Установлено 11 зеркал. (Фото Chris Gunn):

17. Размер каждого из 18 шестигранных сегментов зеркала составляет 1.32 метра от ребра до ребра. (Фото Chris Gunn):

18. Масса непосредственно самого́ зеркала в каждом сегменте - 20 кг, а масса всего сегмента в сборе - 40 кг. (Фото Chris Gunn):

19. Для зеркала телескопа «Джеймса Уэбба» используется особый тип бериллия. Он представляет собой мелкий порошок. Порошок помещается в контейнер из нержавеющей стали и прессуется в плоскую форму. После того как стальной контейнер удалён, кусок бериллия разрезается пополам, чтобы сделать две заготовки зеркала около 1.3 метра в поперечнике. Каждая заготовка зеркала используется для создания одного сегмента. (Фото Chris Gunn):

20. Затем поверхность каждого зеркала стачивается для придания формы, близкой к расчётной. После этого зеркало тщательно сглаживают и полируют. Этот процесс повторяется до тех пор, пока форма сегмента зеркала не станет близка к идеальной. Далее сегмент охлаждается до температуры −240 °C, и с помощью лазерного интерферометра производятся измерения размеров сегмента. Затем зеркало с учётом полученной информации проходит окончательную полировку. (Фото Chris Gunn):

21. По завершению обработки сегмента передняя часть зеркала покрывается тонким слоем золота для лучшего отражения инфракрасного излучения в диапазоне 0,6-29 мкм, и готовый сегмент проходит повторные испытания при криогенных температурах. (Фото Chris Gunn):

22. Работа над телескопом в ноябре 2016 года. (Фото Chris Gunn):

23. НАСА завершило сборку космического телескопа «Джеймс Уэбб» в 2016 году и приступило к его испытаниям. Это снимок от 5 марта 2017 года. На длинной выдержке техники выглядят призраками. (Фото Chris Gunn):

26. Дверь в ту самую камеру А с 14-й фотографии, в которой моделируется космическое пространство. (Фото Chris Gunn):

28. Текущие планы предусматривают, что телескоп будет запущен с помощью ракеты «Ариан-5» весной 2019 года. Отвечая на вопрос о том, что ученые ожидают узнать с помощью нового телескопа, ведущий научный сотрудник проекта Джон Мэтер сказал: «Надеюсь, мы найдем что-то, о чем никто ничего не знает». UPD. Запуск телескопа «Джеймс Уэбб» перенесен на 2020 год. (Фото Chris Gunn).

БТА телескоп — крупнейший оптический телескоп в Евразии, самый большой телескоп в России. Полное название и расшифровка аббревиатуры звучит так — Б ольшой Т елескоп А льт-Азимутальный.

Диаметр зеркала — 6 метров.

Установлен у подножия горы Пастухова на высоте 2070 м над уровнем моря. Карачаево-Черкессия. Работает еще с 1966 года.

В далеком 1975 году телескоп считался крупнейшим в мире, превзошедший по своим параметрам и техническим возможностям телескоп Хейла в Паломарской обсерватории (Калифорния). Но в 1993 году пальму первенства, если так можно выразиться, отобрал десятиметровый телескоп американской Обсерватории Кека, расположившийся на пике горы Мауна-Кеа (4145 метров над уровнем моря), на острове Гавайи. И неудивительно, при таких средствах вложенных в проект (более 70 млн $), по астрономическим меркам получился настоящий гигант в научных исследованиях космоса.

Спрашивается, почему Россия позволила американцам (или как только мы не привыкли их называть), в этом вопросе быть дальновидней наших проектов и разработок? Почему советские разработки и мегапроекты были лучшими во всем мире, а проекты постсовесткой эпохи только-только набирают обороты, поднимаясь с колен? Благо хоть поднимаются. Однако, не припоминаю, чтобы в роснауке было столько благотворительных фондов или меценатов-добродетелей, как в штатах. А ведь, могли бы потрясти какую-нибудь кучку олигархов с их миллиардами… Суммы-то не ахти какие запредельные, учитывая роскошные виллы и яхты, острова и другие бессмысленные инвестиции некоторых из русских представителей «сильные мира сего»…

К слову, американцы в 1985 году привлекли к работе средства благотворительного фонда Уильяма Майрона Кека, который, собственно и профинансировал весь проект солидным чеком в более 70 млн $. Фонд основанный в 1954 году Уильямом Майроном Кеком (1880-1964) и сегодня специализируется поддержкой научных открытий и новых технологий. И вот, что у них получилось:

Тем не менее, возвращаясь к нашему телескопу, БТА оставался телескопом с крупнейшим в мире монолитным зеркалом вплоть до 1998 года. Но самая любопытная информация, вошедшая в перечень офигенно крутых — по сей день купол БТА является крупнейшим астрономическим куполом в мире. Ну, хоть Купол (!) у нас — лучший в мире.

Чтобы правильно меня понимали — нет целей и задач одними восторгаться, а своих поливать псевдогрязью… Нет! Хочется, чтобы по-людски было, чтобы в науку вкладывали больше, чем в вооружение, больше, чем в «приоритетные» разборки с трубами от Газпрома, выясняя какой поток лучше — северный, южный или еще какой… Хочется, чтобы вкладывали больше, чем другие государства. И, быть может ученые никуда уезжать не станут? — А что? Верить-то хочется…

Итак, телескоп БТА — как одно из самых значимых изобретений, гордость советских ученых и инженеров достался России, как правопреемнице СССР. Что нам не мешало бы знать о нем? Постарался найти и сжать информацию до более-менее перевариваемой, и интересной.

1. ЛЫТКАРИНСКОЕ ОПТИЧЕСКОЕ СТЕКЛО

В мире только пять стран, которые могут производить весь спектр оптического стекла: Россия, Германия, Китай, США и Япония. Лыткаринский завод известен, прежде всего, своей крупногабаритной оптикой. Его зеркала установлены на крупнейших телескопах по всему миру. Одно из таких зеркал завода и установлено на телескопе БТА, что собственно и позволило получить звание сразу в двух номинациях — «самое большое зеркало в Евразии» и «самый большой телескоп в Евразии»…Одно дополняет другое.

Чуть не забыл, вес зеркала — чуть более 40 тонн. При том, что масса подвижной части телескопа - около 650 тонн, а общая масса телескопа - около 850 тонн.

Была информация, что в 2015-м году зеркало должны были поменять на обновленное — весом в 75 тонн, но информации о проделанной работе за прошлый год я не нашел, даже на официальном сайте Лыткаринского завода. Сообщалось только, что должны это сделать:

«В следующем году (прим ред — в 2015г), в мае, мы будем отгружать 75-тонное зеркало для большого азимутального телескопа. По технологии такое зеркало после выплавки должно остужаться полтора года. Это самое крупное зеркало, изготовленное для телескопа, станок для его полировки на Лыткаринском заводе оптического стекла в высоту составляет чуть ли не 12 этажей», — сообщил генеральный директор холдинга «Швабе» — Сергей Максин на международной выставке «Оборонэкспо».


Фото: архив САО РАН

2. В чем уникальность

По техническим меркам в 60-70 гг — разработка считалась революционной. Аналогов проекту не было. Механика телескопа послужила прототипом для всех последующих телескопов. Все телескопы, даже меньшего размера, стали делать по образцу БТА.

Кстати, название телескопа было предопределено. Ведь — телескоп не статический, у него две оси - вертикальная и горизонтальная. Они позволяют поворачивать конструкцию по оси и по азимуту. Отсюда и название — Б ольшой Т елескоп А льт-Азимутальный.

В советское время, помимо огромного штата сотрудников из несколько сотен человек, за работой телескопа также следил огромнейший крупногабаритный компьютер, который сейчас стоит в музее обсерватории. Со временем, датчики, систему управления модернизировали, а механика осталась. Советские технологии — это Вам не хухры-мухры… Делали на века.

3. Штат сотрудников

Со слов астронома Алексея Моисеева , сейчас в обсерватории трудятся около 400 человек.

«…у нас один из самых высоких процентов ненаучного состава среди институтов Российской академии наук - инженеров, техников. У нас два основных телескопа: шестиметровый БТА и радиотелескоп «Ратан-600». Нужны люди, чтобы их обслуживать. У нас время простоя телескопов по техническим причинам измеряется всего лишь часами в год - это очень мало.

К слову, недалеко от обсерватории был построен академгородок, где сегодня живут около 1200 человек — ученые с семьями. Несмотря на протесты против строительства городка со стороны первого директора обсерватории — Ивана Копылова, решено было строить. А протест заключался в следующем — астрономы не геологи, не нужно заставлять их работать вахтовым методом.

Сегодня одна из самых больших проблем академгородка — медицинское обслуживание. Как оказалось, в результате реформы РАН в 2015 году, Федеральное агентство научных организаций отказывается поддерживать местную амбулаторию, а до ближайшей больницы - 30 км горной дороги. Вопрос — с ума сошли? С одной стороны поднимаете вопросы — отчего такая большая утечка мозгов, с другой стороны — сами же выпихиваете из страны такими условиями…

Это аксиома: в любой стране мира астроном с хорошими знаниями и подготовкой может найти множество сфер, где он заработает больше, чем в науке. На энтузиазме и бестолковых реформах страна не перейдет на новый уровень…

В завершении, рекомендую полистать с большим количеством качественных снимков о телескопе БТА. А также рекомендую к просмотру короткий видеоролик от «Телестудии Роскосмоса». Там же — на канале Роскосмоса, очень много интересных видео обзоров — для самых любознательных. А пока что — короткий факты о телескопе БТА:

На сегодняшний день телескопы по-прежнему остаются одними из основных инструментов астрономов, как любителей, так и профессионалов. Задача оптического инструмента собрать на приемнике света как можно больше фотонов.
В данной статье мы затронем оптические телескопы, кратко ответим на вопрос: «почему размер телескопа имеет значение?» и рассмотрим список самых больших телескопов в мире.

Прежде всего следует отметить различия между телескопом рефлектором и . Рефрактор – это самый первый тип телескопа, который был создан в 1609 году Галилеем. Принцип его работы заключается в сборе фотонов при помощи линзы или системы линз, с последующим уменьшением изображения и передачей его в окуляр, в который астроном смотрит во время наблюдения. Одной из важных характеристик такого телескопа – апертура, высокое значение которой достигается в том числе и с помощью увеличения размера линзы. Наряду с апертурой имеет большое значение и фокусное расстояние, величина которого зависит от длины самого телескопа. По этим причинам астрономы стремились увеличить свои телескопы.
На сегодняшний день самые большие телескопы-рефракторы находятся в следующих учреждениях:

  1. В Йеркской обсерватории (Висконсин, США) — диаметром 102 см, созданный в 1897 году;
  2. В Ликской обсерватории (Калифорния, США) – диаметром 91 см, созданный в 1888 году;
  3. В Парижской обсерватории (Медон, Франция) – диаметром 83 см, созданный в 1888 году;
  4. В Потсдамском институте (Потсдам, Германия) – диаметром 81 см, созданный в 1899 году;

Современные рефракторы хоть и шагнули заметно дальше изобретения Галилея, все же обладают таким недостатком как хроматическая аберрация. Кратко говоря, так как угол преломления света зависит от его длины волны, то, проходя через линзу, свет разной длины как-бы расслаивается (дисперсия света), в результате чего изображение выглядит нечетким, расплывчатым. Несмотря на то, что ученые разрабатывают все новые технологии для повышения четкости, например, стекло со сверхнизкой дисперсией, рефракторы все же во многом уступают рефлекторам.
В 1668 году Исаак Ньютон разработал первый . Основная особенность такого оптического телескопа состоит в том, что собирающим элементом является не линза, а зеркало. В силу искажения зеркала, падающий на него фотон отражается в другое зеркало, которое, в свою очередь, направляет его в окуляр. Различные конструкции рефлекторов отличаются взаимным расположением этих зеркал, однако так или иначе рефлекторы избавляют наблюдателя от последствий хроматической аберрации давая на выходе более четкое изображение. Кроме того, рефлекторы можно делать значительно больших размеров, так как линзы рефрактора диметром более 1 м деформируются под собственным весом. Также прозрачность материала линзы рефрактора заметно ограничивает диапазон длин волн, по сравнению с устройством рефлектора.

Говоря о телескопах-рефлекторах, следует также отметить, что с увеличением диаметра главного зеркала растет и его апертура. По описанным выше причинам астрономы стараются заполучить оптические телескопы-рефлекторы наибольших размеров.

Список самых больших телескопов

Рассмотрим семь комплексов телескопов с зеркалами диаметром более 8 метров. Здесь мы пытались их упорядочить по такому параметру как апертура, однако это не определяющий параметр качества наблюдения. Каждый из перечисленных телескопов имеет свои достоинства и недостатки, определенные задачи и требуемые для их выполнения характеристики.

  1. Большой Канарский телескоп, открытый в 2007-м году, является оптическим телескопом с наибольшей апертурой в мире. Диаметр зеркала составляет 10,4 метра, собирающая площадь 73 м², а фокусное расстояние — 169,9 м. Телескоп находится в Обсерватории Роке де лос Мучачос, которая расположена на пике потухшего вулкана Мучачос, примерно 2400 метров над уровнем моря, на одном из Канарских островов под названием Пальма. Местный астроклимат считается вторым наиболее качественным для астрономических наблюдений (после Гавайи).

    Большой Канарский телескоп — самый большой телескоп в мире

  2. Два телескопа Кек имеют зеркала диаметром по 10 метров каждый, собирающая площадь по 76 м² и фокусное расстояние 17,5 м. Принадлежат обсерватории Мауна-Кеа, которая располагается на высоте 4145 метров, на пике горы Мауна-Кеа (Гавайи, США). В обсерватории Кека было обнаружено наибольшее количество экзопланет.

  3. Телескоп Хобби - Эберли находится в Обсерватории Макдональда (Техас, США) на высоте 2070 метров. Его апертура равна 9,2 м, хотя физически основное зеркало рефлектора имеет размеры 11 х 9,8 м. Собирающая площадь 77,6 м², фокусное расстояние 13,08 м. Особенность этого телескопа заключается в ряде нововведений. Одно из них — подвижные инструменты, находящиеся в фокусе, которые перемещаются вдоль неподвижного основного зеркала.

  4. Большой южно-африканский телескоп, принадлежащий Южно-африканской астрономической обсерватории, имеет зеркало наибольших размеров – 11,1 х 9,8 метров. При этом его эффективная апертура несколько меньше — 9.2 метра. Собирающая площадь составляет 79 м². Телескоп находится на высоте 1783 метра в полупустынном регионе Кару, ЮАР.

  5. Большой бинокулярный телескоп является одним из наиболее технологически развитых телескопов. Он обладает двумя зеркалами («бинокулярный»), каждое из которых имеет диаметр 8,4 метра. Собирающая площадь 110 м², а фокусное расстояние 9,6 м. Телескоп находится на высоте 3221 метр и принадлежит Международной обсерватории Маунт-Грэм (Аризона, США).

  6. Телескоп Субару, построенный в далеком 1999-м году, имеет диаметр 8,2 м, собирающую площадь 53 м² и фокусное расстояние 15 м. Принадлежит обсерватории Мауна-Кеа (Гавайи, США), той же, что и телескопы Кек, но находится шестью метрами ниже – на высоте 4139 м.

  7. VLT (Very Large Telescope – с англ. «Очень большой телескоп») состоит из четырех оптических телескопов с диметрами по 8,2 м и четырех вспомогательных – по 1,8 м. Телескопы располагаются на высоте 2635 м в пустыне Атакама, Чили. Находятся под контролем Европейской Южной Обсерватории.

    «Очень большой телескоп» (VLT)

Направление развития

Так как строительство, установка и эксплуатация гигантских зеркал является достаточно энергозатратным дорогостоящим мероприятием имеет смысл повышать качество наблюдения иными способами, помимо увеличения размеров самого телескопа. По этой причине ученые также работают в направлении развития самих технологий наблюдения. Одной из таких технологий является адаптивная оптика, которая позволяет минимизировать искажения полученных изображений в результате различных атмосферных явлений.
Если рассмотреть подробнее, то телескоп фокусируется на достаточно яркой звезде для определения текущих атмосферных условий, в результате чего получаемые изображения обрабатываются с учетом текущего астроклимата. В случае, если на небосводе нет достаточно ярких звезд, телескоп излучает лазерный луч в небо, формируя на нем пятно. По параметрам этого пятна ученые определяют текущую атмосферную погоду.

Часть оптических телескопов работает также в инфракрасном диапазоне спектра, что позволяет получать более полную информацию об исследуемых объектах.

Проекты будущих телескопов

Инструменты астрономов постоянно совершенствуются и ниже представлены наиболее масштабные проекты новых телескопов.

  • планируется возвести в Чили, на высоте 2516 метров, к 2022 году. Собирающий элемент состоит из семи зеркал по 8,4 м диаметром, при этом эффективная апертура достигнет 24,5 м. Собирающая площадь — 368 м². Разрешающая способность Гигантского Магелланова телескопа в 10 превысит таковую телескопа Хаббл. Способность собирать свет будет вчетверо превышать таковую любого современного оптического телескопа.

  • Тридцатиметровый телескоп будет относиться к обсерватории Мауна-Кеа (Гавайи, США), к которой также относятся телескопы Кек и Субару. Данный телескоп намерены возвести к 2022-му году на высоте 4050 метров. Как видно из названия, диаметр его главного зеркала будет составлять 30 метров, собирающая площадь — 655 м 2 , а фокусное расстояние – 450 метров. Тридцатиметровый телескоп будет способен собирать вдевятеро больше света, чем любой существующий, его четкость превысит четкость Хаббла в 10-12 раз.

  • (E-ELT) на сегодня является наиболее масштабным проектом телескопа. Он будет расположен на горе Армасонес на высоте 3060 метров, Чили. Диаметр зеркала E-ELT составит 39 м, собирающая площадь 978 м 2 и фокусное расстояние до 840 метров. Собирающая способность телескопа превысит в 15 раз таковую любого существующего сегодня, а качество изображения будет в 16 раз лучше, чем у Хаббла.

Перечисленные телескопы выходят за пределы видимого спектра и способны улавливать изображения также и в инфракрасной области. Сравнение этих наземных телескопов с орбитальным телескопом Хаббл означает то, что ученые преодолели барьер из помех, образованный в результате атмосферных явлений, при этом превзойдя мощный орбитальный телескоп. Все три перечисленные аппарата, вместе с Большим бинокулярным телескопом и Большим Канарским телескопом будут относиться к новому поколению так называемых Экстремально больших телескопов (Extremely Large Telescope — ELT).


Аресибо - астрономическая обсерватория, расположенная в Пуэрто Рико, в 15 км от города Аресибо, на высоте 497 м над уровнем моря. Ее радиотелескоп является самым большим в мире и используется для исследований в области радиоастрономии, физики атмосферы и радиолокационных наблюдений объектов Солнечной системы. Также информация с телескопа поступает для обработки проектом SETI@home, посредством подключённых к Интернету компьютеров добровольцев. Проект этот, напомним, занимается поиском внеземных цивилизаций.

Помните 10 лет назад был фильм про Джеймса Бонда - "Золотой глаз". Там как раз действия разворачивались на этом телескопе.

Многие наверное подумали что это декорации к фильму. А телескоп к тому моменту уже работал 50 лет

Обсерватория Аресибо находится на высоте 497 метров над уровнем моря. Несмотря на то, что расположена она в Пуэрто Рико, используется и финансируется она всевозможными университетами и агентствами США. Основным предназначением обсерватории является исследование в области радиоастрономии, а также наблюдение за космическими телами. Для этих целей и был построен самый большой в мире радиотелескоп. Диаметр тарелки составляет 304,8 метров.

Глубина тарелки (зеркало рефлектора по научному) сотавляет - 50,9 метров, общая площадь - 73000 м2. Изготовлена она из 38778 перфорированных (дырчатых) алюминиевых пластин, уложенных на сетку из стальных тросов.

Над тарелкой подвешена массивная конструкция, передвижной облучатель и его направляющие. Держится она на 18 тросах, натянутых от трёх башен поддержки.



Если Вы купите входной билет на экскурсию, стоимостью 5$, то получите возможность подняться на облучатель по специальной галерее или в клетке подъёмника.

Строительство радиотелескопа было начато в 1960 году, а уже 1 ноября 1963 года состоялось открытие обсерватории.


За время своего существования, радиотелескоп Аресибо отличился тем, что были открыты несколько новых космических объектов (пульсары, первые планеты за пределами нашей Солнечной системы), лучше исследованы поверхности планет нашей Солнечной системы, а также, в 1974 году было отправлено послание Аресибо, в надежде, что какая-нибудь внеземная цивилизация откликнется на него. Ждёмс.

При проведении этих исследований включается мощный радар и измеряется ответная реакция ионосферы. Антенна такого большого размера является необходимой, потому что на тарелку для измерения попадает лишь малая часть рассеянной энергии. Сегодня только треть времени работы телескопа отведено для изучения ионосферы, треть - для исследования галактик, а оставшаяся треть отдана астрономии пульсаров.

Аресибо, без сомнения, превосходный выбор для поиска новых пульсаров, поскольку огромные размеры телескопа делают поиски более продуктивными, позволяя астрономам находить доселе неизвестные пульсары, которые оказались слишком малы, чтобы быть замеченными при помощи телескопов меньших размеров. Тем не менее, такие размеры имеют и свои недостатки. Например, антенна должна оставаться закрепленной на земле из-за невозможности управлять ей. Вследствие чего телескоп в состоянии охватить только сектор неба, который находится непосредственно над ним на пути вращения земли. Это позволяет Аресибо наблюдать за сравнительно небольшой частью неба, по сравнению с большинством других телескопов, которые могут охватывать от 75 до 90% неба.


Второй, третий и четвертый по величине телескопы, которые используются (или будут использоваться) для исследования пульсаров - это соответственно телескоп Национальной радиоастрономической обсерватории (НРАО) в Западной Вирджинии, телескоп института Макса Планка в Эффельсберге и телескоп Грин-Бэнк НРАО тоже в Западной Вирджинии. Все они имеют диаметр не менее 100 м и полностью управляемы. Несколько лет назад 100-метровая антенна НРАО упала на землю, и сейчас ведутся работы по установке более качественного 105-метрового телескопа.

Это лучшие телескопы для изучения пульсаров, не попадающих в радиус действия Аресибо. Заметьте, что Аресибо втрое больше 100-метровых телескопов, а это значит, что он охватывает площадь в 9 раз большую и достигает результатов научных наблюдений в 81 раз быстрее.

Тем не менее, существует множество телескопов диаметром меньше 100 метров, которые также успешно используются для изучения пульсаров. Среди них Parkes в Австралии и 42-метровый телескоп НРАО.

Большой телескоп может быть заменен совмещением нескольких телескопов меньших размеров. Эти телескопы, точнее, сети телескопов, могут охватывать площадь, равную той, которая охватывается стометровыми антеннами. Одна из таких сетей, созданная для апертурного синтеза, называется Very Large Array. Она насчитывает 27 антенн, каждая 25 метров в диаметре.



Начиная с 1963 года, когда было закончено строительство обсерватории Аресибо в Пуэрто-Рико (Arecibo Observatory in Puerto Rico), радиотелескоп этой обсерватории, диаметром 305 метров и площадью 73000 квадратных метров, был самым большим радиотелескопом в мире. Но вскоре Аресибо может потерять этот статус из-за того, что в провинции Гуйчжоу, расположенной в южной части Китая, начато строительство нового радиотелескопа Five-hundred-meter Aperture Spherical radio Telescope (FAST). По завершению строительства этого телескопа, которое согласно планам должно завершиться в 2016 году, телескоп FAST будет в состоянии "видеть" космос на глубину в три раза больше и производить обработку данных в десять раз быстрее, чем это позволяет оборудование телескопа Аресибо.


Изначально строительство телескопа FAST было намечено для участия в международной программе Square Kilometer Array (SKA), в рамках которой будут объединены сигналы с тысяч антенн радиотелескопов меньших размеров, разнесенных на расстояние 3000 км. Как известно на данный момент , телескоп SKA будет возводиться в южном полушарии, но вот где именно, в Южной Африке или Австралии, будет решено позже.

Несмотря на то, что предложенный проект телескопа FAST не стал частью проекта SKA, китайское правительство дало проекту зеленый свет и выделило финансирование в размере 107,9 миллионов долларов для начала строительства нового телескопа. Строительство было начато в марте месяце, в провинции Гуйчжоу, в южной части Китая.

В отличие от телескопа Аресибо, который имеет неподвижную параболическую систему, фокусирующую радиоволны, кабельная сеть телескопа FAST и система конструкции параболического отражателя позволят телескопу менять форму поверхности отражателя в режиме реального времени с помощью системы активного контроля. Это станет возможным благодаря наличию 4400 треугольных алюминиевых листов, из которых формируется параболическая форма отражателя и которую можно навести на любую точку ночного неба.

Использование специальной современной приемной аппаратуры придаст телескопу FAST беспрецедентно высокую чувствительность и высокие скорости обработки поступающих данных. С помощью антенны телескопа FAST можно будет принять настолько слабые сигналы, что станет возможным "рассматривание" с его помощью нейтральных облаков водорода в Млечном пути и других галактиках. А основными задачами, над которыми будет работать радиотелескоп FAST, будут обнаружение новых пульсаров, поиск новых ярких звезд и поиск внеземных форм жизни.

источники
grandstroy.blogspot.com
relaxic.net
planetseed.com
dailytechinfo.org