Существует ли четырехугольник с перпендикулярными диагоналями. Ортодиагональный четырёхугольник

Четырёхугольники, в которых диагонали не меньше любой стороны, имеют максимальный диаметр среди всех четырёхугольников, что решает случай n = 4 задачи наибольшего по площади многоугольника единичного диаметра . Квадрат является одним из таких четырёхугольников, но есть бесконечно много других.

Описание

A 2 + c 2 = b 2 + d 2 . {\displaystyle \displaystyle a^{2}+c^{2}=b^{2}+d^{2}.}

Диагонали выпуклого четырёхугольника перпендикулярны тогда и только тогда, когда бимедианы имеют одинаковую длину .

Диагонали выпуклого четырёхугольника ABCD перпендикулярны также тогда и только тогда, когда

∠ P A B + ∠ P B A + ∠ P C D + ∠ P D C = π {\displaystyle \angle PAB+\angle PBA+\angle PCD+\angle PDC=\pi } ,

где P - точка пересечения диагоналей. Из этого равенства следует почти немедленно, что диагонали выпуклого четырёхугольника перпендикулярны также тогда и только тогда, когда проекции пересечения диагоналей на стороны четырёхугольника являются вершинами вписанного четырёхугольника .

Есть несколько соотношений относительно четырёх треугольников , образованных точкой пересечения диагоналей P и вершинами выпуклого четырёхугольника ABCD . Обозначим через m 1 , m 2 , m 3 , m 4 медианы в треугольниках ABP , BCP , CDP , DAP из P на стороны AB , BC , CD , DA соответственно. Обозначим через R 1 , R 2 , R 3 , R 4 радиусы описанных окружностей , а через h 1 , h 2 , h 3 , h 4 - высоты этих треугольников. Тогда четырёхугольник ABCD ортодиагонален тогда и только тогда, когда выполняется любое из следующих равенств :

Более того, четырёхугольник ABCD с точкой пересечения диагоналей P ортодиагонален тогда и только тогда, когда центры описанных вокруг треугольников ABP , BCP , CDP и DAP окружностей являются серединами сторон четырёхугольника .

Сравнение с описанным четырёхугольником

Некоторые числовые характеристики описанных четырёхугольников и ортодиагональных четырёхугольников очень похожи, что видно в следующей таблице . Здесь длины сторон четырёхугольника равны a , b , c , d , радиусы описанных окружностей вокруг треугольников равны R 1 , R 2 , R 3 , R 4 , а высоты равны h 1 , h 2 , h 3 , h 4 (как на рисунке).

Описанный четырёхугольник Ортодиагональный четырёхугольник
a + c = b + d {\displaystyle a+c=b+d} a 2 + c 2 = b 2 + d 2 {\displaystyle a^{2}+c^{2}=b^{2}+d^{2}}
R 1 + R 3 = R 2 + R 4 {\displaystyle R_{1}+R_{3}=R_{2}+R_{4}} R 1 2 + R 3 2 = R 2 2 + R 4 2 {\displaystyle R_{1}^{2}+R_{3}^{2}=R_{2}^{2}+R_{4}^{2}}
1 h 1 + 1 h 3 = 1 h 2 + 1 h 4 {\displaystyle {\frac {1}{h_{1}}}+{\frac {1}{h_{3}}}={\frac {1}{h_{2}}}+{\frac {1}{h_{4}}}} 1 h 1 2 + 1 h 3 2 = 1 h 2 2 + 1 h 4 2 {\displaystyle {\frac {1}{h_{1}^{2}}}+{\frac {1}{h_{3}^{2}}}={\frac {1}{h_{2}^{2}}}+{\frac {1}{h_{4}^{2}}}}

Площадь

Площадь K ортодиагонального четырёхугольника равна половине произведения длин диагоналей p и q :

K = p ⋅ q 2 . {\displaystyle K={\frac {p\cdot q}{2}}.}

Обратно - любой выпуклый четырёхугольник, площадь которого равна половине произведения диагоналей, ортодиагонален . Ортодиагональный четырёхугольник имеет наибольшую площадь среди всех выпуклых четырёхугольников с данными диагоналями.

Другие свойства

Свойства ортодиагонального вписанного четырёхугольника

Радиус описанной окружности и площадь

D 2 = p 1 2 + p 2 2 + q 1 2 + q 2 2 = a 2 + c 2 = b 2 + d 2 {\displaystyle D^{2}=p_{1}^{2}+p_{2}^{2}+q_{1}^{2}+q_{2}^{2}=a^{2}+c^{2}=b^{2}+d^{2}} ,

где D - диаметр описанной окружности . Это выполняется для любых двух перпендикулярных хорд окружности . Из этой формулы вытекает выражение для радиуса описанной окружности

R = 1 2 p 1 2 + p 2 2 + q 1 2 + q 2 2 {\displaystyle R={\tfrac {1}{2}}{\sqrt {p_{1}^{2}+p_{2}^{2}+q_{1}^{2}+q_{2}^{2}}}}

или, в терминах сторон четырёхугольника,

R = 1 2 a 2 + c 2 = 1 2 b 2 + d 2 . {\displaystyle R={\tfrac {1}{2}}{\sqrt {a^{2}+c^{2}}}={\tfrac {1}{2}}{\sqrt {b^{2}+d^{2}}}.}

Отсюда также следует, что

a 2 + b 2 + c 2 + d 2 = 8 R 2 . {\displaystyle a^{2}+b^{2}+c^{2}+d^{2}=8R^{2}.}

Тогда, согласно формуле Эйлера , радиус описанной окружности может быть выражен в терминах диагоналей p и q и расстоянию x между серединами диагоналей

R = p 2 + q 2 + 4 x 2 8 . {\displaystyle R={\sqrt {\frac {p^{2}+q^{2}+4x^{2}}{8}}}.}

Формула для площади K вписанного ортодиагонального четырёхугольника в терминах четырёх сторон получается непосредственно, если скомбинировать теорему Птолемея

Литература

  • Martin Josefsson. Calculations concerning the tangent lengths and tangency chords of a tangential quadrilateral // Forum Geometricorum. - 2010. - Vol. 10. - P. 119–130.
  • Martin Josefsson. Characterizations of Orthodiagonal Quadrilaterals // Forum Geometricorum. - 2012. - Vol. 12. - P. 13–25.
  • Maria Flavia Mammana, Biagio Micale, Mario Pennisi. The Droz-Farny Circles of a Convex Quadrilateral // Forum Geometricorum. - 2011. - Vol. 11. - P. 109–119.
  • N. Altshiller-Court. College Geometry. - Dover Publications, 2007. (Переиздание книги 1952 года, Barnes & Noble)
  • Douglas W. Mitchell. The area of a quadrilateral // Mathematical Gazette. - 2009. - Vol. 93. - P. 306–309.

1 . Сумма диагоналей выпуклого четырёхугольника больше суммы его двух противоположных сторон.

2 . Если отрезки, соединяющие середины противоположных сторон четырёхугольника

а) равны, то диагонали четырёхугольника перпендикулярны;

б) перпендикулярны, то диагонали четырёхугольника равны.

3 . Биссектрисы углов при боковой стороне трапеции пересекаются на её средней линии.

4 . Стороны параллелограмма равны и . Тогда четырёхугольник, образованный пересечениями биссектрис углов паралле­лограмма, является прямоугольником, диагонали которого равны .

5 . Если сумма углов при одном из оснований трапеции равна 90°, то отрезок, соединяющий середины оснований трапеции, равен их полуразности.

6 . На сторонах АВ и AD параллелограмма ABCD взяты точки М и N так, что прямые МС и NC делят параллелограмм на три равновеликие части. Найдите MN, если BD=d.

7 . Отрезок прямой, параллельной основаниям трапеции, заключённый внутри трапеции, разбивается ее диагоналями на три части. Тогда отрезки, прилегающие к боковым сторонам, равны между собой.

8 . Через точку пересечения диагоналей трапеции с основаниями и проведена прямая, параллельная основаниям. Отрезок этой прямой, заключенный между боковыми сторонами трапеции, равен .

9 . Трапеция разделена прямой, параллельной её основаниям, равным и , на две равновеликие трапеции. Тогда отрезок этой прямой, заключённый между боковыми сторонами, равен .

10 . Если выполняется одно из следующих условий, то четыре точки А, В, С и D лежат на одной окружности.

а) CAD=CBD = 90°.

б) точки А и В лежат по одну сторону от прямой CD и угол CAD равен углу CBD.

в) прямые АС и BD пересекаются в точке О и О А ОС=ОВ OD.

11 . Прямая, соединяющая точку Р пересечения диагоналей четырехугольника ABCD с точкой Q пересечения прямых АВ и CD, делит сторону AD пополам. Тогда она делит пополам и сторону ВС.

12 . Каждая сторона выпуклого четырёхугольника поделена на три равные части. Соответствующие точки деления на противоположных сторонах соединены отрезками. Тогда эти отрезки делят друг друга на три равные части.

13 . Две прямые делят каждую из двух противоположных сторон выпуклого четырёхугольника на три равные части. Тогда между этими прямыми заключена треть площади четырёхугольника.

14 . Если в четырёхугольник можно вписать окружность, то отрезок, соединяющий точки, в которых вписанная окружность касается противоположных сторон четырёхугольника, проходит через точку пересечения диагоналей.

15 . Если суммы противоположных сторон четырёхугольника равны, то в такой четырёхугольник можно вписать окружность.

16. Свойства вписанного четырёхугольника со взаимно перпендикулярными диагоналями. Четырёхугольник ABCD вписан в окружность радиуса R. Его диагонали АС и BD взаимно перпендикулярны и пересекаются в точке Р. Тогда

а) медиана треугольника АРВ перпендикулярна стороне CD;

б) ломаная АОС делит четырёхугольник ABCD на две равновеликие фигуры;

в) АВ 2 +CD 2 =4R 2 ;

г) АР 2 +ВР 2 +СР 2 +DP 2 = 4R 2 и АВ 2 +ВС 2 +CD 2 +AD 2 =8R 2 ;

д) расстояние от центра окружности до стороны четырёхугольника вдвое меньше противоположной стороны.

е) если перпендикуляры, опущенные на сторону AD из вершин В и С, пересекают диагонали АС и BD в точках Е и F, то BCFE - ромб;

ж) четырёхугольник, вершины которого - проекции точки Р на стороны четырёхугольника ABCD, - и вписанный, и описанный;

з) четырёхугольник, образованный касательными к описанной окружности четырёхугольника ABCD, проведёнными в его вершинах, можно вписать в окружность.

17 . Если a, b, c, d - последовательные стороны четырёхугольника, S - его площадь, то , причем равенство имеет место только для вписанного четырёхугольника, диагонали которого взаимно перпендикулярны.

18 . Формула Брахмагупты. Если стороны вписанного четырехугольника равны a, b, с и d, то его площадь S может быть вычислена по формуле ,

где - полупериметр четырехугольника.

19 . Если четырёхугольник со сторонами а , b, с, d можно вписать и около него можно описать окружность, то его площадь равна .

20 . Точка Р расположена внутри квадрата ABCD, причем угол PAB равен углу РВА и равен 15°. Тогда треугольник DPC - равносторонний.

21 . Если для вписанного четырёхугольника ABCD выполнено равенство CD=AD+ВС, то биссектрисы его углов А и В пересекаются на стороне CD.

22 . Продолжения противоположных сторон АВ и CD вписанного четырёхугольника ABCD пересекаются в точке М, а сторон AD и ВС - в точке N. Тогда

а) биссектрисы углов AMD и DNC взаимно перпендикулярны;

б) прямые МQ и NQ пересекают стороны четырёхугольника в вер­шинах ромба;

в) точка пересечения Q этих биссектрис лежит на отрезке, соеди­няющем середины диагоналей четырёхугольника ABCD.

23 . Теорема Птолемея. Сумма произведений двух пар противопо­ложных сторон вписанного четырёхугольника равна произведению его диагоналей.

24 . Теорема Ньютона. Во всяком описанном четырёхугольнике середины диагоналей и центр вписанной окружности расположены на одной прямой.

25 . Теорема Монжа. Прямые, проведённые через середины сторон вписанного четырёхугольника перпендикулярно противоположным сторонам, пересекаются в одной точке.

27 . Четыре круга, построенных на сторонах выпуклого четырёхугольника как на диаметрах, покрывают весь четырёхугольник.

29 . Два противоположных угла выпуклого четырёхугольника - тупые. Тогда диагональ, соединяющая вершины этих углов, меньше другой диагонали.

30. Центры квадратов, построенных на сторонах параллелограмма вне его, сами образуют квадрат.

Четырехугольником ABCD называется фигура, которая состоит из четырех точек А, В, С, D по три, не лежащих на одной прямой, и четырех отрезков AB, BC, CD и AD, соединяющих эти точки.

На рисунках изображены четырехугольники.

Точки А, В, С и D называются вершинами четырехугольника , а отрезки AB, BC, CD и AD - сторонами . Вершины А и С, В и D называются противолежащими вершинами . Стороны AB и CD, BC и AD называются противолежащими сторонами .

Четырехугольники бывают выпуклые (на рисунке - левый) и невыпуклые (на рисунке - правый).

Каждая диагональ выпуклого четырехугольника разделяет его на два треугольника (диагональ АС разделяет ABCD на два треугольника ABC и ACD; диагональ BD - на BCD и BAD). У невыпуклого четырехугольника только одна из диагоналей разделяет его на два треугольника (диагональ AC разделяет ABCD на два треугольника ABC и ACD; диагональ BD - не разделяет).

Рассмотрим основные виды четырехугольников, их свойства, формулы площади:

Параллелограмм

Параллелограммом называется четырехугольник, у которого противоположные стороны попарно параллельны.

Свойства:

Признаки параллелограмма:

1. Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник - параллелограмм.
2. Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник – параллелограмм.
3. Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник – параллелограмм.

Площадь параллелограмма:

Трапеция

Трапецией называется четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны.

Основаниями называются параллельные стороны, а две другие стороны - боковыми сторонами .

Средней линией трапеции называется отрезок, соединяющий середины ее боковых сторон.

ТЕОРЕМА.

Средняя линия трапеции параллельна основаниям и равна их полусумме.

Площадь трапеции:

Ромб

Ромбом называется параллелограмм, у которого все стороны равны.

Свойства:

Площадь ромба:

Прямоугольник

Прямоугольником называется параллелограмм, у которого все углы равны.

Свойства:

Признак прямоугольника:

Если в параллелограмме диагонали равны, то этот параллелограмм – прямоугольник.

Площадь прямоугольника:

Квадрат

Квадратом называется прямоугольник, у которого все стороны равны.

Свойства :

Квадрат обладает всеми свойствами прямоугольника и ромба (прямоугольник является параллелограммом, поэтому и квадрат является параллелограммом, у которого все стороны равны, т.е. ромбом).

Площадь квадрата: