Свойства делимости суммы разности и произведения чисел. Теорема о делимости суммы, разности и произведения

Делимость чисел. Основные свойства делимости чисел (1ч).

Делимость - способность одного числа делиться на другое.

Пусть a и b – натуральные числа и a больше или равно b. Говорят, что a нацело делится на b, если существует натуральное число c, при умножении которого на b получается a

I. ОСНОВНЫЕ СВОЙСТВА ДЕЛИМОСТИ.

1) ДЕЛИМОСТЬ ПРОИЗВЕДЕНИЯ.

ЗАДАЧА. Делится ли произведение 369 * 555 на 37?

Число 555 делится на 37, т.к. 37 * 15 = 555, ТОГДА 369 * 555 = 369 (15 * 37) = (369 * 15) 37, т.е. число 369 * 555 делится на 37.

СВОЙСТВО I (признак делимости произведения).

Если одно из двух (или более чисел) делится на некоторое число, то и произведение этих чисел делится на это число.

СВОЙСТВО II. Если первое число делится на второе, а второе делится на третье, то и первое число делится на третье.

УПРАЖНЕНИЕ.

Не выполняя вычислений, укажите произведения, значения которых делятся на 5:

28 *25; 73 * 50; 34 * 12; 33 * 25; 36 * 7; 94 * 18; 13 * 45 * 8; 5 * 7 * 11.

Свойство II позволяет сделать два вывода:

1) Если число a делится на число b, то число a делится на каждый делитель числа b.

2) Если число a не делится хотя бы на один делитель числа b, то число a не делится на число b.

ПРИМЕРЫ.

1) Если число 612 делится на 12, то оно делится на любой из делителей этого числа: 1; 2; 3; 4; 6; 12.

2) Если число 725 не делится на 3, то оно не будет делиться ни на одно число, кратное 3: 6; 9; 12; 15; 18; 21 и т.д.

3) Нечетное число не имеет четных делителей.

На вопрос, как разделить произведение на число, отвечает следующее правило.

ПРАВИЛО ДЕЛЕНИЯ ПРОИЗВЕДЕНИЯ НА ЧИСЛО. Чтобы разделить произведение двух или нескольких чисел на заданное число, нужно на это число разделить только один множитель, а остальные оставить без изменения и затем выполнить умножение.

НАПРИМЕР:

1) (125*450):25 = (125:25)*450 = 5*450 = 2250;

2) (24*5*17):12 = (24:12)*5*17 = 2*5*17 = 170.

УПРАЖНЕНИЕ.

Раздели на 9 произведения:

28*9*35; 18*752*8000; 76*512*360; 155*810*34; 4500*7*398; 83*63000*98.

2) ДЕЛИМОСТЬ СУММЫ И РАЗНОСТИ.

ЗАДАЧА. Разделить число 7248 на 12.

Число 7200 делится на 12, потому что 7200 = 12*600; 48 тоже делится на 12, потому что 48 = 12*4. Из этого следует, что 7248 делится на 12, потому что на основании распределительного закона умножения можно записать:

7248 = 7200 + 48 = 12*600 + 12*4 = 12*(600 + 4) = 12*604.

Значит, 7248: 12 = 7200: 12 + 48: 12 = 600 + 4 = 604.

ЗАДАЧА. Разделить на 7 число 1323.

Рассуждая аналогично предыдущим рассуждениям, получаем:

1323 = 1400 – 77 = 7*200 – 7*11 = 7*(200 -11) = 7* 189.

Значит, 1323: 7 = 1400:7 – 77:7 = 200 – 11 = 189.
2) ДЕЛИМОСТЬ СУММЫ НА ЧИСЛО (РАЗНОСТИ НА ЧИСЛО).
Приведенные решения позволяют сделать несколько выводов.

СВОЙСТВО I (признак делимости суммы). Если каждое слагаемое суммы делится на заданное число, то и вся сумма делится на это число.

СВОЙСТВО II (признак делимости разности). Если и уменьшаемое, и вычитаемое делятся на заданное число, то и разность делится на это число.

ПРАВИЛО ДЕЛЕНИЯ СУММЫ НА ЧИСЛО. Чтобы сумму двух или нескольких слагаемых разделить на заданное число, можно разделить на это число каждое слагаемое и полученные результаты сложить.

ПРАВИЛО ДЕЛЕНИЯ РАЗНОСТИ НА ЧИСЛО. Чтобы разность разделить на заданное число, нужно на это число разделить и уменьшаемое, и вычитаемое и из первого произведения вычесть второе.

ЗАМЕЧАНИЕ.Если более одного слагаемого суммы не делятся на заданное число, то сумма может делиться и не делиться на это число.

УПРАЖНЕНИЕ.

Укажите выражения, которые кратны 7:

28+35; 44+12; 25+35*2; 14+23; 7*15+42; 12*63+8*19.

Для закрепления материала решить следующие задания.

1) Объясните, почему следующие произведения делятся на 12:

12*48; 12*120; 120*51; 24*17; 11*36; 13*48.

2) Не вычисляя произведения, установите, делится ли оно на заданное число:

а) 508*12 на 3;

б) 85*3719 на 5;

в) 2510*74 на 37;

г) 45*26*36 на 15;

д) 210*29 на 3 и на 29;

е)3800*44*18 на 11, 100 и 9?

3)Подберите три значения x так, чтобы произведение: а) 3x делилось на 5;

б) 12x делилось на 7; в) 9x делилось на 6;

г) 8x делилось на 14.

4)Представляя число в виде суммы, докажите, что:

а) 123123 делится на 123;

б)111333 делится на 111.

2.Задания для самостоятельного решения.
Задание 1. Используя свойства делимости и данные о делимости на число к каждого слагаемого, определите, делится ли на к сумма или произведение.


1 число

2 число

3 число

Сумма

Произведение

д

д

д

н

д

д

д

н

д

д

д

н

н

н

д

н

д

н

д

н

н

н

н

н

Решение.


1 число

2 число

3 число

Сумма

Произведение

д

д

д

д

д

н

д

д

н

д

д

н

д

н

д

д

д

н

н

д

н

н

д

Может делиться,

может не делиться


д

н

д

н

Может делиться,

может не делиться


д

д

н

н

Может делиться,

может не делиться


д

н

н

н

Может делиться,

может не делиться


н

Задание 2. Придумайте по два примера на каждое свойство делимости.
Задание 3. Укажите, какие из следующих утверждений ложные.

А) Если слагаемые не делятся на какое-то число, то и сумма не делится на это число.

Б) Если произведение двух чисел делится на какое-либо число, то хотя бы один из множителей делится на это число.

В) Если множители не делятся на какое-нибудь число, то и произведение не делится на это число.

Г) Если разность делится на какое-нибудь число, то и уменьшаемое, и вычитаемое делится на это число.

Решение.

А) Ложное. Пример: 7+3 = 10; 7 и 3 не делятся на 5, а 10 делится на 5.

Б) Ложное. Пример: 6  10 = 60; 60 делится на 15, а ни 6, ни 10 не делятся.

В) Ложное. Пример: 6  10 = 60; ни 6, ни 10 не делятся на 15, а 60 делится на 15.

Г) Ложное. Пример: 23 - 21 = 2. Разность 2 делится на 2, а 23 и 21 на 2 не делятся.


    1. Простые и составные числа (7ч.)
Должно быть, одним из первых свойств чисел, открытых человеком, было то, что некоторые из них могут быть разложены на два или более множителя, например,

6 = 2 3, 9 = 3 3, 30 = 2 15 = 3 10,

в то время как другие, например,

не могут быть разложены на множители подобным образом. Давайте вспомним, что вообще, когда число

c = a b (1.1)

является произведением двух чисел a и b , то мы называем а и b множителями или делителями числа с . Каждое число имеет тривиальное разложение на множители

с = 1 с = с 1. (1.2)

Соответственно мы называем числа 1 и с тривиальными делителями числа с .

Любое число с > 1, у которого существует нетривиальное разложение на множители, называется составным . Если число с имеет только тривиальное разложение на множители (1.2), то оно называется простым . Среди первых 100 чисел простыми являются следующие 25 чисел:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

Все остальные числа, кроме 1, являются составными. Мы можем сформулировать следующее утверждение:

Теорема 1.1. Любое целое число с> 1 является, либо простым, либо имеет простой множитель.

Доказательство. Если с не является простым, числом, то у него есть наименьший нетривиальный множитель р . Тогда р – простое число, так как если бы р – было составным, то число с имело бы ещё меньший множитель.

Теперь мы подошли к нашей первой важной задаче в теории чисел: как определить, является ли произвольное число простым или нет, и в случае, если оно составное, то как найти какойлибо его нетривиальный делитель?

Первое, что может прийти в голову, – это попытаться разделить данное число с на все числа, меньшие его. Но надо признать, что этот способ мало удовлетворителен. Согласно теореме 2.1.1 достаточно делить на все простые числа, меньшие √с . Но мы можем значительно упростить задачу, заметив, что при разложении на множители (1.1) оба множителя а и b не могут быть больше, чем c , так как в противном случае мы получили бы

ab > √с с ,

что невозможно. Таким образом, чтобы узнать, имеет ли число с делитель, достаточно проверить, делится ли число с на простые числа, не превосходящие – √с.

Пример 1. Если с = 91, то √с = 9….; проверив простые числа 2, 3, 5, 7, находим, что 91 =7 13.

Пример 2. Если с =1973, то находим, что √с = 44…. Так как ни одно из простых чисел до 43 не делит с , то это число является простым.

Очевидно, что для больших чисел этот метод может быть очень трудоемким. Однако здесь, как и при многих других вычислениях в теории чисел, можно использовать современные методы. Довольно просто запрограммировать на ЭВМ деление данного числа с на все целые числа до √с и печатание тех из них, которые не имеют остатка, т. е. тех, которые делят с .

Другим очень простым методом является применение таблиц простых чисел, т. е. использование простых чисел уже найденных другими. За последние 200 лет было составлено и издано много таблиц простых чисел. Наиболее обширной из них является таблица Д. X. Лемера, содержащая все простые числа до 10 000 000.

Система задач 3.1.

1. Какие из следующих чисел являются простыми: а) год вашего рождения; б) текущий год; в) номер вашего дома.

2. Найдите простое число, следующее за простым числом 1973.

3. Заметим, что числа от 90 до 96 включительно являются семью последовательными составными числами; найдите девять последовательных составных чисел.

4. Биографическая миниатюра. Д. X. Лемер.

Отношение делимости и его свойства

Делимость натуральных чисел

Как известно, вычитание и деление на множестве натуральных чисел выполнимо не всегда. Вопрос о существовании разности натуральных чисел а и b решается просто - достаточно установить (по записи чисел), что b < а. Для деления такого общего и простого признака нет. Поэтому в математической науке с давних пор пытались найти такие правила, которые позволили бы по записи числа а узнавать, делится оно на число b или нет, не выполняя непосредственного деления а на b. В результате этих поисков были открыты не только некоторые признаки делимости, но и другие важные свойства чисел; познакомимся с некоторыми из них.

В начальных курсах математики делимость натуральных чисел, как правило, не изучается, но многие факты из этого раздела математики неявно используются. Например, признак делимости суммы, разности и произведения на число тесно связаны с правилами деления суммы, разности и произведения на число, изучаемыми в начальных классах. В ряде курсов изучаются признаки делимости чисел на 2, 3, 5 и другие.

Вообще знания о делимости натуральных чисел расширяют представления о множестве натуральных чисел, позволяют глубже усвоить материал, связанный с делением натуральных чисел, применять полученные ранее знания о способах доказательства, о свойствах отношений и др.

Отношение делимости и его свойства

Определение. Пусть даны натуральные числа а и b. Говорят, что число а делится на число b, если существует такое натуральное число q, что a - bq.

В этом случае число b называют делителем числа а, а число а - кратным числа b.

Например, 24 делится на 8, так как существует такое q = 3, что 24 = 8·3. Можно сказать иначе: 8 - это делитель числа 24, а 24 есть кратное числа 8.

В том случае, когда а делится на b, пишут: а b. Эту запись часто читают и так: «а кратно b».

Заметим, что понятие «делитель данного числа» следует отличать от понятия «делитель», обозначающего то число, на которое делят. Например, если 18 делят на 5, то число 5-делитель, но 5 не является делителем числа 18. Если 18 делят на 6, то в этом случае понятия «делитель» и «делитель данного числа» совпадают.

Из определения отношения делимости и равенства а = 1·а, справедливого для любого натурального а, вытекает, что 1 является делителем любого натурального числа.

Выясним, сколько вообще делителей может быть у натурального числа а. Сначала рассмотрим следующую теорему.

Теорема 1. Делитель b данного числа а не превышает этого числа, т.е. если a b, тo b≤a.

Доказательство. Так как а b, то существует такое q N, что a=bq и, значит, a-b = bq-b = b· (q- 1). Поскольку а N, то q≥l. Тогда b· (q- 1) ≥0 и, следовательно, b≤a.

Из данной теоремы следует, что множество делителей данного числа конечно . Назовем, например, все делители числа 36. Они образуют конечное множество {1, 2, 3,4, 6,9, 12, 18, 36}.

В зависимости от числа делителей среди натуральных чисел различают простые и составные числа.

Определение. Простым числом называется такое натуральное число, которое имеет только два делителя - единицу и само это число.

Например, число 13 - простое, поскольку у него только два делителя: 1 и 13.

Определение. Составным числом называется такое натуральное число, которое имеет более двух делителей.

Так число 4 составное, у него три делителя: 1, 2 и 4.

Число 1 не является ни простым, ни составным числом в связи с тем, что оно имеет только один делитель.

Чисел, кратных данному числу, можно назвать как угодно много, - их бесконечное множество. Так, числа, кратные 4, образуют бесконечный ряд: 4, 8, 12, 16, 20, 24, ..., и все они могут быть получены по формуле а = 4q, где q принимает значения 1, 2, 3,....

Нам известно, что отношение делимости обладает рядом свойств, в частности, оно рефлексивно, антисимметрично и транзитивно. Теперь, имея определение отношения делимости, мы можем доказать эти и другие его свойства.

Теорема 2. Отношение делимости рефлексивно, т.е. любое натуральное число делится само на себя.

Доказательство . Для любого натурального а справедливо равенство а = а·1. Так как 1 N, то, по определению отношения делимости, а а.

Теорема 3. Отношение делимости антисимметрично, т.е.

если a b и а≠b, то .

Доказательство . Предположим противное, т.е. что b а. Но тогда а ≤ b, согласно теореме, рассмотренной выше.

По условию a b и а≠b. Тогда, по той же теореме, b≤а.

Неравенства а ≤b и b ≤а будут справедливы лишь тогда, когда а=b, что противоречит условию теоремы. Следовательно, наше предположение неверное и поэтому если a b и а≠b, то .

Теорема 4. Отношение делимости транзитивно, т.е. если a b и b с, то а с.

Доказательство . Так как a b, то существует такое натуральное число q, что a - bq, а так как b с, то существует такое натуральное число р, что b= ср. Но тогда имеем: a=bq = (cp)q = c(pq). Число pq - натуральное. Значит, по определению отношения делимости, а с.

Теорема 5 (признак делимости суммы). Если каждое из натуральных чисел а 1 , а 2 , ... , а n делится на натуральное число b, то и их сумма а 1 +а 2+ ...+ а n делится на это число.

Доказательство . Так как а 1 b, то существует такое натуральное число q 1 , что а 1= bq 1 . Так как a 2 b, то существует такое натуральное число q 2 , что а 2 = bq 2 . Продолжая рассуждения, получим, что если а n b, то существует такое натуральное число q n , что а n = bq n . Эти равенства позволяют преобразовать сумму а 1 +а 2 + ... + а n в сумму вида bq 1 + bq 2 + ... + bq n . Вынесем за скобки общий множитель b, а получившееся в скобках натуральное число q 1 + q 2 + ... + q n обозначим буквой q. Тогда а 1 + а 2 + ... + a n = b(g 1 + q 2 + ... + q n)= bq, т.е. сумма а 1 + а 2 + ... + а n оказалась представленной в виде произведения числа b и некоторого натурального числа q. А это значит, что сумма а 1 + а 2 + ... + a n делится на b, что и требовалось доказать.

Например, не производя вычислений, можно сказать, что сумма 175 + 360 + 915 делится на 5, так как на 5 делится каждое слагаемое этой суммы.

Теорема 6 (признак делимости разности). Если числа a 1 и а 2 делятся на b и а 1 > а 2 , то их разность а 1 - а 2 делится на b.

Доказательство этой теоремы аналогично доказательству признака делимости суммы.

Теорема 7 (признак делимости произведения). Если число а делится на b, то произведение вида ах, где х N, делится на b.



Доказательство . Так как а b, то существует такое натуральное число q, что а = bq. Умножим обе части этого равенства на натуральное число х. Тогда ах = (bq)x, откуда на основании свойства ассоциативности умножения (bq)x – b(qx) и, значит, ах = b(qx), где qx - натуральное число. Согласно определению отношения делимости ах b, что и требовалось доказать.

Из доказанной теоремы следует, что если один из множителей произведения делится на натуральное число b, то и все произведение делится на b.

Например, произведение 24 – 976 - 305 делится на 12, так как на 12 делится множитель 24.

Рассмотрим еще три теоремы, связанные с делимостью суммы и произведения, которые часто используются при решении задач на делимость.

Теорема 8. Если в сумме одно слагаемое не делится на число b, а все остальные слагаемые делятся на число b, то вся сумма на число b не делится.

Доказательство . Пусть s = а 1 + а 2 + ... + a n + с и известно,

что а 1 b, а 2 b ... a n b, но . Докажем, что тогда .

Предположим противное, т.е. пусть s b. Преобразуем сумму s к виду с = s - (а 1 + а 2 + ... + a n). Так как s b по предположению, (а 1 + а 2 + ... + a n) b согласно признаку делимости суммы, то по теореме о делимости разности с b. Пришли к противоречию с тем, что дано. Следовательно, .

Например, сумма 34 + 125 + 376 + 1024 на 2 не делится, так как 34 2, 376 2,124 2, но .

Теорема 9. Если в произведении ab множитель а делится на натуральное число m, а множитель b делится на натуральное число n, то ab делится на mn.

Справедливость этого утверждения вытекает из теоремы о делимости произведения.

Теорема 10. Если произведение ас делится на произведение bс, причем с - натуральное число, то и я делится на b.

Доказательство . Так как ас делится на bс, то существует такое натуральное число q, что ас = (bc)q, откуда ас = (bq)c и, следовательно, а =bq, т.е. а b.

Признаки делимости

Рассмотренные в п. 88 свойства отношения делимости позволяют доказать известные признаки делимости чисел, записанных в десятичной системе счисления, на 2, 3,4, 5, 9.

Признаки делимости позволяют установить по записи числа делится ли оно на другое, не выполняя деления.

Теорема 11 (признак делимости на 2). Для того чтобы число х делилось на 2, необходимо и достаточно, чтобы его десятичная запись оканчивалась одной из цифр 0, 2, 4, 6, 8.

Доказательство . Пусть число х записано в десятичной системе счисления, т.е. х = а n ·10 n + a n-1 ·10 n-1 + ... + а 1 ·10 + а 0 , где а n , a n-1 ,..., а 1 , принимают значения 0, 1,2, 3, 4, 5, 6, 7, 8, 9, а n ≠ 0 и а 0 принимает значения 0,2,4,6,8. Докажем, что тогда х 2.

Так как 10 2, то 10 2 2, 10 3 2, ..., 10 n 2 и, значит, (а n ·10 n + a n-1 ·10 n-1 + ... + а 1 ·10) 2. По условию а 0 тоже делится на 2, и поэтому число х можно рассматривать как сумму двух слагаемых, каждое из которых делится на 2. Следовательно, согласно признаку делимости суммы, число х делится на 2.

Докажем обратное: если число х делится на 2, то его десятичная запись оканчивается одной из цифр 0, 2,4, 6, 8.

Запишем равенство х = а n ·10 n + a n-1 ·10 n-1 + ... + а 1 ·10+а в таком виде:

а о = х-(а n ·10 n + a n-1 ·10 n-1 + ... + а 1 ·10). Но тогда, по теореме о делимости разности, а о 2, поскольку х 2 и (а n ·10 n + a n-1 ·10 n-1 + ... + а 1 ·10) 2. Чтобы однозначное число а 0 делилось на 2, оно должно принимать значения 0, 2, 4, 6, 8.

Теорема 12 (признак делимости на 5). Для того чтобы число х делилось на 5, необходимо и достаточно, чтобы его десятичная запись оканчивалась цифрой 0 или 5.

Доказательство этого признака аналогично доказательству признака делимости на 2.

Теорема 13 (признак делимости на 4). Для того чтобы число х делилось на 4, необходимо и достаточно, чтобы на 4 делилось двузначное число, образованное последними двумя цифрами десятичной записи числа х.

Доказательство . Пусть число х записано в десятичной системе счисления, т.е. х = а n ·10 n + a n-1 ·10 n-1 + ... + а 1 ·10 + а 0 и две последние цифры в этой записи образуют число, которое делится на 4. Докажем, что тогда х 4.

Так как 100 4, то (а n ·10 n + a n-1 ·10 n-1 + ... + а 1 ·10) 4. По условию, а 1 ·10 + а 0 (это и есть запись двузначного числа) также делится на 4. Поэтому число х можно рассматривать как сумму двух слагаемых, каждое из которых делится на 4. Следовательно, согласно признаку делимости суммы, и само число х делится на 4.

Докажем обратное, т.е. если число х делится на 4, то двузначное число, образованное последними цифрами его десятичной записи, тоже делится на 4.

Запишем равенство х = а n ·10 n + a n-1 ·10 n-1 + ... + а 1 ·10 + а 0 в таком виде: а 1 ·10 + а о = х- (а n ·10 n + a n-1 ·10 n-1 + ... + а 2 ·10 2). Так как х 4 и (а n ·10 n + a n-1 ·10 n-1 + ... + а 2 ·10 2) 4, то по теореме о делимости разности (а 1 ·10 + а о) 4 Но выражение а 1 ·10 + а 0 есть запись двузначного числа, образованного последними цифрами записи числа х.

  • выработка навыка решения заданий на применение свойств делимости суммы и произведения;
  • включение каждого учащегося в осознанную учебную деятельность;
  • Развивать творческие способности, математическую культуру, умение выявлять закономерности, обобщать.
  • Оборудование: доска, таблица, учебная литература, компьютер, проектор, экран.

    Ход урока

    1. Организационный момент

    2. Актуализация опорных знаний

    Математический диктант

    1 вариант 2 вариант

    а) если число а делится на 6, то оно делится на 12*;

    б) если число а не делится на 6, то оно не делится на 12

    1. Какие из высказываний верные:

    а) если число а делится на 12, то оно делится на 6;

    б) если число а не делится на 12, то оно не делится на 6

    а) любое число, кратное 90

    2. Пусть F – множество чисел, кратных 33. Принадлежит ли множеству F:

    а) любое число, кратное 11

    3. Найдите пересечения:

    а) множества четных чисел и множества чисел, кратных 4

    3. Найдите пересечения:

    а) множества чисел, кратных 3, и множества чисел, кратных 7

    3. Усвоение новых знаний

    Учащиеся делятся на 4 группы. Каждая группа изучает одно из свойств, доказательство этого свойства.

    Рассмотрим некоторые свойства делимости суммы и произведения.

    1. Если в сумме целых чисел каждое слагаемое делится на некоторое число, то и сумма делится на это число.

    Доказательство проведем для трех слагаемых. Если числа a, b , и c делятся на p, то a=pk, b=pm, c=pn, где k,m и n – целые числа. Тогда

    a+b+c=pk+pm+pn=p(k+m+n),

    и так как k +m+n – целое число, то a+b+c делится на p.

    В случае произвольного числа слагаемых прием доказательства остается тем же. Очевидно, что обратное утверждение неверно.

    2. Если два целых числа делятся на некоторое число, то их разность делится на это число.

    Это свойство следует из предыдущего, так как разность a-b всегда можно представить в виде суммы a+(-b) .

    3. Если в сумме целых чисел все слагаемые, кроме одного делятся на некоторое число, то сумма не делится на это число.

    Пусть числа a и b делятся на p, а число c не делится на p. Докажем, что сумма a+b+c не делится p. Предположим противное: пусть a+b+c делится на p. Тогда в разности (a+b+c)-(a+b) уменьшаемое делится на p по предположению, а вычитаемое делится на p по свойству 1, и поэтому по свойству 2 разность делится на p. Однако эта разность равна c и на p по условию не делится. Мы пришли к противоречию. Следовательно, сделанное нами предположение неверно и сумма a+b+c делится на р, что и требовалось доказать.

    Заметим, что так как разность a-b можно рассматривать как сумму a+(-b), то доказанные свойства суммы относятся к любой алгебраической сумме чисел.

    4. Если в произведении целых чисел один из множителей делится на некоторое число, то произведение делится на это число.

    Если а делится на с, то a=ck, где k –целое число. Тогда ab=(ck)b т.е ab=c(kb), причем kb – целое число, так как произведение целых чисел является целым числом. Значит ab делится на с.

    При решении задач на делимость часто бывают полезными свойства, связанные с последовательным расположением целых чисел. Например:

    Одно из п последовательных целых чисел делится на п;

    Одно из двух последовательных четных чисел делится на 4;

    Произведение трех последовательных целых чисел делится на 6;

    Произведение двух последовательных четных чисел делится на 8.

    Решение задач с применением свойств делимости суммы и произведения.

    Пример 1

    Докажите, что сумма 333 555 + 555 333 делится на 37.

    333 555 + 555 333 = (3*111) 555 +(5*111) 333 = 111*(3 555 *111 554 + 5 333 *111 332). Так как 111 делится на 37, то данное выражение делится на 37.

    Пример 2

    Выясним, принадлежит ли графику уравнения 15х + 25 y= 114 хотя бы одна точка, координатами которой являются целые числа.

    Допустим, что график проходит через точку М (а; в), где а и в целые числа. Тогда верным является равенство 15а + 25в =114. В левой части этого равенства записана сумма, которая делится на 5, так как каждое слагаемое 15а и 25в делятся на 5. ТО число 114 на 5 не делится. Полученное противоречие показывает, что предположение неверно и на графике уравнения 15х + 25y = 114 нет ни одной точки с целочисленными координатами.

    Пример 3

    Выясним, может ли целое число а, не равное нулю и не являющееся делителем 240, быть корнем уравнения 17х 3 –10х 2 -6х + 240 =0.

    Допустим, что а – целый корень уравнения. Тогда верно равенство

    17а 3 – 10а 2 – 6а + 240 =0.

    Левая часть представляет собой сумму, в которой каждое слагаемое, кроме одного, делится на а, и поэтому эта сумма не делится на а. Правая часть этого равенства делится на а, так как 0 делится на любое число, отличное от нуля. Полученное противоречие показывает, что предположение неверно и число а не может быть корнем данного уравнения.

    Пример 4

    Докажем, что если n - простое число, большее чем 3, то разность n 2 - 1 делится на 24.

    Имеем n 2 - 1 =(n-1)(n+1) . Из трех последовательных чисел n-1, n , n+1 хотя бы одно делится на 3. Однако число n на 3 не делится, значит, на 3 делится одно из чисел n-1 и n+1и, следовательно, их произведение (n-1)(n+1). Из условия ясно, что число n нечетное. Значит, n-1 и n+1 – два последовательных четных числа. Одно из таких чисел делится на 2, а другое - на 4, и поэтому их произведение делится на 8.

    Итак, разность n 2 -1, где n – простое число и n>3, делится на 3 и на 8. А так как 3 и 8 взаимно простые, то эта разность делится на 24.

    Решение №108, 110, 111(а),116(а), 119, 123.

    4. Подведение итогов

    5. Домашнее задание

    • Если каждое из натуральных чисел a1, a2, ... , an b , то их сумма a1 + a 2 + ... + an делится на это число.
    • Если в сумме одно слагаемое не делится на число b , а все остальные слагаемые делятся на число b , то вся сумма на число b не делится.
    • Если числа a1 и a2 делятся на b и a1 ≥ a2 , то их разность a1 – a 2 делится на b .
    • Если в произведении a·b множитель a делится на натуральное число m , а множитель b делится на натуральное число n , то a·b делится на m·n .
    • Если произведение a·c делится на произведение b·c , причем c – натуральное число, то и a делится на b .

    Задача 19. Не производя вычислений, установите, делятся ли на 4 выражения: а) 132 + 360 + 536; б) 540 - 332; в) 2512·127.


    Решение . а) так как на 4 делится каждое слагаемое, то сумма 132 + 360 + 536 делится на 4; б) так как уменьшаемое 540 делится на 4 и вычитаемое 332 делится на 4, то и разность 540 - 332 делится на 4; в) так как число 2512 делится на 4, то и произведение 2512·127 делится на 4.


    Задача 20. Доказать, что произведение двух последовательных натуральных чисел n и n + 1 делится на 2.


    Решение. n·(n + 1) делится на 2, надо рассмотреть две возможности:


    1) n делится на 2, т.е. n = 2k . Тогда произведение n·(n + 1) будет иметь вид: 2 k·(2k + 1) . Это произведение делится на 2, так как первый множитель в нем делится на 2;


    2) n не делится на 2, т.е. n = 2k + 1 . Тогда произведение n·(n + 1) будет иметь вид: (2 k + 1)·(2k + 2) . Это произведение делится на 2, так как второй множитель делится на 2.


    Задача 21. Доказать, что произведение трех последовательных натуральных чисел n, n + 1, n + 2 делится на 3.


    Решение. Чтобы показать, что произведение n·(n + 1)·(n + 2) делится на 3, надо рассмотреть три возможности:


    1) n делится на 3, т.е. n = 3k . Тогда n·(n + 1)·(n + 2) будет иметь вид: 3 k·(3k + 1)·(3k + 2) . Это произведение делится на 3, так как первый множитель в нем делится на 3;


    2) n при делении на 3 дает в остатке 1, т.е. n = 3k + 1 . Тогда произведение n·(n + 1)·(n + 2) будет иметь вид: (3 k + 1)·(3k + 2)·(3k + 3) . Это произведение делится на 3, т.к. третий множитель делится на 3;


    3) n при делении на 3 дает в остатке 2, т.е. n = 3k + 2. Тогда произведение n·(n + 1)·(n + 2) будет иметь вид: (3 k + 2)·(3k + 3)·(3k + 4) . Это произведение делится на 3, т.к. второй множитель в нем делится на 3.


    На основании задач 20 и 21 можно сформулировать утверждение, что произведение трех последовательных натуральных чисел делится на 6.


    Задача 22. Доказать, что произведение четырех последовательных натуральных чисел n, n + 1, n + 2, n + 3 делится на 4.


    Решение. Чтобы показать, что произведение n·(n + 1)·(n + 2)·(n + 3) делится на 4 надо рассмотреть четыре возможности:


    1) n делится на 4, т.е. n = 4k . Тогда n·(n + 1)·(n + 2)·(n + 3) будет иметь вид: 4k·(4k + 1)·(4k + 2)·(4k + 3) . Это произведение делится на 4, так как первый множитель в нем делится на 4;


    2) n при делении на 4 дает в остатке 1, т.е. n = 4k + 1 . Тогда n·(n + 1)·(n + 2)·(n + 3) будет иметь вид: (4 k + 1)·(4k + 2)·(4k + 3)·(4k + 4) . Это произведение делится на 4, так как последний множитель делится на 4;


    3) n при делении на 4 дает в остатке 2, т.е. n = 4k + 2 . Тогда n·(n + 1)·(n + 2)·(n + 3) будет иметь вид: (4 k + 2)·(4k + 3)·(4 k+ 4)·(4k + 5) . Это произведение делится на 4, так как третий множитель делится на 4;


    4) n при делении на 4 дает в остатке 3, т.е. n= 4k + 3 . Тогда n·(n + 1)·(n + 2)·(n + 3) будет иметь вид: (4 k + 3)·(4k + 4)·(4k + 5)·(4k + 6) . Это произведение делится на 4, так как второй множитель делится на 4.


    Поскольку произведение n·(n + 1)·(n + 2)·(n + 3) содержит произведение двух, трех последовательных натуральных чисел, то оно делится на 2 и на 3.


    Задача 23. Доказать, что при любом натуральном значении n .


    Решение . Преобразуем данное выражение: (2 n - 1)3 - (2n - 1)= = (2n - 1)·(4n2 - 4n + 1 - 1) = 4n·(n - 1)·(2n - 1) . Это произведение делится на 4. Кроме того, произведение двух последовательных натуральных чисел n·(n - 1) делится на 2. Таким образом, произведение 4 n·(n - 1)·(2n - 1) делится на 8. Осталось показать, что это произведение делится на 3. Для этого рассмотрим три возможности:


    1) n делится на 3, т.е. n = 3k . Тогда произведение 4 n·(n - 1)·(2n - 1) будет иметь вид: 4 ·3 k·(3k - 1)·(6k - 1)


    2) n при делении на 3 дает в остатке 1, т.е. n = 3k + 1 . Тогда произведение 4 n·(n - 1)·(2n - 1) будет иметь вид: 4 ·(3 k + 1)·3k·(6k + 1) . Это произведение делится на 3;


    3) n при делении на 3 дает в остатке 2, т.е. n = 3k + 2 . Тогда произведение 4 n·(n - 1) ·(2 n - 1) будет иметь вид: 4 ·(3 k + 2)·(3k + 2 -1) · (6 k + 4 - 1)= 4 ·(3 k + 2) ·(3 k +1) ·(6 k+3). Это произведение делится на 3, т.к. последний множитель в нем делится на 3.

    Так как 8 и 3 - взаимно , то , т.е. на 24, что и требовалось доказать.


    Задача 24. Доказать, что разность любого трехзначного числа и трехзначного, записанного теми же цифрами, но в обратном порядке делится на 9.


    Решение. Представим любое трехзначное число в виде . Нам надо доказать, что . Преобразуем выражение

    Упражнения для самостоятельной работы


    1. Доказать, что произведение пяти последовательных натуральных чисел делится на 5.


    2. Доказать, что при любом натуральном n число n 3 + 5n делится на 6.


    3. Доказать, что при любом натуральном n число n 3 - n делится на 24.


    4. Доказать, что разность любого четырехзначного числа и четырехзначного числа, записанного теми же цифрами, но в обратном порядке, делится на 9.


    5. Доказать, что трехзначное число, записанное тремя одинаковыми цифрами, делится на 37.