Что такое биологический круговорот веществ? Круговорот биологический. Роль живых организмов в биологическом круговороте

Круговорот веществ в природе - важнейшее экологическое понятие.

На рис. представлен биологический цикл в сочетании с упрощенной схемой потока энергии. Вещества вовлечены в круговорот, а энергетический поток однонаправлен от растений, преобразующих энергию солнца в энергию химических связей, к животным, использующим эту энергию, и далее к микроорганизмам, разрушающим органические вещества.

Однонаправленный поток энергии приводит в движение круговорот веществ. Каждый химический элемент, совершая круговорот в экосистеме, попеременно переходит из органической формы в неорганическую и наоборот.

Рис. 1. Поток энергии и круговорот биогенных элементов в биосфере

Фотосинтез – создание органических веществ (глюкозы, крахмала, целлюлозы и др.) из углекислого газа и воды с участием хлорофилла под действием солнечной энергии:

6СО 2 + 12Н 2 О + hν (673 ккал) = С 6 Н 12 О 6 + 6О 2 + 6Н 2 О

Фотосинтез - процесс улавливания солнечной энергии фотосинтезирующими организмами и превращения ее в энергию биомассы.

Ежегодно растительный мир запасает свободной энергии в 10 раз выше потребляемого за год всем населением Земли количества энергии полезных ископаемых. Сами эти полезные ископае­мые (уголь, нефть и природный газ) тоже продукты фотосинтеза, происходившего миллионы лет назад.

Ежегодно при фотосинтезе усваивается 200 млрд. тонн углекислого газа и выделяется до 320 млрд. тонн кислорода. Весь углекислый газ атмосферы проходит через живое вещество за 6-7 лет.

В биосфере протекают также процессы разрушения органического вещества до простейших молекул: CO 2 , H 2 O, NH 3 . Распад органических соединений протекает в организмах животных, в растениях в процессе дыхания с образованием CO 2 и H 2 O.

Минерализация органических веществ, разложение отмершей органики до простых неорганических соединений происходит под действием микроорганизмов.

Противоположные процессы образования и разрушения органического вещества в биосфере образуют единый биологический кру­говорот атомов. В процессе минерализации органических соединений освобождается энергия, которая была поглощена при фотосинтезе. Она освобождается в виде тепла, а также в виде химической энергии.

Биологический круговорот представляет собой совокупность процессов поступления химических элементов в живые организмы, биосинтеза новых сложных соединений и возвращения элементов в почву, атмосферу и гидросферу.

Интенсивность биологического круговорота (БИК) определяется температурой окружающей среды и количеством воды. Биологический круговорот интенсивнее протекает во влажных тропических лесах, чем в тундре.

Наиболее важным результатом биологического круговорота веществ является образование на суше гумусового горизонта почв.

Биологический круговорот характеризуется следующими показателями.

Биомасса - масса живого вещества, накопленная к данному моменту времени (фито-, зоо-, микробиомасса).

Биомасса растений (фитомасса) - масса живых и отмерших растительных организмов.

Опад - количество органического вещества растений, отмерших на единице площади за единицу времени.

Прирост - биомасса, накопленная на единице площади за единицу времени.

Химический состав растений зависит от двух главных факторов:

1) экологического, - обстановки произрас­тания растений, - уровни содержания элементов в окружающей среде, формы нахождения, в том числе подвижные, доступные для растений;

2) генетического, в связи с особенностями происхождения вида растений.

В условиях загрязнения среды концентрация элементов в растениях определяется первым фактором. В фоновых (ненарушенных) ландшафтах важны оба фактора.

В зависимости от реакции на химический фактор среды (на содер­жание химических элементов) можно выделить 2 группы растений:

1) адаптированные к изменениям концентрации химических элементов;

2) не адаптированные к изменениям концентрации химических элементов.

Изменение концентраций химических элементов в среде у не адаптированных растений вызывает физиологические на­рушения, приводящие к заболеваниям; развитие растений угнетается, вид вымирает.

Некоторые виды растений оказываются хорошо приспособленными к перенесению высоких концентраций элементов. Это дикорастущие растения, длительно произрастающие в данной местности, которые в результате естественного отбора приобретают устойчивость к неблагоприятным условиям обитания.

Растения, концентрирующие химические элементы, называются концентраторами. Например: подсолнечник, картофель концентрируют калий, чай – алюминий, мхи – железо. Золото накапливают полынь, хвощ полевой, кукуруза, дуб.

Круговорот веществ в природе представляет собой совокупность повторяющихся процессов превращения или перемещения веществ, имеющую более или менее выраженный циклический характер.

Начнем с круговорота воды. Это сложный геофизический процесс, основными звеньями которого являются: испарение воды, перенос ее паров воздушными потоками, образование облаков и выпадение осадков, поверхностный и подземный сток вод в океан.

В этот геологический круговорот воды встраивается биологический (или биотический) круговорот. Растения всасывают воду из почвы, а затем испаряют ее (см. Транспирация). Часть поглощенной растениями воды идет на построение органических веществ, которые, окисляясь, снова образуют воду (см. Биологическое окисление). Любой живой организм поглощает и выделяет воду, используя при этом энергию, полученную зелеными растениями от солнечного света (см. Фотосинтез). Таким образом, именно излучаемая в виде света энергия Солнца «вращает колесо» круговорота воды, и не только воды, а и всех других веществ.

Рассмотрим круговорот азота. Азот Земли находится в основном в ее атмосфере. Некоторые микроорганизмы, как свободноживущие (например, цианобактерии, азотобактер), так и симбиотические (например, клубеньковые бактерии бобовых), способны поглощать азот из воздуха и фиксировать его в своем теле в виде азотсодержащих органических соединений, превращать молекулярный азот в аммиак, хорошо усваиваемый растениями. Из растений азот в составе органических соединений поступает в организмы животных и других гетеротрофов.

В конечных звеньях пищевых цепей органические вещества, попавшие в почву при разложении трупов и с выделениями организмов, служат пищей для бактерий и грибов. Определенные группы почвенных микроорганизмов (деструкторы) разлагают органические вещества до неорганических, которые могут усваиваться зелеными растениями. Так, органические соединения азота превращаются в почве в аммиак, который снова может быть усвоен растениями. Почвенные бактерии-хемосинтетики (см. Хемосинтез) окисляют аммиак до нитритов и нитратов, которые поступают с водой в растения и там восстанавливаются до аммиака. Есть в почве и микроорганизмы, превращающие аммиак в молекулярный азот, который поступает в атмосферу.

В местах, где выпадает мало осадков, нитраты, образующиеся из гуано - помета колониальных птиц, питающихся живущей в океане рыбой, накапливаются в виде залежей селитры (например, в Чили). Вновь в круговорот азота ее возвращает человек, используя селитру для удобрения полей.

Человек все активнее вмешивается в круговорот веществ. Например, осуществляется синтез сотен миллионов тонн азотных удобрений, но по своей интенсивности промышленная фиксация азота атмосферы уступает биологической и сопряжена с отравлением окружающей среды: излишки азотных удобрений атмосферные осадки смывают с полей в реки. Так они попадают в воду, потребляемую человеком. Оказалось, что нитраты не безвредны для человека - их излишек способствует образованию злокачественных опухолей. Кроме того, синтез азотных удобрений требует больших затрат энергии. Поэтому ученые интенсивно изучают механизм биологической фиксации атмосферного азота, чтобы разработать более эффективные пути обеспечения растений азотом (см. Азотфиксация).

Источником фосфора биосферы являются в основном апатиты, встречающиеся во многих горных породах. Организмы извлекают его из почв и водных растворов, включая в многочисленные фосфорсодержащие органические соединения. С гибелью организмов он возвращается в почву и илы морей, где может концентрироваться в виде отложений (гуано, отложения костей рыб и т. д.). Поскольку большинство почв содержит недостаточное количество фосфора, внесение фосфорных удобрений исключительно важно для получения высоких урожаев сельскохозяйственных культур.

Так же можно описать круговорот многих других элементов. Каждый из них имеет свои особенности, но важно подчеркнуть, что энергия для любого круговорота в конечном счете поступает от Солнца.

Круговорот веществ сложен, и элемент «течет» от соединения к соединению не по одному руслу, а по нескольким, которые разветвляются и снова сливаются, причем круговороты различных элементов взаимосвязаны.

Биологический круговорот лишь часть геологического, но его скорость в сотни тысяч и миллионы раз больше, поскольку все биологические превращения катализируются ферментами, которые в сотни тысяч и миллионы раз активнее неорганических катализаторов.

Другая особенность биологического круговорота - это очень сильное концентрирование биологически важных химических элементов, например фосфора, а иногда даже редкоземельных (например, иттрия в хвощах).

Биолбгический круговорот цикличен, потому что пищевые цепи имеют замкнутый характер. Это обеспечило возможность длительного существования жизни на Земле, поскольку в противном случае самые богатые запасы любого вещества были бы быстро исчерпаны.

Из-за активного вмешательства человека в процессы, происходящие в природе, возникла проблема ее охраны (см. Охрана природы).

Ряд веществ в результате геологических и космических процессов теряется, выходит из круговорота. Так, улетучивается с Земли в космическое пространство водород, образующийся при разложении воды. На дне океанов отлагаются биогенные карбонаты, выводя из круговорота углерод. А из космического пространства с солнечным ветром и метеоритами поступает на Землю углерод и ряд других элементов. При извержении вулканов из земных недр на поверхность выбрасываются углекислый газ, вода и другие соединения. Таким образом, круговорот веществ на Земле связан с глобальными геологическими, биологическими и астрономическими процессами, а также с сознательной деятельностью человечества.

БИОЛОГИЧЕСКИЙ КРУГОВОРОТ ВЕЩЕСТВ Поступление веществ из почвы и атмосферы в живые организмы с соответствующим изменением их химической формы, возвращение их в почву и атмосферу в процессе жизнедеятельности организмов и с посмертными остатками и повторное поступление в живые организмы после процессов деструкции и минерализации с помощью микроорганизмов

Словарь бизнес-терминов. Академик.ру . 2001 .

Смотреть что такое "БИОЛОГИЧЕСКИЙ КРУГОВОРОТ ВЕЩЕСТВ" в других словарях:

    БИОЛОГИЧЕСКИЙ КРУГОВОРОТ ВЕЩЕСТВ, или малый К.в. поступление веществ из почвы и атмосферы в живые организмы с соответствующим изменением их химической формы, возвращение их в почву и атмосферу в процессе жизнедеятельности организмов и с… … Экологический словарь

    Круговорот веществ малый, возникший одновременно с появлением жизни на Земле круговорот химических элементов и веществ, осуществляемый жизнедеятельностью организмов. Основную роль в биологическом круговороте играют первичные продуценты (зеленые… … Экологический словарь

    В природе, относительно повторяющиеся взаимосвязанные физические, химические и биологические процессы превращения и перемещения вещества в природе. До создания В. И. Вернадским биогеохимии и учения о биосфере в науке бытовало представление о… … Биологический энциклопедический словарь

    Многократно повторяющееся участие веществ в природных, процессах, протекающих в океане. Наиболее значителен биологический: повторное использование морскими организмами биогенных хим. компонентов (С, N, P, SiO2, CaCO3, a также Fe, Mn и др.),… … Геологическая энциклопедия

    Повторяющийся циклический процесс превращения и перемещения отдельных химических элементов и их соединений. Происходил в течение всей истории развития Земли и продолжается в настоящее время. Всегда имеет место определённое отклонение в составе и… … Географическая энциклопедия

    Круговорот веществ биологический - (биотический), биотический круговорот явление непрерывного относительно циклического, но неравномерного во времени и пространстве и сопровождающегося более или менее значительными потерями, закономерного перераспределения веществ, энергии и… … Концепции современного естествознания. Словарь основных терминов

    Схематическое представление прохождения азота через биосферу. Ключевым элементом цикла являются разные виды бактерий (англ.) Круговорот азота био … Википедия

    Циклические процессы перемещения и трансформации химических элементов в пределах биосферы, происходящие между ее (био)хорологическими подразделениями: биогеоценозами, ландшафтами и т.п. Ср. Биологический круговорот веществ и Геологический… … Экологический словарь

    См. Биологический круговорот веществ. Экологический словарь, 2001 … Экологический словарь

    Общая площадь планеты Земля составляет 510 млн. км2. На долю суши приходится 149 млн. км2, Мировой океан занимает 361 млн. км2. И суша и океан заселены растениями и животными. Разнообразие и тех и других очень велико. Ныне установлено… … Биологическая энциклопедия

Вещества поступают к живым организмам из почвы, воздуха, воды. Вода испаряется из океанов, поднимается к слоям атмосферы, образуя дождь. Зеленые растения пользуются поступившей в почву водой. Поддерживая свою жизнедеятельность, они одновременно выделяют необходимый для жизни кислород. В то же время, без воздействия кислорода не могли бы происходить процессы разложения и гниения растений. Как называется этот замкнутый круг, обеспечивающий возможность жизни на Земле, и в чем состоят его особенности?

Главное понятие экологии

Биологический круговорот - это обращение химических элементов, возникшее одновременно с зарождением жизни на нашей планете, и которое происходит при участии живых организмов.

Закономерности, присущие круговороту веществ, решают основные задачи поддержания жизни на Земле. Ведь запасы питательных веществ на всей поверхности Земли не безграничны, хотя и являются огромными. Если бы эти запасы только потреблялись живыми существами, то в один момент жизнь должна была бы подойти к своему концу. Ученый Р. Вильямс писал: «Единственный метод, который позволяет ограниченному количеству иметь свойство бесконечного, - это сделать так, чтобы оно вращалось по траектории замкнутой кривой линии». Сама жизнь распорядилась так, чтобы на Земле был использован этот метод. Органические вещества создаются зелеными растениями, а незеленые подвергают его разрушению.

В биологическом круговороте каждый вид живых существ занимает свое место. Основной парадокс жизни заключается в том, что она поддерживается при помощи процессов деструкции и постоянного распада. Сложные органические соединения рано или поздно разрушаются. Этот процесс сопровождается выделением энергии, потерей свойственной живому организму информации. Огромное значение в биологическом круговороте веществ и развитии жизни играют микроорганизмы - именно с их участием любая форма жизни включается в биотический круговорот.

Звенья биоцепочки

Микроорганизмы имеют два свойства, которые позволяют им занимать столь важное место в круге жизни. Во-первых, они очень быстро могут приспосабливаться к меняющимся условиям окружающей среды. Во-вторых, для пополнения запасов энергии они могут использовать самые разнообразные вещества, а также углерод. Такими свойствами не обладает ни один из высших организмов. Они существуют лишь как надстройка над фундаментальным основанием царства микроорганизмов.

Особи и виды различных биологических классов являются звеньями круговорота веществ. Они также взаимодействуют между собой при помощи различных типов связей. Круговорот веществ планетарного масштаба включает в себя частные биологические круговороты в природе. Они осуществляются, главным образом, по пищевым цепочкам.

Опасные обитатели домашней пыли

Немалую роль в биологическом круговороте играют и сапрофиты - постоянные «жители» домашней пыли. Они питаются разнообразными веществами, которые входят в состав домашней пыли. При этом сапрофиты выделяют довольно токсичные фекалии, которые провоцируют возникновение аллергии.

Кем же являются эти невидимые для человеческого глаза создания? Сапрофиты принадлежат к семейству паукообразных. Они сопровождают человека на протяжении всей жизни. Ведь пылевые клещи питаются домашней пылью, в состав которой также входит человеческая кожа. Ученые полагают, что когда-то сапрофиты были жителями птичьих гнезд, а затем «перебрались» в жилище человека.

Пылевые клещи, играющие большую роль в биологическом обороте, имеют очень малые размеры - от 0,1 до 0,5 мм. Но они настолько активны, что всего лишь за 4 месяца один пылевой клещ может отложить порядка 300 яиц. Один грамм домашней пыли может содержать несколько тысяч клещей. Невозможно представить, сколько пылевых клещей может быть в доме, ведь считается, что за один год в человеческом жилище может накапливаться до 40 кг пыли.

Круговорот в лесу

В лесу биологический круговорот обладает наибольшей мощностью по причине проникновения корней деревьев в глубины почвы. Первым звеном в этом обороте обычно считается так называемое ризосферное звено. Ризосферой называется тонкий (от 3 до 5 мм) слой почвы вокруг дерева. Почва вокруг корней дерева (или «ризосферная почва»), как правило, очень богата корневыми выделениями и различными микроорганизмами. Ризосферное звено представляет собой своеобразные ворота между живой природой и неживой.

Звено потребления находится в корнях, которые поглощают минеральные вещества из почвы. Некоторая часть веществ смывается осадками обратно в почву, однако большей частью возврат питательных веществ осуществляется во время двух процессов - опада и отпада.

Роль опада и отпада

Опад и отпад имеют разное значение в биологическом круговороте веществ. Опад включает в себя шишки деревьев, ветки, листья, остатки от травы. Исследователи не включают в опад деревья - они относятся к категории отпада. Разложение отпада может происходить в течение десятков лет. Иногда отпад может служить материалом для питания других древесных пород - но только по достижении определенной стадии разложения. Отпад содержит много веществ, относящихся к классу зольных. Они медленно поступают в почву и используются растениями для дальнейшей жизнедеятельности.

От чего зависит опад?

Опад имеет несколько иное значение в биологическом круговороте. В течение года весь его объем переходит в слой подстилки и подвергается полному разложению. Элементы золы гораздо быстрее поступают в биотический оборот. Однако фактически опад является частью биологического оборота уже когда листья находятся на дереве. Показатель опада зависит от многих факторов: климата, погоды в текущем и предыдущем годах, количества насекомых. В лесотундре она достигает нескольких центнеров, в лесах измеряется тоннами. Самое большое количество опада в лесах приходится на весну и осень. Различается этот показатель и в зависимости от года.

Что касается органического состава хвои и листьев, то в процессе круговорота они подвергаются одинаковым изменениям. В отличие от опада, зеленые листья обычно богаты фосфором, калием, азотом. Опад же, как правило, богат кальцием. На биологический круговорот большое влияние оказывают насекомые и животные. Например, листогрызущие насекомые могут значительно ускорить его. Однако самое большое влияние на скорость круговорота оказывают животные в процессе разложения опада. Личинки и черви поедают и измельчают опад, перемешивают с верхними слоями почвы.

Фотосинтез в природе

Растения для пополнения запасов энергии умеют использовать солнечный свет. Они делают это в два этапа. На первом этапе происходит улавливание света листьями; на втором энергия используется для процесса связывания углерода и образования органических веществ. Биологи называют зеленые растения автотрофами. Они являются основой для жизни на всей планете. Автотрофы имеют огромное значение в фотосинтезе и биологическом круговороте. Энергия солнечного света превращается ими в запасенную посредством образования углеводов. Самым главным из них является сахар глюкоза. Процесс этот получил название фотосинтеза. Живые организмы других классов могут получать доступ к солнечной энергии, употребляя в пищу растения. Таким образом появляется пищевая цепь, обеспечивающая круговорот веществ.

Закономерности фотосинтеза

Несмотря на важность процесса фотосинтеза, долгое время он оставался неизученным. Лишь в начале XX века английский ученый Фредерик Блэкман поставил несколько экспериментов, при помощи которых удалось установить этот процесс. Ученый выявил и некоторые закономерности фотосинтеза: оказалось, что он запускается при слабом освещении, постепенно усиливаясь с потоками света. Однако это происходит только до определенного уровня, после которого усиление света уже не ускоряет фотосинтез. Блэкман также установил, что постепенное повышение температуры при усилении освещения способствует фотосинтезу. Повышение температуры при слабом освещении не ускоряет этот процесс, как и усиление освещения при низкой температуре.

Процесс преобразования света в углеводы

Фотосинтез начинается с процесса попадания фотонов солнечного света в молекулы хлорофилла, расположенные в листьях растений. Именно хлорофилл придает растениям зеленый цвет. Улавливание энергии происходит в два этапа, которые биологи называют Фотосистема I и Фотосистема II. Интересно, что номера этих фотосистем отражают порядок их открытия учеными. Это одна из странностей в науке, так как вначале реакции происходят во второй фотосистеме, и лишь затем - в первой.

Фотон солнечного света сталкивается с 200-400 молекулами хлорофилла, находящимися в листе. При этом энергия резко возрастает и передается молекуле хлорофилла. Этот процесс сопровождается химической реакцией: хлорофилловая молекула теряет при этом два электрона (их, в свою очередь, принимает так называемый «акцептор электронов», другая молекула). А также при столкновении фотона с хлорофиллом происходит образование воды. Цикл, при котором солнечный свет превращается в углеводы, называется циклом Калвина. Значение фотосинтеза и биологического круговорота веществ нельзя недооценить - именно благодаря этим процессам на земле имеется кислород. Получаемые человеком полезные ископаемые - торф, нефть - также являются носителями запасенной в процессе фотосинтеза энергии.

Под биологическим круговоротом веществ понимают поступления веществ и химических элементов из почвы и атмосферы в живых организмов, образование в этих телах новых сложных соединений и их возвращения из организмов или продуктов их разложения в почве и атмосферы (рис. 22). Биологический круговорот веществ - сложный процесс взаимосвязи и взаимодействия живых организмов как между собой, так и с окружающей средой. Он состоит из циклов разной продолжительности, которые по-разному влияют на ландшафт. Различают сезонные, годовые, многолетние и вековые циклы биологического круговорота. Лучше выражены годовые циклы круговорота, которые состоят из потребления элементов питания отдельными организмами или их формациями, а также постепенного возвращения вновь органических веществ в окружающую среду.

Главным источником энергии биологического круговорота является солнечная энергия. Благодаря солнечному излучению в биосфере осуществляется один из самых грандиозных процессов - фотосинтез. Растения поглощают энергию солнечного света, с ее помощью усваивают в своих листьях углекислоту и воду, раскладывая их на простые химические элементы. При этом углерод и водород растения используют на построение своих органических тел, а кислород, главным образом, выделяется ими в атмосферу. При участии кислорода происходит один из важнейших жизненных процессов - дыхание. Не меньшее значение имеет и другой процесс, в котором участвует кислород, - тление и гниение растений, расписание мертвых животных. При этом сложные органические соединения превращаются в более простые (углекислый газ, воду, азот таш.) Так завершается биологический круговорот веществ. Элементы, которые высвободились в процессе круговорота веществ, служат исходным материалом для следующего цикла круговорота.

Рис. 22.

Общее количество органического вещества в экосистемах определяется, главным образом, природными особенностями территории. Максимум накопления биомассы наблюдается в лесных биоценозах (табл. 9). Во влажных тропических лесах эта величина достигает 5000 ц / га и более. Значительно меньше биомасса широколиственных и особенно хвойных лесов бореального пояса (1000-3300 Ц / га). Еще меньшую биомассу имеют травяные группировки. Так, луговые степи дают в среднем 250 ц / га, а сухие степи - всего 100 ц / га.

Обращает на себя внимание отсутствие прямой зависимости между биомассой (общим количеством живого органического вещества в наземной и подземной сферах растительных сообществ) и осадков, то есть количеством ежегодно отмирающей органического вещества на единицу площади. Так, в луговых степях ежегодный опад в два-три раза превышает количество опада широколиственных лесов, хотя биомасса первых в 16 раз меньше биомассу этих лесов.


Таблица 9. Показатели биологической продуктивности основных типов растительности (по Л.Е. Родиным, Н.И. Базилевич, 1965)

Типы растительности

Общее количество биомассы, ц / га

Годовой прирост, ц / га

Опад, ц / га

Лесная подстилка или травяные остатки прошлых лет, ц / га

Отношение подстилки в опада зеленой части

Арктические тундры

Кустарниковые тундры

Ельники северной тайги

Ельники средней тайги

Ельники южной тайги

Степи луговые

Степи сухие

Пустынные

Субтропические лиственные леса

Влажные тропические леса

Но не вся отмирающая органическое вещество подвергается преобразования, часть его накапливается на поверхности почвы в виде подстилки или травяной войлока. Больше накопления надземной органического вещества наблюдается в кустарниковых тундрах. Накопление здесь подстилки свидетельствует о низком уровне процессов разложения органического вещества, то есть об ослаблении высвобождения энергии. В степях, саваннах и влажных тропических лесах, наоборот, весь опад очень быстро минерализируется. Таким образом, по отношению массы подстилки количеству опада зеленой части можно судить об интенсивности разложения органического вещества.

Вместе с круговоротом органического вещества в процессе жизнедеятельности растительных организмов происходит круговорот химических элементов, избирательно захваченных растениями из атмосферы, гидросферы и литосферы. Накопление и динамика азота и зольных элементов в биологическом круговороте определяется производительностью растительных сообществ, процентным содержанием и химическим составом золы растений, которые составляют биоценоз.

Наибольшее количество азота и зольных элементов содержится в растительности влажных тропических лесов (более 10 000 кг / га), значительным е содержание химических элементов в широколиственных лесах умеренного пояса (5800 кг / га). В биомассе травянистой растительности по сравнению с древесной, содержание азота и зольных элементов снижается, но не пропорционально изменению количества биомассы, поскольку, накапливая меньшую биомассу, травянистая растительность имеет более высокую зольность, чем лесная растительность. Поэтому в степной зоне в почву ежегодно поступает в 5 раз больше химических элементов, чем в ельниках южной тайги, и в 2,5 раза больше, чем в дубравах.

Обобщая важнейшие черты биологического круговорота, необходимо отметить, что в географическом аспекте от тундры в тайгу, широколиственных лесов и степей происходит увеличение величины годового прироста растений, а также активизируется интенсивность биологического круговорота от азотного через азотно-кальциевый к азотно-кремниевого. В пустынях годовая продукция органического вещества резко снижается. В ее биологическом цикле вместе с азотом существенную роль играют галогены - хлор и натрий.

В поясе влажных субтропиков и тропиков годовой прирост, емкость биологического круговорота возрастает до максимальных величин. Биологический круговорот характеризуется высокой интенсивностью, преобладанием азотно-кремниевого типа химизма с участием алюминия, железа, марганца. Кремниевые типы химизма особенно распространены в экваториальном поясе. Они характерны для тропических лесов, саванн, редколесий, травянисто-древесных формаций тугайного типа; в умеренном поясе - свойственные внутриконтинентальных степным областям.

Итак, согласно ростом влияния солнечной энергии на поверхность Земли от северных широт до южных происходит увеличение биологической продуктивности, интенсивности и разнообразия типов химизма биологического круговорота элементов.