Когда знак неравенства меняется на противоположный. Калькулятор онлайн

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Сравнивать величины и количества при решении практических задач приходилось ещё с древних времён. Тогда же появились и такие слова, как больше и меньше, выше и ниже, легче и тяжелее, тише и громче, дешевле и дороже и т.д., обозначающие результаты сравнения однородных величин.

Понятия больше и меньше возникли в связи со счётом предметов, измерением и сравнением величин. Например, математики Древней Греции знали, что сторона любого треугольника меньше суммы двух других сторон и что против большего угла в треугольнике лежит большая сторона. Архимед, занимаясь вычислением длины окружности, установил, что периметр всякого круга равен утроенному диаметру с избытком, который меньше седьмой части диаметра, но больше десяти семьдесят первых диаметра.

Символически записывать соотношения между числами и величинами с помощью знаков > и b. Записи, в которых два числа соединены одним из знаков: > (больше), С числовыми неравенствами вы встречались и в младших классах. Знаете, что неравенства могут быть верными, а могут быть и неверными. Например, \(\frac{1}{2} > \frac{1}{3} \) верное числовое неравенство, 0,23 > 0,235 - неверное числовое неравенство.

Неравенства, в которые входят неизвестные, могут быть верными при одних значениях неизвестных и неверными при других. Например, неравенство 2x+1>5 верное при х = 3, а при х = -3 - неверное. Для неравенства с одним неизвестным можно поставить задачу: решить неравенство. Задачи решения неравенств на практике ставятся и решаются не реже, чем задачи решения уравнений. Например, многие экономические проблемы сводятся к исследованию и решению систем линейных неравенств. Во многих разделах математики неравенства встречаются чаще, чем уравнения.

Некоторые неравенства служат единственным вспомогательным средством, позволяющим доказать или опровергнуть существование определённого объекта, например, корня уравнения.

Числовые неравенства

Вы умеете сравнивать целые числа, десятичные дроби. Знаете правила сравнения обыкновенных дробей с одинаковыми знаменателями, но разными числителями; с одинаковыми числителями, но разными знаменателями. Здесь вы научитесь сравнивать любые два числа с помощью нахождения знака их разности.

Сравнение чисел широко применяется на практике. Например, экономист сравнивает плановые показатели с фактическими, врач сравнивает температуру больного с нормальной, токарь сравнивает размеры вытачиваемой детали с эталоном. Во всех таких случаях сравниваются некоторые числа. В результате сравнения чисел возникают числовые неравенства.

Определение. Число а больше числа b, если разность а-b положительна. Число а меньше числа b, если разность а-b отрицательна.

Если а больше b, то пишут: а > b; если а меньше b, то пишут: а Таким образом, неравенство а > b означает, что разность а - b положительна, т.е. а - b > 0. Неравенство а Для любых двух чисел а и b из следующих трёх соотношений a > b, a = b, a Сравнить числа а и b - значит выяснить, какой из знаков >, = или Теорема. Если a > b и Ь > с, то а > с.

Теорема. Если к обеим частям неравенства прибавить одно и то же число, то знак неравенства не изменится.
Следствие. Любое слагаемое можно перенести из одной части неравенства в другую, изменив знак этого слагаемого на противоположный.

Теорема. Если обе части неравенства умножить на одно и то же положительное число, то знак неравенства не изменится. Если обе части неравенства умножить на одно и то же отрицательное число, то знак неравенства изменится на противоположный.
Следствие. Если обе части неравенства разделить на одно и то же положительное число, то знак неравенства не изменится. Если обе части неравенства разделить на одно и то же отрицательное число, то знак неравенства изменится на противоположный.

Вы знаете, что числовые равенства можно почленно складывать и умножать. Далее вы научитесь выполнять аналогичные действия с неравенствами. Умения почленно складывать и умножать неравенства часто применяются на практике. Эти действия помогают решать задачи оценивания и сравнения значений выражений.

При решении различных задач часто приходится складывать или умножать почленно левые и правые части неравенств. При этом иногда говорят, что неравенства складываются или умножаются. Например, если турист прошёл в первый день более 20 км, а во второй - более 25 км, то можно утверждать, что за два дня он прошёл более 45 км. Точно так же если длина прямоугольника меньше 13 см, а ширина меньше 5 см, то можно утверждать, что площадь этого прямоугольника меньше 65 см2.

При рассмотрении этих примеров применялись следующие теоремы о сложении и умножении неравенств:

Теорема. При сложении неравенств одинакового знака получается неравенство того же знака: если а > b и c > d, то a + c > b + d.

Теорема. При умножении неравенств одинакового знака, у которых левые и правые части положительны, получается неравенство того же знака: если а > b, c > d и а, b, с, d - положительные числа, то ac > bd.

Неравенства со знаком > (больше) и 1/2, 3/4 b, c Наряду со знаками строгих неравенств > и Точно так же неравенство \(a \geq b \) означает, что число а больше или равно b, т. е. а не меньше b.

Неравенства, содержащие знак \(\geq \) или знак \(\leq \), называют нестрогими. Например, \(18 \geq 12 , \; 11 \leq 12 \) - нестрогие неравенства.

Все свойства строгих неравенств справедливы и для нестрогих неравенств. При этом если для строгих неравенств противоположными считались знаки > и Вы знаете, что для решения ряда прикладных задач приходится составлять математическую модель в виде уравнения или системы уравнений. Далее вы узнаете, что математическими моделями для решения многих задач являются неравенства с неизвестными. Будет введено понятие решения неравенства и показано, как проверить, является ли данное число решением конкретного неравенства.

Неравенства вида
\(ax > b, \quad ax в которых а и b - заданные числа, а x - неизвестное, называют линейными неравенствами с одним неизвестным .

Определение. Решением неравенства с одним неизвестным называется то значение неизвестного, при котором это неравенство обращается в верное числовое неравенство. Решить неравенство - это значит найти все его решения или установить, что их нет.

Решение уравнений вы осуществляли путём приведения их к простейшим уравнениям. Аналогично при решении неравенств их стремятся с помощью свойств привести к виду простейших неравенств.

Решение неравенств второй степени с одной переменной

Неравенства вида
\(ax^2+bx+c >0 \) и \(ax^2+bx+c где x - переменная, a, b и c - некоторые числа и \(a \neq 0 \), называют неравенствами второй степени с одной переменной .

Решение неравенства
\(ax^2+bx+c >0 \) или \(ax^2+bx+c можно рассматривать как нахождение промежутков, в которых функция \(y= ax^2+bx+c \) принимает положительные или отрицательные значения. Для этого достаточно проанализировать, как расположен график функции \(y= ax^2+bx+c \) в координатной плоскости: куда направлены ветви параболы - вверх или вниз, пересекает ли парабола ось x и если пересекает, то в каких точках.

Алгоритм решения неравенств второй степени с одной переменной:
1) находят дискриминант квадратного трехчлена \(ax^2+bx+c \) и выясняют, имеет ли трехчлен корни;
2) если трехчлен имеет корни, то отмечают их на оси x и через отмеченные точки проводят схематически параболу, ветви которой направлены вверх при a > 0 или вниз при a 0 или в нижней при a 3) находят на оси x промежутки, для которых точки параболы расположены выше оси x (если решают неравенство \(ax^2+bx+c >0 \)) или ниже оси x (если решают неравенство
\(ax^2+bx+c Решение неравенств методом интервалов

Рассмотрим функцию
f(x) = (х + 2)(х - 3)(х - 5)

Областью определения этой функции является множество всех чисел. Нулями функции служат числа -2, 3, 5. Они разбивают область определения функции на промежутки \((-\infty; -2), \; (-2; 3), \; (3; 5) \) и \((5; +\infty) \)

Выясним, каковы знаки этой функции в каждом из указанных промежутков.

Выражение (х + 2)(х - 3)(х - 5) представляет собой произведение трех множителей. Знак каждого из этих множителей в рассматриваемых промежутках указан в таблице:

Вообще пусть функция задана формулой
f(x) = (x-x 1)(x-x 2) ... (x-x n),
где x–переменная, а x 1 , x 2 , ..., x n – не равные друг другу числа. Числа x 1 , x 2 , ..., x n являются нулями функции. В каждом из промежутков, на которые область определения разбивается нулями функции, знак функции сохраняется, а при переходе через нуль ее знак изменяется.

Это свойство используется для решения неравенств вида
(x-x 1)(x-x 2) ... (x-x n) > 0,
(x-x 1)(x-x 2) ... (x-x n) где x 1 , x 2 , ..., x n - не равные друг другу числа

Рассмотренный способ решения неравенств называют методом интервалов.

Приведем примеры решения неравенств методом интервалов.

Решить неравенство:

\(x(0,5-x)(x+4) Очевидно, что нулями функции f(x) = x(0,5-x)(x+4) являются точки \(x=0, \; x=\frac{1}{2} , \; x=-4 \)

Наносим на числовую ось нули функции и вычисляем знак на каждом промежутке:

Выбираем те промежутки, на которых функция меньше или равна нулю и записываем ответ.

Ответ:
\(x \in \left(-\infty; \; 1 \right) \cup \left[ 4; \; +\infty \right) \)

Теория:

При решении неравенств используют следующие правила:

1. Любой член неравенства можно перенести из одной части
неравенства в другую с противоположным знаком, при этом знак неравенства не меняется.

2. Обе части неравенства можно умножить или разделить на одно
и то же положительное число, не изменив при этом знак неравенства.

3. Обе части неравенства можно умножить или разделить на одно
и то же отрицательное число, изменив при этом знак неравенства на
противоположный.

Решить неравенство − 8 x + 11 < − 3 x − 4
Решение.

1. Перенесём член − 3 x в левую часть неравенства, а член 11 — в правую часть неравенства, при этом поменяем знаки на противоположные у − 3 x и у 11 .
Тогда получим

− 8 x + 3 x < − 4 − 11

− 5 x < − 15

2. Разделим обе части неравенства − 5 x < − 15 на отрицательное число − 5 , при этом знак неравенства < , поменяется на > , т.е. мы перейдём к неравенству противоположного смысла.
Получим:

− 5 x < − 15 | : (− 5 )

x > − 15 : (− 5 )

x > 3

x > 3 — решение заданного неравенства.

Обрати внимание!

Для записи решения можно использовать два варианта: x > 3 или в виде числового промежутка.

Отметим множество решений неравенства на числовой прямой и запишем ответ в виде числового промежутка.

x ∈ (3 ; + ∞ )

Ответ: x > 3 или x ∈ (3 ; + ∞ )

Алгебраические неравенства.

Квадратные неравенства. Рациональные неравенства высших степеней.

Методы решения неравенств зависят в основном от того, к какому классу относятся функции, составляющие неравенство.

  1. I . Квадратные неравенства , то есть неравенства вида

ax 2 + bx + c > 0 (< 0), a ≠ 0.

Чтобы решить неравенство можно:

  1. Квадратный трехчлен разложить на множители, то есть неравенство записать в виде

a (x - x 1) (x - x 2) > 0 (< 0).

  1. Корни многочлена нанести на числовую ось. Корни разбивают множество действительных чисел на промежутки, в каждом из которых соответствующая квадратичная функция будет знакопостоянной.
  2. Определить знак a (x - x 1) (x - x 2) в каждом промежутке и записать ответ.

Если квадратный трехчлен не имеет корней, то при D<0 и a>0 квадратный трехчлен при любом x положителен.

  • Решить неравенство. x 2 + x - 6 > 0.

Разложим квадратный трехчлен на множители (x + 3) (x - 2) > 0

Ответ: x (-∞; -3) (2; +∞).

2) (x - 6) 2 > 0

Это неравенство верно при любом х, кроме х = 6.

Ответ: (-∞; 6) (6; +∞).

3) x² + 4x + 15 < 0.

Здесь D < 0, a = 1 > 0. Квадратный трехчлен положителен при всех х.

Ответ: x Î Ø.

Решить неравенства:

  1. 1 + х - 2х² < 0. Ответ:
  2. 3х² - 12х + 12 ≤ 0. Ответ:
  3. 3х² - 7х + 5 ≤ 0. Ответ:
  4. 2х² - 12х + 18 > 0. Ответ:
  5. При каких значениях a неравенство

x² - ax > выполняется для любых х? Ответ:

  1. II . Рациональные неравенства высших степеней, то есть неравенства вида

a n x n + a n-1 x n-1 + … + a 1 x + a 0 > 0 (<0), n>2.

Многочлен высшей степени следует разложить на множители, то есть неравенство записать в виде

a n (x - x 1) (x - x 2) ·…· (x - x n) > 0 (<0).

Отметить на числовой оси точки, в которых многочлен обращается в нуль.

Определить знаки многочлена на каждом промежутке.

1) Решить неравенство x 4 - 6x 3 + 11x 2 - 6x < 0.

x 4 - 6x 3 + 11x 2 - 6x = x (x 3 - 6x 2 + 11x -6) = x (x 3 - x 2 - 5x 2 + 5x +6x - 6) =x (x - 1)(x 2 -5x + 6) =

x (x - 1) (x - 2) (x - 3). Итак, x (x - 1) (x - 2) (x - 3)<0

Ответ: (0; 1) (2; 3).

2) Решить неравенство (x -1) 5 (x + 2) (x - ½) 7 (2x + 1) 4 <0.

Отметим на числовой оси точки, в которых многочлен обращается в нуль. Это х = 1, х = -2, х = ½, х = - ½.

В точке х = - ½ смены знака не происходит, потому что двучлен (2х + 1) возводится в четную степень, то есть выражение (2x + 1) 4 не меняет знак при переходе через точку х = - ½.

Ответ: (-∞; -2) (½; 1).

3) Решить неравенство: х 2 (х + 2) (х - 3) ≥ 0.

Данное неравенство равносильно следующей совокупности

Решением (1) является х (-∞; -2) (3; +∞). Решением (2) являются х = 0, х = -2, х = 3. Объединяя полученные решения, получаем х Î (-∞; -2] {0} {0} . В следующем примере такая скобка используется.

Запишем ответ: х ≥ -0,5 через промежутки:

х ∈ [-0,5; +∞)

Читается: икс принадлежит промежутку от минус 0,5, включая, до плюс бесконечности.

Бесконечность не может включаться никогда. Это не число, это символ. Поэтому в подобных записях бесконечность всегда соседствует с круглой скобкой.

Такая форма записи удобна для сложных ответов, состоящих из нескольких промежутков. Но - именно для окончательных ответов. В промежуточных результатах, где предполагается дальнейшее решение, лучше использовать обычную форму, в виде простого неравенства. Мы с этим в соответствующих темах разберёмся.

Популярные задания с неравенствами.

Сами по себе линейные неравенства просты. Поэтому, частенько, задания усложняются. Так, чтобы подумать надо было. Это, если с непривычки, не очень приятно.) Но полезно. Покажу примеры таких заданий. Не для того, чтобы вы их выучили, это лишнее. А для того, чтобы не боялись при встрече с подобными примерами. Чуть подумать - и всё просто!)

1. Найдите любые два решения неравенства 3х - 3 < 0

Если не очень понятно, что делать, вспоминаем главное правило математики:

Не знаешь, что нужно - делай, что можно!)

х < 1

И что? Да ничего особенного. Что нас просят? Нас просят найти два конкретных числа, которые являются решением неравенства. Т.е. подходят под ответ. Два любых числа. Собственно, это и смущает.) Подходит парочка 0 и 0,5. Парочка -3 и -8. Да этих парочек бесконечное множество! Какой ответ правильный?!

Отвечаю: все! Любая парочка чисел, каждое из которых меньше единицы, будет правильным ответом. Пишите, какую хотите. Едем дальше.

2. Решить неравенство:

4х - 3 0

Задания в таком виде встречаются редко. Но, как вспомогательные неравенства, при нахождении ОДЗ, например, или при нахождении области определения функции, - встречаются сплошь и рядом. Такое линейное неравенство можно решать как обычное линейное уравнение. Только везде, кроме знака "=" (равно ) ставить знак "" (не равно ). Так к ответу и подойдёте, со знаком неравенства:

х 0,75

В более сложных примерах, лучше поступать по-другому. Сделать из неравенства равенство. Вот так:

4х - 3 = 0

Спокойно решить его, как учили, и получить ответ:

х = 0,75

Главное, в самом конце, при записи окончательного ответа, не забыть, что мы нашли икс, который даёт равенство. А нам нужно - неравенство. Стало быть, этот икс нам как раз и не нужен.) И надо записать его с правильным значком:

х 0,75

При таком подходе получается меньше ошибок. У тех, кто уравнения на автомате решает. А тем, кто уравнения не решает, неравенства, собственно, ни к чему...) Ещё пример популярного задания:

3. Найти наименьшее целое решение неравенства:

3(х - 1) < 5х + 9

Сначала просто решаем неравенство. Ракрываем скобки, переносим, приводим подобные... Получаем:

х > - 6

Не так получилось!? А за знаками следили!? И за знаками членов, и за знаком неравенства...

Опять соображаем. Нам нужно найти конкретное число, подходящее и под ответ, и под условие "наименьшее целое". Если сразу не осеняет, можно просто взять любое число и прикинуть. Два больше минус шести? Конечно! А есть подходящее число поменьше? Разумеется. Например, ноль больше -6. А ещё меньше? Нам же самое маленькое из возможных надо! Минус три больше минус шести! Уже можно уловить закономерность и перестать тупо перебирать числа, правда?)

Берём число поближе к -6. Например, -5. Ответ выполняется, -5 > - 6. Можно найти ещё число, меньше -5, но больше -6? Можно, например -5,5... Стоп! Нам сказано целое решение! Не катит -5,5! А минус шесть? Э-э-э! Неравенство строгое, минус 6 никак не меньше минус 6!

Стало быть, правильный ответ: -5.

Надеюсь, с выбором значения из общего решения всё понятно. Ещё пример:

4. Решить неравенство:

7 < 3х+1 < 13

Во как! Такое выражение называется тройным неравенством. Строго говоря, это сокращённая запись системы неравенств. Но решать такие тройные неравенства всё равно приходится в некоторых заданиях... Оно решается безо всяких систем. По тем же тождественным преобразованиям.

Надо упростить, довести это неравенство до чистого икса. Но... Что куда переносить!? Вот тут самое время вспомнить, что перенос влево-вправо, это сокращённая форма первого тождественного преобразования.

А полная форма звучит вот как: К обеим частям уравнения (неравенства) можно прибавить/отнять любое число, или выражение.

Здесь три части. Вот и будем применять тождественные преобразования ко всем трём частям!

Итак, избавимся от единички в средней части неравенства. Отнимем от всей средней части единичку. Чтобы неравенство не изменилось, отнимем единичку и от оставшихся двух частей. Вот так:

7 -1< 3х+1-1< 13-1

6 < < 12

Уже лучше, правда?) Осталось разделить все три части на тройку:

2 < х < 4

Вот и всё. Это ответ. Икс может любым числом от двойки (не включая) до четвёрки (не включая). Этот ответ тоже записывается через промежутки, такие записи будут в квадратных неравенствах. Там они - самое обычное дело.

В конце урока повторю самое главное. Успех в решении линейных неравенств зависит от умения преобразовывать и упрощать линейные уравнения. Если при этом следить за знаком неравенства, проблем не будет. Чего я вам и желаю. Отсутствия проблем.)

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.