Роль науки в развитии техники. Развитие отечественной науки и техники

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

КОНТРОЛЬНАЯ РАБОТА

по истории

ИСТОРИЯ РАЗВИТИЯ НАУКИ И ТЕХНИКИ

1. Зарождение науки

Удовлетворение насущных практических потребностей, заставляющее внимательно наблюдать и изучать природу, всегда было сильнейшей побудительной причиной для развития науки. Не праздное любопытство и не происхождение земли, простая любознательность заставили первобытные народы тщательно следить за движением Солнца и Луны, а насущная необходимость иметь календарь.

Когда люди были вынуждены от охоты и скотоводства, являвшихся вначале единственными средствами существования, перейти к земледелию, то они уже не могли обходиться без достаточно правильного календаря, позволяющего своевременно выполнять полевые работы.

Вот почему за несколько тысяч лет до нашей эры в земледельческих государствах, возникших на плодородных долинах Месопотамии, Египта, Индии и Китая, одной из важнейших обязанностей жрецов делается систематическое наблюдение небесных светил. После многих веков тщательных наблюдений Солнца им удалось изучить его перемещение относительно звёзд и определить продолжительность года, что легло в основу календаря. Наблюдение Луны, определение законов её перемещения между звёздами было необходимо, чтобы установить связь между новым солнечным календарём и тем счётом времени по лунным фазам, к которому люди привыкли, когда жили охотой и скотоводством.

Необходимость уметь точно предсказывать наступление времён года была первой причиной, заставившей людей старательно следить за движением Луны и Солнца. Подмеченное при этом правильное чередование, или, как мы теперь говорим, периодичность небесных явлений, впервые дало людям представление о законах природы. Они стали понимать, что явления окружающего мира происходят не по капризу богов, а по твёрдым и неизменным законам. Развитие торговли и мореплавания дало новый могучий толчок к изучению природы, так как далёкие путешествия, особенно в открытом море, можно было совершать, лишь тщательно изучив звёздное небо и умея ориентироваться по созвездиям. Финикийские и греческие купцы, достигавшие с одной стороны берегов современной Франции и Англии, а с другой - проникавшие в южные области Египта и в Индийский океан, быстро убедились в том, что Земля не может быть плоской.

Ведь при путешествии на север созвездия, расположенные в южной части неба, перестают быть видимыми, а при перемещении в южном направлении, появляются новые созвездия.

Путешествия на юг показали, что существуют места, в которых полуденная тень от вертикального пред - 6 мета летом или исчезает вовсе, или даже падает к югу, а не к северу, как у нас.

Всё это было несовместимо с представлением о плоской Земле и подготовляло мысль о её шарообразности.

Однако, пока изучение движения небесных светил производилось только жрецами, заботившимися о точности календаря, и купцами-мореплавателями, заинтересованными лишь в умении находить путь по звёздам и Солнцу, наука в нашем смысле этого слова ещё не могла возникнуть. И жрецы, и мореплаватели представляли замкнутые группы, нисколько не заинтересованные в распространении своих открытий. Напротив, накопленный опыт являлся обычно тайной, сохраняемой в храмах или торговых конторах и недоступной для непосвящённых.

А самое главное, и те и другие были лишь узкими практиками, не занимавшимися обобщением и объяснением открытых явлений.

Заслуга создания науки принадлежит древним грекам. Хотя вавилоняне, египтяне, индусы раньше греков начали систематически наблюдать явления природы и размышлять над ними, но до настоящей науки о природе, до естествознания они не дошли.

Они никогда не могли освободиться от своих религиозно-мистических воззрений, подняться до мысли о естественной закономерности явлений природы и заняться выяснением их причинной связи.

Напротив, греки, в жизни которых религиозные представления не имели такого господствующего влияния, как у восточных народов, очень скоро стали искать познаваемую связь явлений, а не «волю богов».

В греческих государствах и колониях, рассеянных по берегам Средиземного моря, уже примерно за 6-7 веков до начала нашей эры, ведущая роль в развитии знаний переходит от жрецов к философам. Философами (что по-гречески означает «любители мудрости») называли тогда людей, занимающихся наукой и преподаванием. Это время, когда научные занятия окончательно отделились как от религии, так и от ремёсел, и можно считать временем зарождения науки.

Однако, возникшая наука далеко не сразу нащупала верный путь в изучении природы. Вместо того, чтобы кропотливо изучать отдельные явления и постепенно доходить до открытия общих законов природы, первые учёные пытались одним широким взмахом обнять всё мироздание. Не довольствуясь продвижением вперёд 2*7.

Осторожными шагами - маленькими, но верными, - они старались угадать общие принципы для объяснения природы в целом. Фалес Милетский учил, что «начало всех вещей - вода, из воды всё происходит и всё возвращается к воде». Анаксимандр считал началом всех вещей некоторое первичное вещество, качественно неопределённое, количественно бесконечное, вечное и неисчерпаемое. Из этого неопределённого вещества выделяются тёплое и холодное начала, соединение их даёт влагу, из которой путём высыхания образуется земля, далее - воздух и огненная стихия, а из этой последней - небесные светила. Анаксимен за первоначальное вещество принимал воздух, полагая, что от сгущения воздух превращается в воду, а вода в землю, разрежение воздуха даёт огонь.

Наряду с подобными наивными попытками осмыслить окружающую природу (имевшими огромный успех у современников), понемногу развивалось и точное знание. Наибольших успехов греческие учёные достигли в геометрии, которая в их руках скоро стала - по своей законченности, стройности, а главное убедительности - образцом для всех других наук. Развитие геометрии позволило получить много важных результатов и в астрономии. Таким образом, познание окружающего мира становится на прочный фундамент.

2. Роль науки в современном обществе

На протяжении всей истории человеческой цивилизации люди выработали несколько способов познания и освоения окружающего их мира. Одним из таких важнейших способов является наука.

Наука - сфера исследовательской деятельности, направленная на производство новых знаний о природе, обществе и мышлении и включающая в себя все условия и моменты этого производства.

Она отражает мир в форме понятий, гипотез, теорий, разного рода учений. При этом она прибегает к таким способам познания, как опыт, моделирование, мыслительный эксперимент и др.

Наука включает и ученых с их знаниями и способностями, квалификацией и опытом, с разделением и кооперацией научного труда, научные учреждения, экспериментальное и лабораторное оборудование, методы научно-исследовательской работы, понятийный и категориальный аппарат, систему научной информации, а также всю сумму наличных знаний, выступающих в качестве либо предпосылки, либо средства, либо результата научного производства. Эти результаты могут также выступать как одна из форм общественного сознания.

Наука - это и творческая деятельность по получению нового знания и результат такой деятельности.

Отличия науки от других отраслей культуры хорошо показал А.А. Горелов: «Наука отличается от мифологии тем, что стремится не к объяснению мира в целом, а к формулированию законов развития природы, допускающих эмпирическую проверку.

Наука отличается от мистики тем, что стремится не к слиянию с объектом исследования, а к эго теоретическому пониманию и воспроизведению. Наука отличается от религии тем, что разум и опора на чувственную реальность имеют в ней большее значение, чем вера.

Наука отличается от философии тем, что ее выводы допускают эмпирическую проверку и отвечают не на вопрос «почему?», а на вопрос «как?», «каким образом?».

Наука отличается от искусства своей рациональностью, не останавливающейся на уровне образов, а доведенной до уровня теорий.

Наука отличается от идеологии тем, что ее истины общезначимы и не зависят от интересов определенных слоев общества.

Наука отличается от техники тем, что нацелена не на использование полученных знаний о мире для его преобразования, а на познание мира.

Наука отличается от обыденного сознания тем, что представляет собой теоретическое освоение действительности.

Искусство, как проявление эстетического сознания, отражает мир в форме художественных образов. Различные жанры искусства - живопись, театр и т. д. - используют свои специфические средства и способы эстетического освоения мира. Моральное сознание отражает существующие в обществе нравственные отношения в форме моральных переживаний и взглядов, находящих свое выражение в моральных нормах и принципах поведения, а также в обычаях, традициях и т. д.

По-своему отражается общественная жизнь в политических и религиозных взглядах. Наука отражает мир в форме понятий, гипотез, теорий, разного рода учений. При этом она прибегает к таким способам познания, как опыт, моделирование, мыслительный эксперимент и др.

Итак, наука - это «форма духовной деятельности людей, направленная на производство знаний о природе, обществе и о самом познании, имеющая непосредственной целью постижение истины и открытие объективных законов на основе обобщения реальных фактов в их взаимосвязи».

Сегодня совершенно очевидно, что наука представляет собой составную часть духовной культуры общества.

С ее возникновением в сокровищнице передаваемых от поколения к поколению знаний накапливаются уникальные духовные продукты, которые играют все более важную роль в осознании, понимании и преобразовании действительности. На определенном этапе человеческой истории наука, подобно другим, ранее возникшим элементам культуры, развивается в относительно самостоятельную форму общественного сознания. Это обусловлено тем, что целый ряд проблем, возникающих перед обществом, может быть решен только с помощью науки.

Опытная наука за 300 лет своего существования в странах, охваченных научно-технической революцией, дала возможность поднять уровень жизни в 15-20 раз. Невиданное ранее ускорение научно-технического прогресса, который привел к научно-технической революции, началось в мире в 50-х гг. ХХ в. НТР вызвала к жизни качественные преобразования производительных сил, резко усилила интернационализацию хозяйственной жизни.

Коренные изменения в производстве сопровождались сдвигами в мировом населении. Главные черты этих сдвигов: ускоренный рост численности, получивший наименование демографического “взрыва”, широкое распространение, урбанизации, изменения в структуре занятости, развитие этнических процессов.

Понимание места и роли науки как социокультурного явления представляет собой сложный процесс, который не завершен и в наши дни. Оно выработалось и вырабатывается долго и трудно, в борьбе подходов, идей, в ходе преодоления трудностей, противоречий, сомнений и возникновения новых и новых вопросов.

Современная наука стала индустрией открытий, мощным стимулятором развития техники. В настоящее время развитие науки и техники все более характеризуется тенденцией к их системному единству: если процесс производства становится применением науки, то наука, наоборот, становится фактором, функцией процесса производства. В результате начало формироваться новое качество науки как одной из общественных сил труда, а именно - непосредственной производительной силы общества. В этих условиях в развитии промышленности все определеннее проявляется тенденция к революционной ломке прежнего производственного процесса, к критическому пересмотру прежней формы развития производства, связанной со стремлением основываться на имеющемся «традиционном» опыте.

Ускоренное развитие науки, более глубокое познание законов и естественных процессов природы, их использование в производственном процессе преобразует саму основу, на которой до тех пор строился процесс производства, способствуют появлению качественно новых форм преемственности в его развитии, делают возможным и необходимым переход к интенсивной форме развития производства.

Все устройства такого рода имеют единый знаменатель - их действие происходит на основе законов механики.

Данные устройства рассматриваются с позиций «линейных» причинно-следственных целей и связей, а также жесткого детерминизма. Наука воспринимается через ее способность к точному, законченному знанию, к однозначному, невариантному типу мышления. Здесь преобразующие силы человека ограничиваются преимущественно уровнем развития науки, имеют свой обусловленный масштаб.

Важнейшей причиной, обусловившей столь быстрое развитие человечества за последние 100-150 лет, является соединение в процессе производства научных и технических достижений.

Это послужило основой поистине революционной ломки старых, традиционных форм промышленного производства и коренных изменений роли и места человека, техники и науки в производственном процессе, резкого возрастания масштабов влияния интенсивных факторов на развитие общественного производства.

В современной науке проблема роста, развития знания является центральной. Так, К. Поппер в своей концепции роста знания исходил из того, что последнее есть развивающаяся целостность. Рост знания, по его мнению, это не кумулятивный (накопительный) процесс и не простое коллекционирование наблюдений. Это ниспровержение теорий, их замена лучшими, процесс устранения ошибок. Это дарвиновский отбор как частный случай общемировых эволюционных процессов.

Т. Кун стремился выявить общий механизм развития науки как целостного единства «нормальной науки» и «некумулятивных скачков» (научных революций). Ст. Тулмин в своей эволюционной эпистемологии рассматривал содержание теорий как своеобразную «популяцию понятий», а общий механизм их развития представил как взаимодействие внутринаучных и вненаучных (социальных) факторов, подчеркивая, однако, решающее значение рациональных компонентов.

Согласно И. Лакатосу, рост, развитие науки есть смена ряда непрерывно связанных научно-исследовательских программ.

Современное общество пронизано гонкой за новизной. Это дает значительный эффект. Однако развитие цивилизации - противоречивый процесс. Здесь прогрессивное и регрессивное - две стороны одной медали. Так, сложившийся первоначально в Европе, а потом распространившийся по всему миру тип научно-технической культуры весьма способствовал развитию свободы человека. Но вместе с тем он имеет изъяны.

Технологическая цивилизация основана на таком взаимоотношении между человеком и природой, при котором природа является объектом человеческой деятельности, объектом эксплуатации, причем неограниченной. Ей присущ тип развития, который можно выразить одним словом - «больше».

Цель состоит в том, чтобы накапливать все больше материальных благ, богатств и на этой основе решать все человеческие проблемы, в том числе социальные, культурные и др.

Технологической цивилизации присуще представление, что природа неисчерпаема именно как объект ее эксплуатации человеком. Понимание глубины экономического кризиса положило конец такому представлению. Отсюда идейное научно-теоретическое движение последних десятилетий, начатое Римским клубом и поставившее проблему создания новой экологической культуры. Истоки современного глобального кризиса, прежде всего экологического, обнаруживаются в логике развития фундаментальных основ цивилизации - ее технико-технологического базиса.

Следовательно, соответствующим образом должны быть ориентированы и поиски путей и средств выхода из этого кризиса. С одной стороны, для оптимизации природной среды могут быть использованы невиданные технические возможности, открывающиеся сегодня. Ведь в том-то и состоит противоречивый характер современной науки, что, порождая невиданные в прошлом экологические проблемы, она в то же время содержит в себе потенциальные возможности их преодоления.

Современная наука охватывает огромную отрасль знаний - около 15 тысяч дисциплин, которые в различной степени отдалены друг от друга. Современная наука имеет очень сложную организацию. Она разделяется на множество отраслей знания.

По своей удаленности от практики можно разделить науки на два крупных типа: фундаментальные, где нет прямой ориентации на практику, и прикладные - непосредственное применение результатов научного познания для решения производственных и социально-практических задач.

Для того, чтобы нагляднее представить все те изменения, которые претерпела наука на всем протяжении своего существования, представим ее в виде своеобразного «луча света». Представим себе, что наука - это «луч света», входящий через «окно познания».

Первоначально это был сплошной «диффузный» поток «света», в котором нельзя было различить каких-либо составляющих его компонентов. О них можно было только догадываться и философствовать. Это была нерасчлененная наука, носившая натурфилософский характер. Со временем внутри этой единой, нерасчлененной науки стали зарождаться будущие отдельные науки: математика, механика, астрономия и др.

В эпоху Возрождения этот «луч» как бы преломился через «призму анализа», или «призму дифференциации», и как бы распался на отдельные фундаментальные науки, вышедшие из первоначально единой науки.

Возникшие отдельные отрасли научного знания поначалу включают в себя и их техническое применение.

Однако в конце XVIII в. в процессе продолжающейся дифференциации наук началось отпочкование прикладного знания от теоретического. В результате стали возникать особые технические науки в качестве отраслей научно-технического знания.

К середине XIX в. процесс односторонней дифференциации наук в основном исчерпал себя. До этого момента в научном движении дифференциация наук была, безусловно доминирующей, а связывание наук (их интеграция) осуществлялось лишь путем их внешнего соположения.

К концу первой половины XIX в. положение стало меняться коренным образом. Доминирующей становится тенденция к интеграции наук, причем сама эта интеграция начинает осуществляться через продолжающуюся их дифференциацию. Другими словами, связывание наук происходит благодаря появлению новых наук переходного, или промежуточного, характера. Эти новые науки перекидывают как бы мосты между ранее уже возникшими фундаментальными науками.

Способность исследователей длительное время работать в неких заданных рамках, очерчиваемых фундаментальными научными открытиями, стала важным элементом логики развития науки в концепции Т. Куна. Он ввел в методологию принципиально новое понятие - “парадигма”. Буквальный смысл этого слова - образец. В нем фиксируется существование особого способа организации знания, подразумевающего определенный набор предписаний, задающих характер видения мира, а значит, влияющих на выбор направлений исследования. В парадигме содержатся также и общепринятые образцы решения конкретных проблем. Парадигмальное знание не является собственно “чистой” теорией (хотя его ядром и служит, как правило, та или иная фундаментальная теория), поскольку не выполняет непосредственно объяснительной функции.

Оно дает некую систему отсчета, т. е., является предварительным условием и предпосылкой построения и обоснования различных теорий.

Являясь по сути метатеоретическим образованием, парадигма определяет дух и стиль научных исследований.

По словам Т. Куна, парадигму составляют признанные всеми научные достижения, которые в течение определенного времени дают модель постановки проблем и их решений научному сообществу”. Ее содержание отражено в учебниках, в фундаментальных трудах крупнейших ученых, а основные идеи проникают и в массовое сознание. Признанная научным сообществом, парадигма на долгие годы определяет круг проблем, привлекающих внимание ученых, является как бы официальным подтверждением подлинной “научности” их занятий. К парадигмам в истории науки Т. Кун причислял, например, аристотелевскую динамику, птолемеевскую астрономию, ньютоновскую механику и т. д.

Развитие, приращение научного знания внутри, в рамках такой парадигмы, получило название “нормальной науки”.

Смена же парадигмы есть не что иное, как научная революция. Наглядный пример - смена классической физики (ньютоновской) на релятивистскую (эйнштейновскую).

Решающая новизна концепции Т. Куна заключалась в мысли о том, что смена парадигм в развитии науки не является детерминированной однозначно, или, как сейчас выражаются, - не носит линейного характера. Развитие науки, рост научного знания нельзя, допустим, представить в виде тянущегося строго вверх, к солнцу дерева (познания добра и зла). Оно похоже, скорее, на развитие кактуса, прирост которого может начаться с любой точки его поверхности и продолжаться в любую сторону. И где, с какой стороны нашего научного “кактуса” возникнет вдруг “точка роста” новой парадигмы - непредсказуемо принципиально! Причем не потому, что процесс этот произволен или случаен, а потому, что в каждый критический момент перехода от одного состояния к другому имеется несколько возможных продолжений. Какая именно точка из многих возможных “пойдет в рост” - зависит от стечения обстоятельств.

Таким образом, логика развития науки содержит в себе закономерность, но закономерность эта “выбрана” случаем из целого ряда других, не менее закономерных возможностей. Из этого следует, что привычная нам ныне квантово-релятивистская картина мира могла бы быть и другой, но, наверное, не менее логичной и последовательной.

3. Накопление естественнонаучных знаний

Накопление практических знаний об окружающем мире на заре истории происходило в рамках мифологического, а затем повсеместно утвердившегося и господствовавшего религиозного миропонимания. Эмпирически найденные наиболее эффективные приемы охоты, обработки земли и создания орудий закреплялись авторитетом религии как данные свыше установления.

Выделение умственного труда первоначально осуществлялось в системе религии, и ее институты - храмы, монастыри - становились также местом хранения и накопления знаний, их фиксации в письменных источниках. История культуры свидетельствует, что древние цивилизации Египта, Месопотамии, Индии, Китая выработали большое количество математических, астрономических, медицинских и других знаний, которые были включены в различные виды религиозного мировоззрения. Как свидетельствуют историки, именно на жреца Древнего Египта лежала обязанность оповещать о разливах Нила. Медицинские рецепты, содержащиеся в книгах, написанных в тибетских монастырях, ожидают своей всесторонней научной экспертизы. Даже эмпирические приемы труда, например плавка и обработка металлов, сопровождались, а иногда и переплетались с религиозными обрядами. У многих народов до недавнего времени сквозь века сохранялось отношение к кузнечному делу как к чему-то обязательно связанному с «высшими» силами.

Теоретическое сознание как оперирование понятиями, идеями (а это необходимое условие возникновения науки) также первоначально формировалось в рамках религиозного мировоззрения. Первой областью науки как теоретического знания историки считают математику и ее формирование связывают с пифагорейской школой. В пифагореизме понятие числа приобретает особый метафизический статус, и проникновение в природу числа могло мыслиться как особый путь постижения сущности мира. Число превращалось в идеальный объект, что оказалось предпосылкой формирования математики как науки.

Чтобы стать объектом теоретического сознания, число первоначально должно было сакрализоваться, превратиться в объект почитания. В средние века в рамках схоластики развивались логические знания. Не только математика, логика, но и астрономия, медицина и пр. как особые отрасли духовного производства возникали и функционировали в системах религиозного мировоззрения. Формирующаяся наука, создавая понятийные системы, образует и свой теоретический мир, отличающийся от того, который предстает перед обыденным сознанием. Одновременно она вырабатывает и набор таких особых требований, которые призваны отделить ее от других форм духовной деятельности.

4. Накопление технических знаний

В ходе человеческой истории развивалось отношение к природе как объекту познания и преобразования. Первые достаточно развитые формы теоретического освоения действительности возникают в античности. Осмысляется дихотомия знание-мнение, теоретическая деятельность отделяется от религиозной и политической. Практическая техническая деятельность и научное знание относятся уже к разным ценностным сферам, их взаимодействие носит сложный и противоречивый характер, что определяется спецификой полисной социальной структуры и агональным (соревновательным) характером мироотношения греков.

Познание осуществлялось преимущественно путем формирования носящих умозрительный характер рационально-философских схем, а техническая орудийная деятельность существовала, до и вне всяких теоретических обобщений. Практическое и теоретическое четко обособлялись. “Истина” выявлялась посредством непротиворечивых рассуждений и разумно обоснованных доказательств. В античности были заложены основы рационально-критического отношения к технике, которые стали предпосылками выделения теоретической компоненты практического отношения к действительности и формирования на последующих этапах истории общества научного технического знания.

В отношении к природе как к объекту познания и преобразования Средние века воспроизвели существенные черты первобытного мышления, но на новом уровне.

В отличие от человека первобытного “средневековый человек уже не сливает себя с природой, но и не противопоставляет себя ей”.

Русский историк Е. Спекторский выделил три фундаментальные идеи, составлявшие специфику средневекового миропонимания: “антропоморфизм, телеологизм, иерархизм”. Они же определили и некоторые другие характерные особенности средневекового мышления: индивидуализация вещей и событий, восприятие всей совокупности свойств в неразрывном единстве с их носителем, что в негативном плане означает невозможность аналитических расчленений и унификаций по параметрам, а, тем самым, и каких-либо статистических квантификаций.

Постепенно складывающиеся в Новое Время прагматические отношения с природой, требовали “объектного” восприятия мира. Формировалось отношение к природным явлениям, к пространству и времени как к чему-то существующему независимо от человека и его действий, как к внешним реальностям, которыми можно и нужно “овладевать”. Модификации обыденного, “практического” мировосприятия не могли не сказаться на теоретических представлениях о мире.

С открытиями Коперника, Дж. Бруно, И. Кеплера, Г. Галилея Земля теряла статус центра Вселенной, небо превращалось в однородное пространство бесконечной глубины, нерушимым законам оказалось подчинено даже движение наиболее “благородных” небесных объектов и назрел вывод (И. Ньютона) о принципиальном единстве земной и небесной механики. Усилиями Ф. Бэкона, Г. Галея, Т. Гоббса, Б. Спинозы, И. Ньютона формировался каузальный взгляд на природу.

Удаление целей и субъектов положило начало бурному развитию механики. Новый методологический идеал, связанный с заменой антропоморфно-телеологических безусловно каузальными принципами, обозначив исторический водораздел между до дисциплинарной и дисциплинарной стадиями в развитии знания, сразу дал начало более чем трехсотлетней эпохе воссоединения наук путем победоносного шествия механистических методов.

В странах Западной Европы постепенно происходили существенные изменения, затрагивающие, в том числе, сферу технического знания, формировалась техническая, или техногенная цивилизации.

Техника начинает играть все большее значение в ее развитии, в преобразовании природной среды, всех сфер человеческой жизнедеятельности, преобразовании способов и видов человеческой коммуникации, социальных связей и отношений людей, общественных институтов и морально-этических установок. Этот период О. Тофлер называет “второй социотехнической революцией”. Первой социотехнической революцией, по мнению О. Тофлера, был, опосредованный прогрессом техники, переход в эпоху неолита от преимущественно присваивающей экономики базирующейся на охоте и собирательстве к производящей основанной на скотоводстве и земледелии. Основные ценности техногенной цивилизации, как замечает В.С. Степин, состоят в следующем:

1. ценность объективного и предметного знания, раскрывающего сущность вещей, их природу, законы в соответствии с которыми могут изменяться вещи;

2. установка на постоянное приращение знаний о мире, требование постоянной новизны как результата исследования.

Оформляется идеал новой науки с ориентацией на эмпирические исследования. Второй вид знания, фиксирующий собственно процесс создания и использования технических средств труда, получил название технического знания.

5. Роль техники в жизни общества

Техника - совокупность средств и предметов труда, созданных человеком для повышения эффективности его деятельности в различных сферах (техника производственная, исследовательская, военная, бытовая, медицинская, учебная и т. д.).

С ней тесно связана технология - совокупность способов изготовления и применения техники, соединения средств и предметов труда. Технический прогресс как процесс совершенствования техники и технологии на основе опыта трудовой деятельности, использования более богатых природных ресурсов (например, железа вместо камня), социально-демографических факторов (например, специализация на изготовлении определенных орудий труда) имел место на всех этапах развития общества.

Техника - искусство, мастерство, умение - это общее название различных приспособлений, механизмов и устройств, не существующих в природе и изготовляемых человеком. Слово "техника" также означает "способ изготовления чего-либо" - например, техника живописи, техника выращивания картофеля и т. п.

Основное назначение техники - избавление человека от выполнения физически тяжёлой или рутинной (однообразной) работы, чтобы предоставить ему больше времени для творческих занятий, облегчить его повседневную жизнь.

За последние столетия техника оказала решающее воздействие на социально-экономический строй человеческого общества. Именно машинное производство вызвало переход от феодального общества к современному капитализму, а развитие бытовой и потребительской техники создало современную западную цивилизацию.

Прогресс в военной технике, особенно в сфере средств массового уничтожения, радикально изменил способы ведения войн, сделав невозможными крупномасштабные столкновения ведущих мировых государств. А в настоящее время полным ходом идёт также разработка и т. н. "несмертельных" видов оружия, широкое применение которых может заметно изменить стратегию и тактику будущих войн.

Если рассматривать развитие техники с положительной стороны, то в последние годы развитие новых отраслей и направлений требует колоссальных капитальных и интеллектуальных затрат. Это приводит к широкому международному сотрудничеству, например, в области космоса, фундаментальных физических исследований, энергетике.

Техносфера - термин употребляется при описании современной цивилизации, для которой характерно повсеместное использование техники и научных методов преобразования действительности, представляющих собой основной фактор развития общества.

Техносфера - синтез естественного и искусственного, созданный человеческой деятельностью и поддерживаемый ею для удовлетворения потребностей общества.

Осмысление взаимозависимости человечества, техники и природы как вместилища того и другого в концепции техносферы насущно необходимо для формирования новой идеологии научно-технического прогресса и мироощущения, в котором был бы преодолен утилитарно-потребительский подход как к природе, так и к человеку.

Человечество реализует технологический способ существования в природе путем использования ее потенций для целенаправленных преобразований, изменений в ней же.

Его практически преобразовательная деятельность изменяет, структурирует природное вещество, по-особому организует, переиначивает течение природных процессов за счет создания специальных предметных форм, образований, составляющий вещественную сферу техники.

Создается новая среда, в которой так или иначе в необходимой для человека мере должна присутствовать "естественная среда", уже зависимая и относительная, в другом статусе. древнегреческий общество исторический

Техническая деятельность порождает "вторую природу", квазиприроду, как бы природу, устойчивую лишь в рамках общественной практики, под надзором и при участии в ее процессах человека.

Вольно и невольно, самопроизвольно формируется симбиоз техники и человечества в природе как объективная реальность.

Человек технически создает "вторую природу" в качестве своей непосредственной среды обитания. Что же меняется в природе? Что же привносит в природу человеческая предметно-практическая деятельность? Как изменяются природные процессы?

Распашка миллиардов гектаров земли, преобразование видового состава растений и животных, изменение водного режима планеты, развитие горнорудной и химической промышленности.

Энергетики разнообразных отраслей производства проявились в ХХ веке как планетарная сила, порождающая целый ряд эффектов, неблагоприятно сказывающихся на природных процессах и на человеке, как биологическом существе. Масштабы промышленного производства и его инфраструктуры привели к проблемам рационального природопользования и пределов роста технологической цивилизации.

Сложившаяся ситуация нашла отражение в обращении к исследованию феномена техники, в том числе и в историческом контексте, на новых основаниях, с чем связано, появление термина "техносфера" и попытки создать концепцию техносферы.

В науках о Земле - географии, геологии, геохимии - видоизмененные фрагменты земной коры, географической среды принято относить к сфере взаимодействия природы и общества, а своеобразная "земная оболочка", несущая на себе следы человеческой деятельности, у некоторых исследователей получила название техносферы - преобразованной биосферы. Имеется точка зрения, что с материальной системой - природой, географической средой, может взаимодействовать лишь материальная компонента социосферы - "техносфера".

В русском языке термины "техника" и "технология" не являются синонимами. Употребляя первый, имеют, в виду предметные, вещественные устройства, совокупность предметных, вещественных средств, создаваемых для осуществления производственных потребностей общества. Т. е., это инструменты, машины, приборы и т. п.

Размещено на Allbest.ru

...

Подобные документы

    Место технического знания в системе научного знания. Основные этапы развития технических знаний: донаучный, зарождение технических наук, классический, современный. Проблемы философии техники: различение искусственного и естественного, оценка техники.

    реферат , добавлен 13.01.2015

    Эпоха Просвещения как одна из ключевых эпох в истории европейской культуры, связанная с развитием научной, философской и общественной мысли. Развитие науки и техники. Основные достижения деятелей науки. Историческое значение развития науки и техники.

    реферат , добавлен 14.12.2014

    Эволюция научного знания, науки и техники в процессе освоения и обустройства окружающего мира в различные исторические эпохи. Набор орудий и инструментов людей палеолита. Лук и стрелы как важнейшее достижение мезолита. Неолит и неолитическая революция.

    контрольная работа , добавлен 16.02.2012

    Результаты и проблемы развития научной мысли в Англии в XIX веке. Изобретения в области технического вооружения производства в России в XVI в. Определение влияния достижений науки и техники в рассматриваемые периоды на ход исторического процесса.

    контрольная работа , добавлен 22.09.2011

    Характеристика и сущность периода послевоенного восстановления народного хозяйства, реформ и преобразований, переход от тоталитарного государства к демократическому обществу. Развитие науки, культуры и творчества в годы войны, период "оттепели", "застоя".

    реферат , добавлен 25.10.2011

    Развитие науки и техники в период расцвета исламской культуры. Достижения мусульманских учёных средних веков в области математики и астрономии, медицины, физики и химии, минералогии, геологии и географии. Закона преломления арабского оптика Альгазена.

    реферат , добавлен 15.06.2012

    Развитие техники как предпосылки появления бытовой техники: от примитивных орудий первобытного человека до автоматических устройств современной промышленности. История появления электричества и электродвигателя, пылесоса, стиральной машины и холодильника.

    реферат , добавлен 27.11.2009

    Специфика развития научных знаний в Древнем Египте и их особые черты. Развитие точных и естественных наук, врачебного искусства. Процесс накопления знаний, которые носили прикладной характер. Значение древнеегипетской науки в развитии других цивилизаций.

    контрольная работа , добавлен 24.06.2013

    Уникальные находки научного и художественного значения, обнаруженные при раскопках кубанских курганов и вошедшие в мировую сокровищницу науки. Кубанские курганы как исторический источник для изучения жизни племён и народов, населявших Прикубанье.

    реферат , добавлен 07.10.2009

    Основные этапы и направления развития русской культуры, науки, техники в первой половине ХIХ в. Особенности художественной культуры этого периода: быстрая смена идейно-художественных направлений и параллельное существование разных художественных стилей.

В тесной связи с экономическими потребностями развиваются в XIV-XVI вв. наука и техника. Рождается наука в современном понимании - наука как новый способ познания мира. Характерной чертой эпохи становится отход от средневековой схоластики. Всячески обосновывается необходимость изучать природу не путем схоластических рассуждений, а с помощью опыта.

С развитием торговли совершенствуется кораблестроение и морское дело. Использование компаса делает возможными длительные плавания. Совершенствуются карты. Все это подготовило эпоху Больших географических открытий: в 1492 г. - открытие Америки Колумбом, в 1498 г. - открытие морского пути в Индию Васко да Гама, 1519-1522 гг. - кругосветное путешествие Магеллана. Эти и другие открытия познакомили Европу с новыми цивилизациями, дали толчок развитию многих наук и в то же время изменили всю систему мировой торговли, послужили предпосылкой возникновения колониализма.

Появление артиллерии вызывало изменения в военном деле, требовала сложных математических расчетов, изменила систему градостроения.

Огромное значение имело изобретение Йоганом Гутенбергом книгопечатания (около 1445 г.).

Постепенно не расчленение, характерное для древних времен, начинает изменяться выделением отдельных областей знаний.

Большие изменения происходят в медицине. Еще в XIII веке в ходе конфронтации с Папой римским император Священной Римской империи Фридрих II издал указ, который позволял препарировать человеческие труппы, что раньше сурово запрещалось церковью. В 1316 г. в первый раз в средневековой Европе в Болонье был прочитан курс лекций по анатомии человека. Теофраст Парацельс поддал критическому пересмотру идеи древней медицины и способствовал началу использования при лечении химических препаратов. Андреас Везалий в своем трактате «О телосложении человеческом» дал научное описание всех органов и систем, исправил много ошибочных представлений. Знаменитый хирург Амбруаз Паре разработал методы лечения огнестрельных ран; предложил мазевые повязки. Знаменитым является его афоризм: «Лучше быть правым в одиночку, чем ошибаться со всеми». Многие известные деятели эпохи Возрождения имели высшее медицинское образование (Франсуа Рабле, Николай Коперник, Галилео Галилей). Имели ее также и выдающиеся украинские деятели науки того времени, например, Юрий Котермак (Дрогобыч), который в 1481-1482 гг. был ректором Болонского университета, который называли матерью наук в Европе.

Переворот происходит в научных представлениях о строении Вселенной. Раньше господствовала система Птолемея, согласно которой центром Вселенной является неподвижная Земля, вокруг которой вращаются Солнце и другие небесные тела. Такой взгляд поддерживала церковь. А.Эйнштейн писал: «Сегодня нелегко понять, какая независимость мысли, редкая интуиция и искусное владение астрономическими фактами, были нужны для доказательства преимущества гелиоцентрических убеждений». Эти качества воплотились в научной работе Николая Коперника. Он родился в Польше, учился в Италии, потом вернулся на родину. Имел обширные математические знания. В результате длительных астрономических наблюдений и сложных расчетов он составил очень точные таблицы движения небесных тел. Они оказались необъяснимые с геоцентрических позиций. Таким образом, он доказал, что Земля вращается вокруг своей оси и одновременно, вокруг Солнца. Земля оказалась, согласно гелиоцентрической системе, не центром Вселенной, а рядовой планетой. Коперник изложил новые взгляды в книге, которую, побаиваясь преследования, позволил опубликовать, только лишь когда ему исполнилось 70 лет. Первые экземпляры его книги, вышли в свет, лишь перед его смертью.

Активным сторонником и пропагандистом нового взгляда на Вселенную стал Джордано Бруно. Он приходит к выводу, что жизнь возможна не только на Земле, что Вселенная бесконечна и состоит из множества миров. Бруно жил во многих странах Европы, выступал с лекциями в наибольших университетах. Был по доносам арестован инквизицией, восемь лет провел в тюрьме, осужденный на смертное наказание и сожженный в Риме на площади Цветов. О себе он писал: «Было во мне все-таки то, в чем не откажут мне будущие века, а именно: «страх смерти был чужим ему, - скажут потомки, - силу характера он имел больше, чем кто-либо, и ставил выше всех наслаждений в жизни, борьбу за истину».

Теоретические выводы Коперника подтвердил практическими наблюдениями Галилео Галилей. В 1609 г. он сконструировал телескоп, который давал увеличение в 32 раза. Его открытия ошеломили современников: месячный ландшафт, пятна на Солнце, изменения освещенности Венеры, спутники Юпитера. Учение Коперника находилось под официальным церковным запрещением, было признано ересью. Невзирая на это, Галилей пишет «Диалог о двух самых главных системах мира - Птолемеевой и системой Коперника». За это он был отдан под суд инквизиции, и хоть ему удалось избежать казней, до самой смерти находился под домашним арестом и не должен был возможности заниматься астрономией.

Культура Возрождения складывалась в условиях острой и сложной политической борьбы: возникновение свободных городских коммун в Италии, изменение республиканских форм правления тираниями, интервенция Франции, Испании и Германии, многочисленные крестьянские восстания, религиозные войны, первая буржуазная революция, в Нидерландах. Все это давало практический материал для теоретических обобщений, для развития политической мысли. Перу дипломата, историка, философа и поэта Никколо, Макиавелли принадлежит трактат «Государь». Макиавелли справедливо считается основателем политической науки Нового времени. Он призывал рассматривать явления политики вне их связи с религией и этикой. Именно он ввел в научное обращение понятие «государство» как такое (к нему разговор велся только о конкретных государствах). Макиавелли был убежденным республиканцем, за что испытал арест, пытки, но сохранил свою преданность флорентийской коммуне. Он был горячим патриотом Италии, сторонником национального единства. В то же время, опираясь на практику современной ему политики, Макиавелли, считал, что ради достижения могущества и благополучия государства пригодны любые средства - подкуп, лицемерие (формула «цель оправдывает средства»). Отсюда возникло понятие «макиавеллизм» как обозначение вседозволенности в политике.

В противовес жестокости реальной общественной жизни, целый ряд мыслителей начинает поиски идеального общественного строя. Возникает утопический социализм. Название новому учению дала книга Томаса Мора «Утопия» («утопия» в переводе с греческого - место, которого нет). Главной причиной бед народа автор считал частную собственность. Размышления об идеальном государстве продлил Томазо Компанелла. Свою книгу «Город Солнца» он написал в тюрьме, куда был брошен за организацию заговора против испанского владычества в Италии.

Уже с середины, а особенно с конца XVI века наступает кризис ренессансного гуманизма как мировоззрению определенной эпохи. Но общечеловеческой ценностью на все времена остается гуманизм как система убеждений, которая пропитана любовью к человеку, уважением к его достоинству.

Русская научная мысль впервой половине XIX в. пробивала себе путь вперёд, преодолевая в борьбе многочисленные препятствия. В феодально-крепостнической России наука была у властей в загоне, царская казна отпускала для неё ничтожные средства. Некоторым признанием со стороны правящих кругов пользовалась только историческая наука в её официально-правительственной трактовке. Общественные науки в лице большинства своих университетских и академических представителей имели резко выраженный официально-дворянский характер. Но в то же время выступили и повели самоотверженную борьбу за передовые научные воззрения декабристы, Белинский, Герцен и другие революционные представители русской общественно-научной мысли. Стали заметно оживляться и крепнуть технические и естественные науки, как бы отражая тем самым общий подъём производительных сил и развитие новых явлений в экономике.

Ведущим направлением философской мысли России было материалистическое направление. Великие русские мыслители А. И. Герцен и В. Г. Белинский уже в 40-х годах своим философским творчеством в большой степени содействовали успешному преодолению идеалистических взглядов. Герцен и Белинский выработали самостоятельное философское мировоззрение. Герцен в своих классических философских трудах «Письма об изучении природы», «Дилетантизм в науке» первый дал правильное истолкование диалектики Гегеля как «алгебры революции». По словам Ленина, «Герцен вплотную подошел к диалектическому материализму и остановился перед - историческим материализмом» Белинский в своих философских статьях 40-х годов развернул перед русскими читателями мировоззрение революционного демократа и материалиста. Идеи Герцена и Белинского в сильнейшей степени содействовали вызреванию демократических и социалистических элементов в передовой русской национальной культуре.

В первой половине века возникло несколько новых научных обществ: Московское общество истории и древностей российских, Московское общество испытателей природы, Математическое общество, Общество любителей российской словесности, Минералогическое общество в Петербурге, Археографическая комиссия, Русское географическое общество, Русское археологическое общество и др.

Большие успехи в первой половине XIX в. сделали выдающиеся русские учёные в области математики (Лобачевский, Остроградский), физики и техники (Петров, Якоби, Ленц, Черепановы, Шиллинг, Аносов, Дубинины, Обухов), астрономии (Струве), химии (Зинин), педагогики (Ушинский), медицины (Пирогов), сельскохозяйственной науки (Павлов). Велики были достижения в области географических наук и открытий замечательных русских путешественников (Лазарев, Беллин­сгаузен, Лисянский, Крузенштерн, Невельской и др.).

Великий русский математик Н. И. Лобачевский (1793- 1856 гг.), создатель новой геометрии,- один из величайших представителей математической науки XIX столетия. Он занялся проблемой, относящейся к теории параллельных линий, над которой в течение почти двух тысяч лет безуспешно работали математики всего мира. Лобачевский дал исчерпывающее решение вопроса, замечательная особенность которого заключалась в том, что была обнаружена возможность другой геометрии, совершенно отличной от классической, так называемой «эвклидовой». Лобачевский смело опубликовал свои идеи, имевшие глубоко революционный характер и получившие признание только после его смерти. Труды Лобачевского создали эпоху в истории геометрии, развивающейся в направлении построения новых геометрических систем ещё до настоящего времени. Несмотря на кажущуюся абстрактность его идей, Лобачевский стоял по существу на материалистической точке зрения: он не признавал никаких новых путей возникновения и построения геометрии, кроме совершенно конкретных процессов движения материальных тел, их соприкосновения и рассечения. Идеи Лобачевского получили приложение в различных вопросах естествознания, в частности в -последние десятилетия в теории относительности. Лобачевский работал в Казани, был шесть раз избран ректором Казанского университета и пользовался горячей любовью студенческой молодёжи.

М. В. Остроградский вписал своё имя в историю математической мысли человечества, создав замечательные работы по математической физике, аналитической и небесной механике. Остроградский смело шёл самостоятельным, творческим путём в науке, установив принцип наименьшего действия - один из важнейших законов механики. В 1840 г. Парижская академия объявила премию за решение проблем вариационного исчисления, между тем эти проблемы уже были решены Остроградским в труде, напечатанном ещё в 1834 г.

В первой половине XIX в. выступил ряд замечательных русских учёных и изобретателей, особенно в области электро­технику металлургии, прикладной химии. Профессор Петербургской медико-хирургической академии В. В. Петров (1761 1834 гг.) ранее западноевропейских учёных открыл явление теплового и светового действия электрического тока, позже ставшее незаслуженно известным под именем «вольтовой дуги». Независимо от работ Карлейля и Никольсона Петров открыл электролиз в первые годы XIX в., он же впервые в истории науки установил важнейшие физические и химические действия гальванического тока. Труды Петрова заложили прочные основы для развития электрохимии и электрометаллургии. С полным правом Петров писал о себе: «Я надеюсь, что просвещённые и беспристрастные физики по крайней мере некогда согласятся отдать трудам моим ту справедливость, которую важность сих последних опытов заслуживает». Академики Б. С Якоби (1801-1874 гг.) и Э. X. Ленц (1804-1865 гг.), избранный на место Петрова после смерти последнего, внесли значительный вклад в изучение электромагнитных явлений; Ленц открыл закон, определяющий направление индукционного тока. Открытия в этой области позволили неизмеримо расширить применение электричества для практических целей. Якоби сконструировал электродвигатель, установил его на судне и первый в мире в 1839 г. вместе с членами испытательной комиссии совершил плавание на электроходе, спущенном на воды Невы. Учёный-патриот Якоби, ходатайствуя перед правительством о получении средств для продолжения своих новаторских опытов, заботился, по его словам, о том, чтобы Россия, отечество, «не лишилась славы сказать, что Нева раньше Темзы или Тибра покрылась судами с магнитными двигателями».

Отец и сын Е. А. и М. Е. Черепановы, крепостные механики-инженеры Демидовых, построили в 1833-1834 гг. первую в России железную паровую дорогу на Нижне-Тагильском заводе (Южный Урал). Талантливые русские инженеры-металлурги П. Я. Аносов и П. М. Обухов много сделали для развития отечественной металлургии. Торный инженер Златоустовского завода на Урале, крупнейший металлург первой половины XIX в. Аносов первым в мире применил микроскоп для изучения строения металла и на основе колоссального числа опытов, длившихся около 30 лет, открыл способ получения знаменитой так называемой «булатной» стали. Открытия Аносова сделали этого русского учёного-инженера основоположником учения о стали, зачинателем высококачественной металлургии в России. Особое, выдающееся значение имеет открытие в 1859 г. способа проката стали замечательным русским изобретателем В. Пятовым. Обухов положил начало русскому сталелитейному делу; русская «обуховская сталь» не уступала прославленной немецкой «крупповской стали». В 1860 г. Обухов создал первую стальную пушку в России. Братья Дубинины, крестьяне графини Паниной, изобрели в начале 20-х годов способ очищения чёрной нефти; в 1823 г. они построили в Моздоке, на Северном Кавказе, первый в мире нефтеперегонный завод. Дубинины были первыми основателями керосинового производства. Но в царской, крепостнической, дореформенной России, разумеется, отсутствовали условия для углубления и практического применения изобретений и открытий замечательных русских людей. Изобретательская и техническая мысль русского народа весьма часто не получала ни заслуженного признания, ни практического применения в производстве. Царизм и господствующие классы, заражённые низкопоклонством перед иностранщиной, не могли и не желали признавать великие творческие возможности русского народа.

Существенный вклад в астрономическую науку сделал выдающийся русский астроном В. Я. Струве. Его наблюдения над так называемыми «двойными звёздами», микрометрические измерения более чем 3 тыс. звёзд, подавляющее большинство которых было открыто им самим, градусное измерение русско-скандинавской дуги меридиана явились крупнейшими трудами астрономической науки. Большой заслугой Струве было создание в 1839 г. Пулковской обсерватории под Петербургом, сыгравшей большую роль в развитии русской астрономии.

Значительным событием в развитии химии в России была разработка Соловьёвым, Щёголевым и Гессом русской химической номенклатуры. В 40-х годах усилиями гениального учёного Н. Н. Зинина (1812-1880 гг.) русская химия с честью продолжила дело, начатое Ломоносовым. Русский патриот Зинин сознательно стремился к созданию русской химической школы. «Довольно нам ходить на помочах у заграницы,- говорил он,- пора нам создавать свою науку». Зинин, несмотря на настояния великого немецкого учёного Либиха, желавшего оставить его в Германии, возвратился на родину и в бедной лаборатории Военно-медицинской академии в Петербурге приступил к своим замечательным опытам. В результате опытов им было сделано открытие мирового значения: найден способ получения анилина из бензола, и тем самым положено начало синтезу анилиновых красителей. Открытия Зинина легли в основу всего дальнейшего развития промышленности синтетических красителей. Ученик Зинина, выдающийся русский учёный химик А. М. Бутлеров заявил от лица всех передовых русских людей: «Имя Зинина будут всегда чтить те, которым дороги и близки к сердцу успехи и величие науки в России».

К числу знаменитых естествоиспытателей первой половины XIX в. относятся русские биологи К. Ф. Рулье и И. Е. Дядьковекий, философы-материалисты, борцы против витализма, имевшие большое влияние на передовое студенчество, славившиеся как лекторы и научные руководители молодёжи! И. Е. Дядьковский был близок А. И. Герцену, Н. П. Огарёву, В, Г. Белинскому, М. С. Щепкину. За атеистические воззрения он был в 1835 г. изгнан из Московского университета.

Большое значение для отечественной медицины имела деятельность М. Я. Мудрова, выдающегося клинициста, материалиста по воззрениям, развившего учение о значении внешней среды как фактора патологических состоянии.

Заслуженную славу русской медицине лринесли труды великого учёного Н. И. Пирогова (1810-1881 гг.), основателя военно-полевой хирургии. Он упорно боролся с господствовавшими в медицине реакционными натурфилософскими идеалистическими концепциями. Опыт, научный эксперимент, был положен Пироговым в основу его выводов. Свою научную работу Пирогов сочетал с общественной деятельностью, борясь против реакционной профессуры, царских казнокрадов и военных бюрократов. В 1856 г. он выступил со статьёй «Вопросы жизни» против старого воспитания, за создание из молодого поколения людей с твёрдым характером и честными демократическими убеждениями. Но Пирогов не остался до конца на передовых педагогических позициях. Ряд его отсталых требований подвергался острой критике со стороны демократов-просветителей, особенно Добролюбова.

Великий русский педагог, общественный деятель и учёный К. Д. Упганский (1824-1870 гг.), несмотря на травлю со стороны реакционно-правительственных кругов, завоевал признание своих идей в среде передовых педагогов, учёных и широких слоев русской интеллигенции. Ушинский отверг старые, схоластические методы преподавания, свойственные крепостной эпохе, заменил их новыми методическими приёмами, основанными на внимательном изучении детей школьного возраста, создал новые учебники. В своих знаменитых статьях и книгах («О пользе педагогической литературы», «О народности в общественном воспитании», «Человек, как предмет воспитания» (обширный исследовательский труд), книга для чтения «Родное слово», «Руководство к преподаванию по «Родному слову»») Ушинский развил новые идеи в педагогике. В основу своей педагогической системы Ушинский положил идею народности и требование научного обоснования педагогических положений. Он считал необходимым воспитывать в учащемся любовь к родине, уважение к фактам, уменье наблюдать действительность. Однако педагогическая система Ушинского проникнута мирным просветительским гуманизмом педагога-идеалиста, далёкого от идей борьбы и революции, в этом её слабая сторона.

По мере развития в России промышленности и торговли увеличивалась потребность в научных знаниях, технических усовершенствованиях, в изучении природных богатств.

Состояние торговли, промышленности, путей сообщения и природных ресурсов становится в 60-80-х годах XVIII в. предметом изучения академических экспедиций.

Эти экспедиции, в которых принимали участие И. И. Лепехин, П. С. Паллас, Н. Я. Озорецковский, В. Ф. Зуев и другие ученые, многосторонне исследовали отдельные районы России и собрали огромный материал по географии, ботанике, этнографии, геологии и т. д.

Наблюдения, накопленные в результате многолетних путешествий ученых, были опубликованы в специальных трудах.

В 1743 г. с Камчатки отправилось к берегам Америки первое промысловое судно, а к 1780 г. русские промышленники достигли Юкона.

Российский» Г. И.Шелехов в 1784 г. положил начало постоянным поселениям русских но Аляске.

В 60-х годах возобновил свою работу в Петербургской Академии наук возвратившийся в Россию виднейший математик , а 1768 г. в ней начал работать К. Ф. Вольф - один из основоположников учения о развитии организмов.

По словам Ф. Энгельса, «К. Ф. Вольф произвел в 1759 г. первое нападение па теорию постоянства видов, провозгласив учение об эволюции».

Повысился интерес к отечественной истории.

Историческая наука этого времени обогатилась публикацией источников- «Русской Правды» (1767 г.), «Журнала, или поденной записки» Петра I (1770 г.) и др.

Курский купец И. И. Голиков, страстный поклонник Петра I, издал 30 томов «Деяний Петра Великого» и «Дополнений» к ним, Н. И. Новиков опубликовал в 1773-1775 гг. многотомную «Древнюю Российскую Вивлиофику», в которую вошло много исторических документов.

В эти же годы началось издание пятитомной «Истории Российской» В. Н. Татищева, и вышло семь томов «Истории Российской с древнейших времен» другого дворянского историка и публициста - М. М. Щербатова.

В области развития научно-технической мысли, в создании различных машин и механизмов в это время особенно выделяются И. И. Ползунов, И. П. Кулибив и К. Д. Фролов.

Сын солдата Иван Иванович Ползунов (1728-1766) является изобретателен паровой машины. Она была пущена в 1766 г. на Алтае.

Иван Петрович Кулибин (1735-1818) разработал проект одноарочного моста через Неву. Проверив математические расчеты Кулибина, дал о них восторженный отзыв.

Кулибину принадлежит изобретение семафорного телеграфа и кода к нему, «водоходного» судна, «самокатки», являвшейся прототипом велосипеда, прожектора («кулибинского фонаря») и ряда других сложных механизмов.

Выдающимся изобретателем был также Козьма Дмитриевич Фролов (1726-1800), сын заводского мастерового. Фролов сконструировал водяной двигатель, приводивший в движение механизмы Колывано-Воскресенского завода.

Но применение технических новшеств на практике встречало непреодолимое препятствие в крепостнической системе. Труд крепостного крестьянина делал ненужным для господствующего класса прогресс техники.

Замечательные идеи редко претворялись в жизнь, изумительные проекты оставались только на бумаге, забывались важнейшие открытия, изобретатели прозябали в неизвестности, терпели нужду, лишения, подвергались преследованиям и издевательствам.

Некоторые, хотя и весьма скромные, успехи были достигнуты в области образования. Основное внимание уделялось закрытым дворянским учебным заведениям, готовившим офицеров и чиновников. Первые гимназии были созданы только в 50-е годы - Московская при университете и Казанская.

Долгое время они являлись единственными общеобразовательными школами. Лишь в 80-х годах начинается организация общеобразовательных, начальных и средних школ для всех сословий, дети крестьян в школы, однако, не допускались. До конца XVIII в. таких школ было открыто всего лишь 316 с 18 тыс. учащихся.

Большинство богатых дворян предпочитало давать своим детям так называемое домашнее образование, нанимая иностранцев-гувернеров, среди которых было немало невежд и проходимцев. Чаще всего дети таких дворян приобретали только внешний лоск и знание французского языка.

Служилые и мелкопоместные дворяне обучали своих детей у невежественных «дядек». Что же касается крестьян, то лишь немногие из них могли обучиться грамоте и письму у дьячков и других деревенских грамотеев.

Дворянство державие боялись, что распространение просвещения среди «простого народа» вызовет «брожение умов».

марта 1896г. посредством электромагнитных волн на расстоянии 250 м Радиосвязь начали применять на флоте и в армии России. Бурно начали развиваться радиотехника и радиоэлектроника I этап развития (около 30 лет) Этап развития радиотелеграфии и научных основ радиотехники 1897г. английский физик экспериментально доказал существование электронов. 1904г. английский инженер Дж.А.Флеминг создал первую электродную лампу- диод. 1905г.Альберт Эйнштейн объяснил явление фотоэффекта, связанного со световыми квантами. 1907г. американец Ли Де Форест получил патент на трехэлектродную лампу. 1913г. создаются первые ламповые радиопередатчики. 1914г. русский физик Н.Д.Папалекси изготовил первые радиолампы. 1913-1920г.-радиотехника становится ламповой. 1918г. декретом В.И.Ленина создана Нижегородская радиолаборатория. 1919 г. Бонч-Бруевичем выпущена первая усилительная электронная лампа и создан первый ламповый радиотелефонный передатчик 1922г. Русский ученый О.В.Лосев изобретает кристадин- прообраз современных полупроводниковых радиоприемников.