Что является результатом интерференции волн. I.Сложение волн.Принцип суперпозиции

Рассмотрим теперь ситуацию, когда имеется не один, а несколько источников волн (осцилляторов). Излучаемые ими волны в некоторой области пространства будут оказывать совокупное действие. Прежде чем начать анализ того, что может произойти в результате, остановимся сначала на очень важном физическом принципе, которым неоднократно будем пользоваться в нашем курсе, - принципе суперпозиции. Суть его проста.

Предположим, что имеется не один, а несколько источников возмущения (ими могут быть механические осцилляторы, электрические заряды, и др.). Что будет отмечать прибор, регистрирующий одновременно возмущения среды от всех источников? Если составляющие сложного процесса воздействия взаимно не влияют друг на друга, то результирующий эффект будет представлять собой сумму эффектов, вызываемых каждым воздействием в отдельности независимо от наличия остальных - это и есть принцип суперпозиции, т.е. наложения. Этот принцип един для многих явлений, но его математическая запись может быть разной в зависимости от характера рассматриваемых явлений - векторного или скалярного.

Принцип суперпозиции волн выполняется не во всех случаях, а только в так называемых линейных средах. Среду, например, можно считать линейной, если ее частицы находятся под действием упругой (квазиупругой) возвращающей силы. Среды, в которых принцип суперпозиции не выполняется, называются нелинейными. Так, при распространении волн большой интенсивности линейная среда может становиться нелинейной. Возникают чрезвычайно интересные и технически важные явления. Это наблюдается при распространении в среде ультразвука большой мощности (в акустике) или лазерных лучей в кристаллах (в оптике). Научные и технические направления, занимающиеся изучением этих явлений, получили название нелинейной акустики и нелинейной оптики, соответственно.

Будем рассматривать только линейные эффекты. Применительно к волнам принцип суперпозиции утверждает, что каждая из них?,(х, t) распространяется независимо от того, есть ли в данной среде источники других волн или нет. Математически, в случае распространения N волн вдоль оси х, он выражается так

где с(х, 1) - суммарная (результирующая) волна.

Рассмотрим наложение двух монохроматических волн одинаковой частоты со и поляризации, распространяющихся по одному направлению (ось х) из двух источников



Будем наблюдать результат их сложения в определенной точке М, т.е. зафиксируем координату х = х м в уравнениях, описывающих обе волны:

При этом мы устранили двойную периодичность процесса и превратили волны в колебания, совершающиеся в одной точке М с одним временным периодом Т= 2л/со и различающиеся начальными фазами Ф, = к г х м и ф 2 = крс м, т.е.

и

Теперь для нахождения результирующего процесса t{t) в точке М мы должны сложить 2,! и q 2: W) = ^i(0 + с 2 (0- Мы можем воспользоваться результатами, полученными ранее в подразделе 2.3.1. Используя формулу (2.21), получим амплитуду суммарного колебания А, выраженную через А, ф! и А 2 , фг, как

Значение А м (амплитуда суммарного колебания в точке М) зависит от разности фаз колебаний Аф = ф 2 - ф). Что происходит в случае разных значений Дф, подробно рассмотрено в подразделе 2.3.1. В частности, если эта разность Аф остается все время постоянной, то в зависимости от ее значения может получиться так, что в случае равенства амплитуд А = А 2 = А результирующая амплитуда А м будет равной нулю или 2А.

Чтобы явление увеличения или уменьшения амплитуды при наложении волн (интерференции) можно было наблюдать, необходимо, как уже говорилось, чтобы разность фаз Дф = ф 2 - ф! оставалась постоянной. Это требование означает, чтобы колебания были когерентными. Источники колебаний называются когерентными ", если разность фаз возбуждаемых ими колебаний не изменяется с течением времени. Волны, порожденные такими источниками, также являются когерентными. Кроме того, необходимо, чтобы складываемые волны были одинаково поляризованными, т.е. чтобы смещения частиц в них происходили, например, в одной плоскости.

Видно, что осуществление интерференции волн требует соблюдения нескольких условий. В волновой оптике это означает создание когерентных источников и реализации способа сложения возбуждаемых ими волн.

1 Различают когерентность (от лат. cohaerens - «находящийся в связи») временную, связанную с монохроматичностью волн, о которой и идет речь в данном разделе, и пространственную когерентность, нарушение которой характерно для протяженных источников излучения (нагретых тел, в частности). Особенности пространственной когерентности (и некогерентности) мы не рассматриваем.

Интерференция волн (от лат. inter — взаимно, между собой и ferio — ударяю, пора-жаю) — взаимное усиление или ослабление двух (или большего числа) волн при их наложении друг на друга при одновременном распространении в пространстве.

Обычно под интерференционным эффектом понимают тот факт, что результирующая интен-сивность в одних точках пространства получается больше, в других — меньше суммарной интен-сивности волн.

Интерференция волн — одно из основных свойств волн любой природы: упругих, электромаг-нитных, в том числе и световых, и др.

Интерференция механических волн.

Сложение механических волн — их взаимное наложение — проще всего наблюдать на по-верхности воды . Если возбудить две волны, бросив в воду два камня, то каждая из этих волн ведет себя так, как будто другой волны не существует. Аналогично ведут себя звуковые волны от разных независимых источников. В каждой точке среды колебания , вызванные волнами, просто складываются. Результирующее смещение любой частицы среды представляет собой алгебраичес-кую сумму смещений, которые происходили бы при распространении одной из волн в отсутствие другой.

Если одновременно в двух точках О 1 и О 2 возбудить в воде две когерентные гармонические вол-ны , то будут наблюдаться гребни и впадины на поверхности воды, не меняющиеся со временем, т. е. возникнет интерференция .

Условием возникновения максимума интенсивности в некоторой точке М , находящейся на расстояниях d 1 и d 2 от источников волн О 1 и О 2 , расстояние между которыми l d 1 и l ≪ d 2 (рис. ниже), будет:

Δd = kλ,

где k = 0 , 1 , 2 , а λ длина волны .

Амплитуда колебаний среды в данной точке максимальна, если разность хода двух волн, возбуждающих колебания в этой точке, равна целому числу длин волн и при условии, что фазы колебаний двух источников совпадают.

Под разностью хода Δd здесь понимают геометрическую разность путей, которые проходят вол-ны от двух источников до рассматриваемой точки: Δd = d 2 - d 1 . При разности хода Δd = разность фаз двух волн равна четному числу π , и амплитуды колебаний будут складываться.

Условием минимума является:

Δd = (2k + 1)λ/2.

Амплитуда колебаний среды в данной точке минимальна, если разность хода двух волн, возбуждающих колебания в этой точке, равна нечетному числу полуволн и при условии, что фазы колебаний двух источников совпадают.

Разность фаз волн в этом случае равна нечетному числу π , т. е. колебания происходят в противофазе, следовательно, гасятся; амплитуда результирующего колебания равна нулю.

Распределение энергии при интерференции.

Вследствие интерференции происходит перераспределение энергии в пространстве. Она концентрируется в максимумах за счет того, что в минимумы не поступает совсем.

С которыми мы начинаем сейчас знакомиться. Для того чтобы убедиться в том, что свет имеет волновую природу, необходимо было найти экспериментальные доказательства интерференции и дифракции света.

Чтобы лучпзе понять явление интерференции света, мы вначале остановимся на интерференции механических волн.

Сложение волн. Очень часто в среде одновременно распространяется несколько различных волн. Например, когда в комнате беседуют несколько человек, то звуковые волны накладываются друг на друга. Что при этом происходит?

Проще всего проследить за наложением механических волн, наблюдая волны на поверхности воды. Если мы бросим в воду два камня, образовав тем самым две круговые волны, то можно будет заметить, что каждая волна проходит сквозь другую и ведет себя в дальнейшем так, как будто другой волны совсем не существовало. Точно так же любое число звуковых волн может одновременно распространяться в воздухе , ничуть не мешая друг другу. Множество музыкальных инструментов в оркестре или голосов в хоре создает звуковые волны, одновременно улавливаемые нашим ухом. Причем ухо может отличить один звук от другого.

Теперь посмотрим более внимательно, что происходит в местах, где волны накладываются одна на другую. Наблюдая волны на поверхности воды от двух брошенных в воду камней, можно заметить, что некоторые участки поверхности не возмущены, в других же местах возмущение усилилось. Если две волны встречаются в одном месте своими гребнями, то в этом месте возмущение поверхности воды усиливается. Если же, напротив, гребень одной волны встречается с впадиной другой, то поверхность воды не будет возмущена.

Вообще же в каждой точке среды колебания, вызванные двумя волнами, просто складываются. Результирующее смещение любой частицы среды представляет собой алгебраическую сумму смещений, которые происходили бы при распространении одной из волн в отсутствие другой.

Интерференция. Сложение в пространстве волн, при котором образуется постоянное но времени распределение амплитуд результирующих колебаний частиц среды, называется интерференцией 1 .

Выясним, при каких условиях наблюдается интерференция волн. Для этого рассмотрим более подробно сложение волн, образующихся на поверхности воды.

Можно одновременно возбудить две круговые волны в ванне с помощью двух птариков, укрепленных на стержне, которые совершают гармонические колебания (рис. 8.43). В любой точке М на поверхности воды (рис. 8.44) будут складываться колебания, вызванные двумя волнами (от источников O 1 и О 2). Амплитуды колебаний, вызванных в точке М обеими волнами, будут, вообще говоря, различаться, так как волны проходят различные пути d 1 и d 2 . Но если расстояние I между источниками много меньше этих путей то обе амплитуды можно считать практически одинаковыми.

Результат сложения волн, приходящих в точку М, зависит от разности фаз между ними. Пройдя различные расстояния d 1 и d 2 волны имеют разность хода

d = d 2 - d 1 . Если разность хода равна длине волны , то вторая волна запаздывает по сравнению с первой на один период (именно за период волна проходит путь, равный ее длине волны ). Следовательно, в этом случае гребни (как и впадины) обеих волн совпадают.

Условие максимумов. На рисунке 8.45 изображена зависимость от времени смещений х 1 и х 2 волнами при d = . Разность фаз колебаний равна нулю (или, что то же самое, 2 так как период синуса равен 2). В результате сложения этих колебаний возникают результирующие колебания с удвоенной амплитудой. Колебания результирующего смещения х на рисунке показаны цветной штриховой линией.

1 От латинских слов inter - взаимно, между собой и ferio ударяю, поражаю.

То же самое будет происходить, если на отрезке d укладывается не одна, а любое целое число длин волн.

Амплитуда колебаний частиц среды в данной точке максимальна, если разность хода двух волн, возбуждающих колебания в этой точке, равна целому числу длин волн:

где k = 0, 1, 2, ... .

Условие минимумов. Пусть теперь на отрезке Ad укладывается половина длины волны. Очевидно, что при этом вторая волна отстает от первой на половину периода. Разность фаз оказывается равной л, т. е. колебания будут происходить в противофазе. В результате сложения этих колебаний амплитуда результирующих колебаний равна нулю, т. е. в рассматриваемой точке колебаний нет (рис. 8.46). То же самое произойдет, если на отрезке укладывается любое нечетное число полуволн.

Амплитуда колебаний частиц среды в данной точке минимальна, если разность хода двух волн, возбуждающих колебания в этой точке, равна нечетному числу полуволн:

Если разность хода d 2 - d 1 принимает промежуточное значение между то и амплитуда результирующих колебаний принимает некоторое промежуточное значение между удвоенной амплитудой и нулем. Но важно то, что амплитуда колебаний в любой точке не меняется с течением времени. На поверхности воды возникает определенное, неизменное во времени распределение амплитуд колебаний, которое называют интерференционной картиной. На рисунке 8.47 показана фотография интерференционной картины для двух круговых волн от двух источников (черные кружки). Белые участки в средней части фотографии соответствуют максимумам колебаний, а темные - минимумам.



Когерентные волны.
Для образования устойчивой интерференционной картины необходимо, чтобы источники волн имели одинаковую частоту и разность фаз их колебаний была постоянной.

Источники, соответствующие этим двум условиям, называются когерентными 1 . Когерентными называют и созданные ими волны. Только при сложении когерентных волн образуется устойчивая интерференционная картина.

Если же разность фаз колебаний источников не остается постоянной, то в любой точке среды разность фаз колебаний, возбуждаемых двумя волнами, будет меняться с течением времени. Поэтому амплитуда результирующих колебаний с течением времени будет непрерывно изменяться. В результате максимумы и минимумы перемещаются в про странстве, и интерференционная картина размывается.

Распределение энергии при интерференции. Волны несут энергию. Что же с этой энергией происходит при гашении волн друг другом? Может быть, она превращается в другие формы, и в минимумах интерференционной картины выделяется тепло? Ничего подобного!

Наличие минимума в данной точке интерференционной картины означает, что энергия сюда не поступает совсем. Вследствие интерференции происходит пepepaспредилениe энергии в пространстве. Она не распределяется равномерно по всем частицам среды, а концентрируется в максимумах за счет того, что в минимумы не поступает вовсе.

1 От латинского слова cohaereus - влаимосвязанный.

Обнаружение интерференционной картины доказывает, что мы наблюдаем волновой процесс. Волны могут гасить друг друга, а сталкивающиеся частицы никогда не уничтожают друг друга целиком. Интерферируют только когерентные (согласованные) волны .


1. Какие волиы называют когерентными!
2. Что называют интерференцией!

Мякишев Г. Я., Физика. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / Г. Я. Мякишев, Б. В. Буховцев, В. М. Чаругин; под ред. В. И. Николаева, Н. А. Парфентьевой. - 17-е изд., перераб. и доп. - М. : Просвещение, 2008. - 399 с: ил.

Помощь школьнику онлайн , Физика и астрономия для 11 класса скачать , календарно-тематическое планирование

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Часто в веществе в один и тот же момент времени распространяется несколько волн. В таком случае любая частица вещества, которая попадает в это сложное поле волны, совершает колебания, являющиеся результатом каждого из рассматриваемых волновых процессов. Суммарное смещение частицы вещества в произвольный момент времени - это геометрическая сумма смещений, которые вызваны каждым из отдельных процессов колебания. Каждая волна распространяется в веществе так, будто других волновых процессов не существует. Закон сложения волн (колебаний) называют принципом суперпозиции или принципом независимого наложения волн друг на друга. В качестве примера независимого сложения колебаний можно привести сложение колебаний волн звука при игре оркестра. Слушая который, можно различить звучание отдельных инструментов. Если бы принцип суперпозиции не выполнялся, то музыка стала бы не возможна.

Определение интерференции волн

ОПРЕДЕЛЕНИЕ

Сложение колебаний, при котором они взаимно усиливают или ослабляют друг друга, называют интерференцией .

В переводе с французского interferer означает вмешиваться.

Интерференция волн возникает тогда, когда колебания в волнах происходят при одинаковых частотах, одинаковых направлениях смещения частиц и постоянстве разности фаз. Или, иначе говоря, при когерентности источников волн. (В переводе с латинского языка cohaerer - находиться в связи). В том случае, если один поток бегущих волн, создающих последовательно во всех точках исследуемой части поля волны одинаковые колебания, налагается на когерентный поток подобных волн, создающий колебания волны с такой же амплитудой, то интерференция колебаний ведет к неизменному во времени расчленению поля волны на:

  1. Области усиления колебаний.
  2. Области ослабления колебаний.

Геометрическое расположение места интерференционного усиления колебаний определяет разность хода волн (). Наибольшее усиление колебаний располагается там, где:

где n - целое число; - длина волны.

Максимальное ослабление колебаний происходит там, где:

Явление интерференции можно наблюдать у любых видов волн. Это явление, например, можно наблюдать для волн света. Для определённой величины разности хода прямого и отраженного луча света, попадая в одну точку, рассматриваемые лучи способны полностью погасить друг друга.

Примеры решения задач

ПРИМЕР 1

Задание Два колебания происходят в соответствии с уравнениями: и . Покажите, как получить условие максимума и минимума интенсивности при наложении двух данных волн.
Решение Если рассматривается сложение колебаний в одном направлении, тогда смещение, которое получает точка в каждом колебании, будет складываться алгебраически. И результирующее смещение равно:

Изобразим векторную диаграмму сложения двух колебаний одинаковой частоты (таких, которые заданы по нашему условию (рис.1)).

Суммарное смещение x (1.1) получается проектированием на вертикальный диаметр векторов — амплитуд и . Для любого момента времени смещение x - проекция вектора , который равен:

Следовательно, имеем:

Из рис.1 следует, что:

Энергия суммарного гармонического колебания равна сумме энергий колебаний если:

Выражение (1.6) выполняется, если (в соответствии с (1.5)) фазы суммируемых колебаний отличаются на величину , где

Если разность фаз составляет:

То считают, что колебания находятся в противофазе, тогда:

В случае, при котором :

Необходимы более веские доказательства того, что свет при распространении ведет себя как волна. Любому волновому движению присущи явления интерференции и дифракции. Для того чтобы быть уверенным в том, что свет имеет волновую природу, необходимо найти экспериментальные доказательства интерференции и дифракции света.

Интерференция - достаточно сложное явление. Чтобы лучше понять его суть, мы вначале остановимся на интерференции механических волн.

Сложение волн. Очень часто в среде одновременно распространяется несколько различных волн. Например, когда в комнате беседуют несколько человек, то звуковые волны накладываются друг на друга. Что при этом происходит?

Проще всего проследить за наложением механических волн, наблюдая волны на поверхности воды. Если мы бросим в воду два камня, создав этим две кольцевые волны, то нетрудно заметить, что каждая волна проходит сквозь другую и ведет себя в дальнейшем так, как будто бы другой волны совсем не существовало. Точно так же любое число звуковых волн может одновременно распространяться в воздухе, ничуть не мешая друг другу. Множество музыкальных инструментов в оркестре или голосов в хоре создают звуковые волны, одновременно улавливаемые нашим ухом. Причем ухо в состоянии отличить один звук от другого.

Теперь посмотрим более внимательно, что происходит в местах, где волны накладываются друг на друга. Наблюдая волны на поверхности воды от двух брошенных в воду камней, можно заметить, что некоторые участки поверхности не возмущены, в других же местах возмущение усилилось. Если две волны встречаются в одном месте гребнями, то в этом месте возмущение поверхности воды усиливается.

Если же, напротив, гребень одной волны встречается с впадиной другой, то поверхность воды не будет возмущена.

Вообще же в каждой точке среды колебания, вызванные двумя волнами, просто складываются. Результирующее смещение любой частицы среды представляет собой алгебраическую (т. е. с учетом их знаков) сумму смещений, которые происходили бы при распространении одной из волн в отсутствие другой.

Интерференция. Сложение в пространстве волн, при котором образуется постоянное во времени распределение амплитуд результирующих колебаний, называется интерференцией.

Выясним, при каких условиях имеет место интерференция волн. Для этого рассмотрим более подробно сложение волн, образуемых на поверхности воды.

Можно одновременно возбудить две круговые волны в ванне с помощью двух шариков, укрепленных на стержне, который совершает гармонические колебания (рис. 118). В любой точке М на поверхности воды (рис. 119) будут складываться колебания, вызванные двумя волнами (от источников O 1 и О 2). Амплитуды колебаний, вызванных в точке М обеими волнами, будут, вообще говоря, отличаться, так как волны проходят различные пути d 1 и d 2 . Но если расстояние l между источниками много меньше этих путей (l « d 1 и l « d 2) , то обе амплитуды
можно считать практически одинаковыми.

Результат сложения волн, приходящих в точку M, зависит от разности фаз между ними. Пройдя различные расстояния d 1 и d 2 , волны имеют разность хода Δd = d 2 -d 1 . Если разность хода равна длине волны λ, то вторая волна запаздывает по сравнению с первой ровно на один период (как раз за период волна проходит путь, равный длине волны). Следовательно, в этом случае гребни (как и впадины) обеих волн совпадают.

Условие максимумов. На рисунке 120 изображена зависимость от времени смещений X 1 и X 2 , вызванных двумя волнами при Δd= λ. Разность фаз колебаний равна нулю (или, что то же самое, 2л, так как период синуса равен 2п). В результате сложения этих колебаний возникает результирующее колебание с удвоенной амплитудой. Колебания результирующего смещения на рисунке показаны цветом (пунктир). То же самое будет происходить, если на отрезке Δd укладывается не одна, а любое целое число длин волн.

Амплитуда колебаний среды в данной точке максимальна, если разность хода двух волн, возбуждающих колебания в этой точке, равна целому числу длин волн:

где к=0,1,2,....

Условие минимумов. Пусть теперь на отрезке Δd укладывается половина длины волны. Очевидно, что при этом вторая волна отстает от первой на половину периода. Разность фаз оказывается равной п, т. е. колебания будут происходить в противофазе. В результате сложения этих колебаний амплитуда результирующего колебания равна нулю, т. е. в рассматриваемой точке колебаний нет (рис. 121). То же самое произойдет, если на отрезке укладывается любое нечетное число полуволн.

Амплитуда колебаний среды в данной точке минимальна, если разность хода двух волн, возбуждающих колебания в этой точке, равна нечетному числу полуволн:

Если разность хода d 2 - d 1 принимает промежуточное значение
между λ и λ/2 , то и амплитуда результирующего колебания принимает некоторое промежуточное значение между удвоенной амплитудой и нулем. Но наиболее важно то, что Амплитуда колебаний в любой точке he меняется с течением времени. На поверхности воды возникает определенное, неизменное во времени распределение амплитуд колебаний, которое называют интерференционной картиной. На рисунке 122 показан рисунок с фотографии интерференционной картины двух круговых волн от двух источников (черные кружки). Белые участки в средней части фотографии соответствуют максимумам колебаний, а темные - минимумам.

Когерентные волны. Для образования устойчивой интерференционной картины необходимо, чтобы источники волн имели одинаковую частоту и разность фаз их колебаний была постоянной.

Источники, удовлетворяющие этим условиям, называются когерентными. Когерентными называют и созданные ими волны. Только при сложении когерентных волн образуется устойчивая интерференционная картина.

Если же разность фаз колебаний источников не остается постоянной, то в любой точке среды разность фаз колебаний, возбуждаемых двумя волнами, будет меняться. Поэтому амплитуда результирующих колебаний с течением времени изменяется. В результате максимумы и минимумы перемещаются в пространстве и интерференционная картина размывается.

Распределение энергии при интерференции. Волны несут энергию. Что же с этой энергией происходит при гашении волн друг другом? Может быть, она превращается в другие формы и в минимумах интерференционной картины выделяется тепло? Ничего подобного. Наличие минимума в данной точке интерференционной картины означает, что энергия сюда не поступает совсем. Вследствие интерференции происходит перераспределение энергии в пространстве. Она не распределяется равномерно по всем частицам среды, а концентрируется в максимумах за счет того, что в минимумы не поступает совсем.

ИНТЕРФЕРЕНЦИЯ СВЕТОВЫХ ВОЛН

Если свет представляет собой поток волн, то должно наблюдаться явление интерференции света. Однако получить интерференционную картину (чередование максимумов и минимумов освещенности) с помощью двух независимых источников света, например двух электрических лампочек, невозможно. Включение еще одной лампочки лишь увеличивает освещенность поверхности, но не создает чередования минимумов и максимумов освещенности.

Выясним, в чем причина этого и при каких условиях можно наблюдать интерференцию света.

Условие когерентности световых волн. Причина состоит в том, что световые волны, излучаемые различными источниками, не согласованы друг с другом. Для получения же устойчивой интерференционной картины нужны согласованные волны. Они должны иметь одинаковые длины волн и постоянную разность фаз в любой точке пространства. Напомним, что такие согласованные волны с одинаковыми длинами волн и постоянной разностью фаз называются когерентными.

Почти точного равенства длин волн от двух источников добиться нетрудно. Для этого достаточно использовать хорошие светофильтры, пропускающие свет в очень узком интервале длин волн. Но невозможно осуществить Постоянство разности фаз от двух независимых источников. Атомы источников излучают свет независимо друг от друга отдельными «обрывками» (цугами) синусоидальных волн, имеющими длину около метра. И такие цуги волн от обоих источников налагаются друг на друга. В результате амплитуда колебаний в любой точке пространства хаотически меняется со временем в зависимости от того, как в данный момент времени цуги волн от различных источников сдвинуты друг относительно друга по фазе. Волны от различных источников света некогерентны из-за того, что разность фаз волн не остается постоянной. Никакой устойчивой картины с определенным распределением максимумов и минимумов освещенности в пространстве не наблюдается.

Интерференция в тонких пленках. Тем не менее интерференцию света удается наблюдать. Курьез состоит в том, что ее наблюдали очень давно, но только не отдавали себе в этом отчета.

Вы тоже много раз видели интерференционную картину, когда в детстве развлекались пусканием мыльных пузырей или наблюдали за радужным переливом цветов тонкой пленки керосина или нефти на поверхности воды. «Мыльный пузырь, витая в воздухе... зажигается всеми оттенками цветов, присущими окружающим предметам. Мыльный пузырь, пожалуй, самое изысканное чудо природы» (Марк Твен). Именно интерференция света делает мыльный пузырь столь достойным восхищения.

Английский ученый Томас Юнг первым пришел к гениальной мысли о возможности объяснения цветов тонких пленок сложением волн 1 и 2 (рис. 123), одна из которых (1) отражается от наружной поверхности пленки, а вторая (2) -от внутренней. При этом происходит интерференция световых волн - сложение двух волн, вследствие которого наблюдается устойчивая во времени картина усиления или ослабления результирующих световых колебаний в различных точках пространства. Результат интерференции (усиление или ослабление результирующих колебаний) зависит от угла падения света на пленку, ее толщины и длины волны. Усиление света произойдет в том случае, если преломленная волна 2 отстанет от отраженной волны 1 на целое число длин волн. Если же вторая волна отстанет от первой на половину длины волны или на нечетное число полуволн, то произойдет ослабление света.

Когерентность волн, отраженных от наружной и внутренней поверхностей пленки, обеспечивается тем, что они являются частями одного и того же светового пучка. Цуг волн от каждого излучающего атома разделяется пленкой на два, а затем эти части сводятся вместе и интерферируют.

Юнг также понял, что различие в цвете связано с различием в длине волны (или частоте световых волн). Световым пучкам различного цвета соответствуют волны различной длины. Для взаимного усиления волн, отличающихся друг от друга длиной (углы падения предполагаются одинаковыми), требуется различная толщина пленки. Следовательно, если пленка имеет неодинаковую толщину, то при освещении ее белым светом должны появиться различные цвета.

Простая интерференционная картина возникает в тонкой прослойке воздуха между стеклянной пластиной и положенной на нее плоско-выпуклой линзой, сферическая поверхность которой имеет большой радиус кривизны. Эта интерференционная картина имеет вид концентрических колец, получивших название кольца Ньютона.

Возьмите плоско-выпуклую линзу с малой кривизной сферической поверхности и положите ее на стеклянную пластину. Внимательно разглядывая плоскую поверхность линзы (лучше через лупу), вы обнаружите в месте соприкосновения линзы и пластины темное пятно и вокруг него совокупность маленьких радужных колец. Расстояния между соседними кольцами быстро убывают с увеличением их радиуса (рис.111). Это и есть кольца Ньютона. Ньютон наблюдал и исследовал их не только в белом свете, но и при освещении линзы одноцветным (монохроматическим) пучком. Оказалось, что радиусы колец одного и того же порядкового номера увеличиваются при переходе от фиолетового конца спектра к красному; красные кольца имеют максимальный радиус. Все это вы можете проверить с помощью самостоятельных наблюдений.

Удовлетворительно объяснить, почему возникают кольца, Ньютон не смог. Удалось это Юнгу. Проследим за ходом его рассуждений. В их основе лежит предположение о том, что свет - это волны. Рассмотрим случай, когда волна определенной длины падает почти перпендикулярно на плоско-выпуклую линзу (рис. 124). Волна 1 появляется в результате отражения от выпуклой поверхности линзы на границе стекло - воздух, а волна 2 - в результате отражения от пластины на границе воздух - стекло. Эти волны когерентны: они имеют одинаковую длину и постоянную разность фаз, которая возникает из-за того, что волна 2 проходит больший путь, чем волна 1. Если вторая волна отстает от первой на целое число длин волн, то, складываясь, волны усиливают друг друга. Вызываемые ими колебания происходят в одной фазе.

Напротив, если вторая волна отстает от первой на нечетное число полуволн, то колебания, вызванные ими, будут происходить в противоположных фазах и волны гасят друг друга.

Если известен радиус кривизны R поверхности линзы, то можно вычислить, на каких расстояниях от точки соприкосновения линзы со стеклянной пластиной разности хода таковы, что волны определенной длины λ гасят друг друга. Эти расстояния и являются радиусами темных колец Ньютона. Ведь линии постоянной толщины воздушной прослойки представляют собой окружности. Измерив радиусы колец, можно вычислить длины волн.

Длина световой волны. Для красного света измерения дают λ кр = 8 10 -7 м, а для фиолетового - λ ф = 4 10 -7 м. Длины волн, соответствующие другим цветам спектра, принимают промежуточные значения. Для любого цвета длина световой волны очень мала. Представьте себе среднюю морскую волну длиной в несколько метров, которая увеличилась настолько, что заняла весь Атлантический океан от берегов Америки до Европы. Длина световой волны в том же увеличении лишь ненамного превысила бы ширину этой страницы.

Явление интерференции не только доказывает наличие у света волновых свойств, но и позволяет измерить длину волны. Подобно тому как высота звука определяется его частотой, цвет света определяется частотой колебаний или длиной волны.

Вне нас в природе нет никаких красок, есть лишь волны разной длины. Глаз - сложный физический прибор, способный обнаруживать различие в цвете, которому соответствует весьма незначительная (около 10 -6 см) разница в длине световых волн. Интересно, что большинство животных неспособны различать цвета. Они всегда видят чернобелую картину. Не различают цвета также дальтоники - люди, страдающие цветовой слепотой.

При переходе света из одной среды в другую длина волны изменяется. Это можно обнаружить так. Заполним водой или другой прозрачной жидкостью с показателем преломления п воздушную прослойку между линзой и пластиной. Радиусы интерференционных колец уменьшатся.

Почему это происходит? Мы знаем, что при переходе света из вакуума в какую-нибудь среду скорость света уменьшается в n раз. Так как v = λv, то при этом должна уменьшиться в n раз либо частота, либо длина волны. Но радиусы колец зависят от длины волны. Следовательно, когда свет входит в среду, изменяется в n раз именно длина волны, а не частота.

Интерференция электромагнитных волн. На опытах с генератором СВЧ можно наблюдать интерференцию электромагнитных (радио) волн.

Генератор и приемник располагают друг против друга (рис. 125). Затем подводят снизу металлическую пластину в горизонтальном положении. Постепенно поднимая пластину, обнаруживают поочередное ослабление и усиление звука.

Явление объясняется следующим образом. Часть волны из рупора генератора непосредственно попадает в приемный рупор. Другая же ее часть отражается от металлической пластины. Меняя расположение пластины, мы изменяем разность хода прямой и отраженной волн. Вследствие этого волны либо усиливают, либо ослабляют друг друга в зависимости от того, равна ли разность хода целому числу длин волн или нечетному числу полуволн.

Наблюдение интерференции света доказывает, что свет при распространении обнаруживает волновые свойства. Интерференционные опыты позволяют измерить длину световой волны: она очень мала-от 4 10 -7 до 8 10 -7 м.

Интерференция двух волн. Бипризма Френеля - 1