Миелинизация нервных волокон спинного мозга. Процесс миелинизации нервных волокон

Миелиновая оболочка нервных волокон в центральной нервной системе образуется отростками олигодендроцитов. Как правило, миелиновыми оболочками покрыты аксоны, иногда обнаруживаются миелинизированные дендриты и, как редкое исключение – клеточные тела. Отростки олигодендроцитов, окружая нервные волокна, образуют мезаксон, который вращается вокруг них, образуя ламеллы. Мезаксон имеет пятислойную структуру: белок-липид-белок-липид-белок. Эта структура,многократно закручиваясь вокруг аксона, конденсируется в компактную миелиновую оболочку. На электронных микрофотографиях миелин представляет собой серию чередующихся липидных и белковых слоёв, число которых может достигать у крупных аксонов 100 и более. Сплав цитоплазматических поверхностей мембраны олигодендроцита образует темную линию (главный период), а сплав экстраклеточных поверхностей – половинный или промежуточный период (более светлая линия). Повторяющийся период миелина определяется толщиной составляющего его липидного бислоя, расположенного между двумя белковыми слоями. Из всех биологических мембран миелин имеет самое низкое содержание воды и самое высокое отношение липидов к белку. Здесь белки составляют 15-30 %, а липиды – 70-85 % сухой массы. Липиды и белки миелина обладают высокой гидрофобностью, что определяет свойство миелина как электроизолятора.
В отличие от периферических нервных волокон, где один сегмент миелиновой оболочки представлен одной шванновской клеткой (см. выше), миелиновая оболочка одного сегмента нервных волокон в центральной нервной системе образуется, как правило, отростками нескольких близлежащих олигодендроцитов. С другой стороны, показано, что отростки одного олигодендроцита могут участвовать в образовании миелинового футляра для нескольких волокон. Толщина миелиновой оболочки в волокнах центральной нервной системы обычно невелика и количество ламелл редко достигает нескольких десятков и сотен. Миелинизируются даже очень тонкие волокна – от 0,3 мкм в диаметре. В целом, при одинаковом диаметре аксона, миелиновые оболочки в центральной нервной системе тоньше, чем в периферической, при этом сохраняется правило – чем тоньше волокно, там короче миелиновые сегменты.
Миелинизация нервных волокон у человека начинается на 5-6 месяце пренатального развития в спинном мозге. В дальнейшем число миелинизированных волокон нарастает, при этом процесс развивается неравномерно в разных структурах центральной нервной системы, по мере формирования их функций. К моменту рождения миелинизировано значительное количество волокон спинного мозга, стволовых ядер. Большинство проводящих путей миелинизируется в начальные годы постнатального периода. Процесс миелинизации проводящих путей завершается, в основном к 7-9 летнему возрасту. Позже других миелинизируются волокна ассоциативных путей переднего мозга. В коре больших полушарий миелинизированные волокна появляются после рождения, у новорожденных в коре встречаются лишь одиночные миелизированные волокна. Процесс миелинизации в ограниченных масштабах продолжается в течение всей жизни.

Рис. 7. Миелиновые нервные волокна из седалищного нерва лягушки, обработанного тетраоксидом осмия: 1 - слой миелина; 2 - соединительная ткань; 3 - нейролеммоцит; 4 - насечки миелина; 5 - перехват узла

Рис. 8. Межмышечное нервное сплетение кишечника кошки: 1 - безмиелиновые нервные волокна; 2 - ядра нейролеммоцитов

Отростки нервных клеток обычно одеты глиальными оболочками и вместе с ними называются нервными волокнами. Так как в различных отделах нервной системы оболочки нервных волокон значительно отличаются друг от друга по своему строению, то в соответствии с особенностями их строения все нервные волокна делятся на две основные группы - миелиноеые (рис.7) и безмиелиновые волокна (рис.8). Те и другие состоят из отростка нервной клетки (аксона или дендрита), который лежите в центре волокна и поэтому называется осевым цилиндром, и оболочки, образованной клетками олигодендроглии, которые здесь называются леммоцитами (шванновскими клетками).

Безмиелиновые нервные волокна

Находятся они преимущественно в составе вегетативной нервной системы. Клетки олигодендроглии оболочек безмиелиновых нервных волокон, располагаясь плотно, образуют тяжи цитоплазмы, в которых на определенном расстоянии друг от друга лежат овальные ядра. В безмиелиновых нервных волокнах внутренних органов часто в одной такой клетке располагается не один, а несколько (10-20) осевых цилиндров, принадлежащих различным нейронам. Они могут, покидая одно волокно, переходить в смежное. Такие волокна, содержащие несколько осевых цилиндров, называются волокнами кабельного типа. При электронной микроскопии безмиелиновых нервных волокон видно, что по мере погружения осевых цилиндров в тяж леммоцитов последние одевают их как муфта.

Оболочка леммоцитов при этом прогибается, плотно охватывает осевые цилиндры и, смыкаясь над ними, образует глубокие складки, на дне которых и располагаются отдельные осевые цилиндры. Сближенные в области складки участки оболочки леммоцита образуют двойную мембрану - мезаксон, на которой как бы подвешен осевой цилиндр (рис.9).

Так как оболочка леммоцитов очень тонка, то ни мезаксона, ни границ этих клеток под световым микроскопом нельзя рассмотреть, и оболочка безмиелиновых нервных волокон в этих условиях выявляется как однородный тяж цитоплазмы, одевающий осевые цилиндры. С поверхности каждое нервное волокно покрыто базальной мембраной.

Рис. 9. Схема продольного(А) и поперечного (Б) сечения безмиелиновых нервных волокон: 1 - ядро леммоцита; 2 - осевой цилиндр; 3 - митохондрии; 4 - граница леммоцитов; 5 - мезаксон.

Миелиновые нервные волокна

Миелиновые нервные волокна значительно толще безмиелиновых. Диаметр поперечного сечения их колеблется от 1 до 20 мк. Они также состоят из осевого цилиндра, одетого оболочкой из леммоцитов, но диаметр осевых цилиндров этого типа волокон значительно больше, а оболочка сложнее. В сформированном миелиновом волокне принято различать два слоя оболочки: внутренний, более толстый, - миелиновый слой (рис.10), и наружный, тонкий, состоящий из цитоплазмы леммоцитов и их ядер.

Миелиновый слой содержит в своем составе липоиды, а поэтому при обработке волокна осмиевой кислотой он интенсивно закрашивается в темно-коричневый цвет. Все волокно в этом случае представляется однородным цилиндром, в котором на определенном расстоянии друг от друга располагаются косо ориентированные светлые линии - насечки миелина (incision myelini), ил и насечки Шмидта-Лантермана. Через некоторые интервалы (от нескольких сотен микронов до нескольких миллиметров) волокно резко истончается, образуя сужения - узловые перехваты, или перехваты Ранвье. Перехваты соответствуют границе смежных леммоцитов. Отрезок волокна, заключенный между смежными перехватами, называется межузловым сегментом, а его оболочка представлена одной глиальной клеткой.

В процессе развития миелинового волокна осевой цилиндр, погружаясь в леммоцит, прогибает его оболочку, образуя глубокую складку.

Рис. 10. Схема нейрона. 1 - тело нервной клетки; 2 - осевой цилиндр; 3 - глиальная оболочка; 4 - ядро леммоцита; 5 - миелиновый слой; 6 - насечка; 7 - перехват Ранвье; 8 - нервное волокно, лишенное миелинового слоя: 9 - двигательное окончание; 10 - миелиновые нервные волокна, обработанные осмиевой кислотой.

По мере погружения осевого цилиндра оболочка леммоцита в области щели сближается и ее два листка соединяются друг с другом своей внешней поверхностью, образуя двойную мембрану - мезаксон (рис.11).

При дальнейшем развитии миелинового волокна мезаксон удлиняется и концентрически наслаивается на осевой цилиндр, вытесняя цитоплазму леммоцита и образуя вокруг осевого цилиндра плотную слоистую зону - миелиновый слой (рис.12). Так как оболочка леммоцита состоит из липидов и белков, а мезаксон представляет собой ее двойной листок, то естественно, что миелиновая оболочка, образованная его завитками, интенсивно окрашивается осмиевой кислотой. В соответствии с этим под электронным микроскопом каждый завиток мезаксона виден как слоистая структура, построенная из белков и липидов, расположение которых типично для мембранных структур клеток. Светлый слой имеет ширину около 80-120 ? и соответствует липоидным слоям двух листков мезаксона. Посредине и по поверхности его видны тонкие темные линии, образованные молекулами белка.

Рис. 11.

Шванновской оболочкой называется периферическая зона волокна, содержащая оттесненную сюда цитоплазму леммоцитов (шванновских клеток) и их ядра. Эта зона при обработке волокна осмиевой кислотой остается светлой. В области насечек между завитками мезаксона имеются значительные прослойки цитоплазмы, благодаря чему клеточные мембраны располагаются на некотором расстоянии друг от друга. Больше того, как видно на рис.188, листки мезаксона в этой области также лежат неплотно. В связи с этим при осмировании волокна эти участки не окрашиваются.

Рис. 12. Схема субмикроскопического строения миелинового нервного волокна: 1 - аксон; 2 - мезаксон; 3 - насечка миелина; 4 - узел нервного волокна; 5 - цитоплазма нейролеммоцита; 6 - ядро нейролеммоцита; 7 - нейролемма; 8 - эндоневрий

На продольном сечении вблизи перехвата видна область, в которой завитки мезаксона последовательно контактируют с осевым цилиндром. Место прикрепления самых глубоких завитков его наиболее удалено от перехвата, а все последующие завитки закономерно расположены ближе к нем у (см. рис.12). Это легко понять, если представить себе, что закручивание мезаксона идет в процессе роста осевого цилиндра и одевающих его леммоцитов. Естественно, что первые завитки мезаксона оказываются короче, чем последние. Края двух смежных леммоцитов в области перехвата образуют пальцеобразные отростки, диаметр которых равен 500 ?. Длина отростков различна. Переплетаясь между собой, они образуют вокруг осевого цилиндра своеобразный воротничок и попадают на срезах то в поперечном, то в продольном направлении. В толстых волокнах, у которых область перехвата относительно коротка, толщина воротничка из отростков шванновских клеток больше, чем в тонких волокнах. Очевидно, аксон тонких волокон в перехвате более доступен для внешних воздействий. Снаружи миелиновое нервное волокно покрыто базальной мембраной, связанной с плотными тяжами коллагеновых фибрилл, ориентированных продольно и не прерывающихся в перехвате - невралеммой.

Функциональное значение оболочек миелинового нервного волокна в проведении нервного импульса в настоящее время недостаточно изучено.

Осевой цилиндр нервных волокон состоит из нейроплазмы - бесструктурной цитоплазмы нервной клетки, содержащей продольно ориентированные нейрофиламенты и нейротубулы. В нейроплазме осевого цилиндра лежат митохондрии, которых больше в непосредственной близости к перехватам и особенно много в концевых аппаратах волокна.

С поверхности осевой цилиндр покрыт мембраной - аксолеммой, обеспечивающей проведение нервного импульса. Сущность этого процесса сводится к быстрому перемещению локальной деполяризации мембраны осевого цилиндра по длине волокна. Последнее определяется проникновением в осевой цилиндр ионов натрия (Nа +), что меняет знак заряда внутренней поверхности мембраны на положительный. Это, в свою очередь, повышает проходимость ионов натрия в смежном участке и выход ионов калия (К +) на внешнюю поверхность мембраны в деполяризованном участке, в котором восстанавливается при этом исходный уровень разности потенциалов. Скорость движения волны деполяризации поверхностной мембраны осевого цилиндра определяет быстроту передачи нервного импульса. Известно, что волокна с толстым осевым цилиндром проводят раздражение быстрее тонких волокон. Скорость передачи импульса миелиновыми волокнами больше, чем безмиелиновыми. Тонкие волокна, бедные миелином, и безмиелиновые волокна проводят нервный импульс со скоростью 1-2 м/сек, тогда как толстые миелиновые - 5-120 м/сек.

МИЕЛИНИЗАЦИЯ , процесс обложения миелином нервного волокна в период развития организма (см. отдельную таблицу, рисунки 1-3). М. начинается у.зародыша на 5-м месяце внутриутробной жизни; отделы мозга миелинизируются не одновременно, а в известном закономерном порядке. Системы волокон, имеющие одинаковую по сложности функцию, миелинизируются одновременно; чем сложнее функция данной системы, тем волокна ее позднее обкладываются миелином; обложение миелином служит признаком того, что волокно стало деятельным. При рождении ребенка М. далеко еще не закончена: в то время как одни части мозга уже вполне миелинизированы и готовы к функции, другие еще не закончили своего развития й не могут служить ни для физ. ни для псих, отправлений.У новорожденного ребенка спинной мозг очень богат миелино-выми волокнами; необложенные миелином волокна находятся только во внутренних его частях и в области пирамидного пучка. Волокна мозгового ствола и мозжечка в значительном количестве покрыты миелиновой оболочкой. Из подкорковых узлов волокна globi pallidi уже миелинизированы, тогда как волокна nucl. caudati и putamen покрываются миелином только к 5-6 месяцам внеутробной жизни. Полушария большого мозга во многих своих частях лишены миелина и на разрезе имеют сероватый цвет: у нормального новорожденного ребенка миелином снабжены центростремительные (чувствующие) волокна, часть пирамидных путей, часть обонятельных, слуховых и зрительных путей и центров и отдельные участки в corona radiata; большая же часть теменных, лобных, височных и затылочных долей, равно как и комиссур полушария, еще лишены миелина. Ассоциационные системы, назначенные для высших, псих, функций, обкладываются миелином позднее других систем, благодаря чему корковые зоны проекционных центров и волокон остаются изолированными, не связанными между собой; в этот период все ощущения, получаемые ребенком извне, остаются изолированными, все движения его рефлекторны и появляются только вследствие внешних или внутренних раздражений. Постепенно развитие миелиновых оболочек происходит во всех отделах мозга, благодаря чему устанавливается связь между различными центрами и в связи с этим развивается интелект ребенка: он начинает узнавать предметы и понимать их значение. Миелинизация главных систем полушария заканчивается на восьмом месяце внеутробной жизни, и с этого момента она продолжается только в отдельных волокнах в течение еще многих лет (наружные слои мозговой коры по нек-рым данным миелинизируются окончательно лишь к 45 годам жизни и м. б. даже позднее). В зависимости от времени появления миелина в полушариях мозга Флексиг (Flechsig) делит их на разные области: те части, где волокна покры- ваются миелином рано, он называет ранними областями (Primordialgebiete), те же, в к-рых миелин появляется позднее, - поздними (Spatgebiete). На основании этих исследований Флексиг различает в коре головного мозга двоякого рода центры: одни соединены проекционными волокнами с нижележащими образованиями, это - проекционные центры;"другие, не имеющие связи с нижележащими отделами мозга, но связанные ассоциационными волокнами с проекционными центрами коры, являются а с с о-циационными центрами (см. Голов-ной мозг, т. VII, ст. 533-534). При изучении головнбго мозга миелинизацией пользуются как методом-метод миелогенетический или метод Флексига. Лит.: Бехтерев В., Проводящие пути головного и спинного мозга, СПБ, 1896; Flechsig F., Anatomie des menschlichen G-ehirns und Ruckenmarks auf myelogenetischer Grundlage, Lpz., 1920 (лит.); PfeiferR., Myelogenetiscn-anatomische Untersu-chungen uber den zentralen Abschnitt der Sehleitung (Monographien aus dem G-esamtgebiete der Neurologie und Psvchiatrie, hrsg. v. O. Foerster u. K. Wilmanns, B. XLIII, В., 1925).E. Кононова.

Нервные волокна.

Отростки нервных клеток, покрытые оболочками, называются волокнами. По строению оболочек различают миелиновые и безмиелиновые нервные волокна. Отросток нервной клетки в нервном волокне называют осевым цилиндром, или аксоном.

В ЦНС оболочки отростков нейронов образуют отростки олигодендроглиоцитов, а в перефирической – нейролеммоциты.

Безмиелиновые нервные волокна располагаются преимущественно в периферической вегетативной нервной системе. Их оболочка представляет собой тяж нейролеммоцитов, в который погружены осевые цилиндры. Безмиелиновое волокно, в котором находятся несколько осевых цилиндров, называется волокном кабельного типа. Осевые цилиндры из одного волокна могут переходить в соседнее.

Процесс образования безмиелинового нервного волокна происходит следующим образом. При появлении отростка в нервной клетке рядом с ним появляется тяж нейролеммоцитов. Отросток нервной клетки (осевой цилиндр) начинает погружаться в тяж нейролеммоцитов, увлекая плазмолемму вглубь цитоплазмы. Сдвоенная плазмолемма называется мезаксоном. Таким образом, осевой цилиндр располагается на дне мезаксона (подвешен на мезаксоне). Снаружи безмиелиновое волокно покрыто базальной мембраной.

Миелиновые нервные волокна располагаются преимущественно в соматической нервной системе, имеют значительно больший диаметр по сравнению с безмиелиновыми-достигает до 20 мкм. Осевой цилиндр тоже более толстый. Миелиновые волокна окрашиваются осмием в черно-коричневый цвет. После окрашивания в оболочке волокна видны 2 слоя: внутренний миелиновый и наружный, состоящий из цитоплазмы, ядра и плазмолеммы, который называется неврилеммой. В центре волокна проходит неокрашенный (светлый) осевой цилиндр.

В миелиновом слое оболочки видны косые светлые насечки (incisio myelinata). По ходу волокна имеются сужения, через которые не переходит миелиновый слой оболочки. Эти сужения называются узловыми перехватами (nodus neurofibra). Через эти перехваты проходит только неврилемма и базальная мембрана, окружающая миелиновое волокно. Узловые перехваты являются границей между двумя смежными леммоцитами. Здесь от нейролеммоцита отходят короткие выросты диаметром около 50 нм, заходящие между концами таких же отростков смежного нейролеммоцита.

Участок миелинового волокна, расположенный между двумя узловыми перехватами, называется межузловым, или интернодальным, сегментом. В пределах этого сегмента рас-полагается всего лишь 1 нейролеммоцит.

Миелиновый слой оболочки - это мезаксон, навернутый на осевой цилиндр.

Формирование миелинового волокна. Вначале процесс образования миелинового волокна сходен с процессом образованием безмиелинового, т. е. осевой цилиндр погружается в тяж нейролеммоцитов и образуется мезаксон. После этого мезаксон удлиняется и навертывается на осевой цилиндр, оттесняя цитоплазму и ядро на периферию. Вот этот, навернутый на осевой цилиндр, мезаксон и есть миелиновый слой, а наружный слой оболочки - это оттесненные к периферии ядра и цитоплазма нейролеммоцитов.

Миелиновые волокна отличаются от безмиелиновых по строению и функции. В частности, скорость движения им¬пульса по безмиелиновому нервному волокну составляет 1-2 м в секунду, по миелиновому - 5-120 м в секунду. Объясняется это тем, что по миелиновому волокну импульс движется сальтоторно (скачкообразно). Это значит, что в пределах узлового перехвата импульс движется по неврилемме осевого цилиндра в виде волны деполяризации, т. е. медленно; в пределах межузлового сегмента импульс движется как электрический ток, т. е. быстро. В то же время импульс по безмиелиновому волокну движется только в виде волны деполяризации.

На электронограмме хорошо видно отличие миелинового волокна от безмиелинового - мезаксон послойно навернут на осевой цилиндр.

Развитие аксона сопровождается его погружением в шванновскую клетку и образованием миелиновой оболочки (рис. 4.20). При этом аксон никогда не контактирует с цитоплазмой шванновской клетки, а погружается в углубление ее мембраны. Края этой мембраны смыкаются над аксоном, образуя удвоенную мембрану, которая несколько раз наматывается вокруг аксона в виде спирали. На более поздних стадиях спираль закручивается более плотно и образуется компактная миелиновая оболочка. Ее толщина в крупных нервах может достигать 2-3 мкм.

Миелиновая оболочка образуется в нескольких микронах от тела клетки, сразу за аксонным холмиком, и покрывает все нервное волокно. Отсутствие такой оболочки ограничивает функциональные возможности нервного волокна: снижается скорость проведения возбуждения по нему.

Раньше других начинают миелинизировагься периферические нервы, затем аксоны в спинном мозге, стволовой части головного мозга, мозжечке и позже - в больших иолуша- риях головного мозга.

Рис. 4. 20. Образование миелиновой оболочки нервного волокна в периферической нервной системе (а) и в ЦНС (б)

Миелинизация спинномозговых и черепно-мозговых нервов начинается на четвертом месяце внутриутробного развития. Двигательные волокна покрываются миелином к моменту рождения ребенка, а большинство смешанных и чувствительных нервов - к трем месяцам после рождения. Многие черепно-мозговые нервы миелинизируются к полутора-двум годам. К двум годам миелинизируются слуховые нервы. Полная миелинизация зрительного и языкоглоточного нервов отмечается только у трех-четырехлетних детей, у новорожденных они еще не миелинизированы. Ветви лицевого нерва, иннервирующие область губ, миелинизируются с 21-й до 24-й недели внутриутробного периода, другие его ветви приобретают миелиновую оболочку значительно позже. Этот факт свидетельствует о раннем формировании морфологических структур, при участии которых осуществляется сосательный рефлекс, хорошо выраженный к моменту рождения ребенка.

Проводящие пути спинного мозга хорошо развиты к моменту рождения и почти все миелинизированы, за исключением пирамидных путей (они миелинизируются к третьему - шестому месяцам жизни ребенка). В спинном мозге раньше других миелинизируются моторные пути. Еще во внутриутробный период они оказываются сформированными, что проявляется в спонтанных движениях плода.

Миелинизация нервных волокон в головном мозге начинается во внутриутробном периоде развития и закапчивается после рождения (рис. 4.21). В отличие от спинного мозга, здесь раньше других миелинизируются афферентные пути и сенсорные области, а двигательные - через пять-шесть месяцев, а некоторые и значительно позже после рождения. К трем годам миелинизация нервных волокон в основном заканчивается, но рост нервов в длину продолжается и после трехлетнего возраста.

В процессе развития мозга в формировании упорядоченных связей между миллиардами нервных клеток решающая роль принадлежит активности самих нейронов, а также влиянию внешних факторов.

Хотя человек рождается с полным набором нейронов, которые образуются в эмбриональный период, мозг новорожденного по массе составляет 1/10 часть мозга взрослого. Увеличение массы мозга происходит за счет увеличения размеров нейронов, а также числа и длины их отростков.

Процесс развития нервных сетей можно разделить на три этапа. Первый этап включает образование незрелых нейронов (нейробластов) путем деления в соответствии с генетической программой. Незрелый нейрон, еще не имеющий аксона и дендритов, обычно мигрирует из места своего образования в соответствующий участок нервной системы. Нейроны могут мигрировать на большие расстояния. Способ их перемещения напоминает движение амебы. Миграцию направляют глиальные клетки (рис. 4.22, а). Незрелые мигрирующие нейроны тесно примыкают к глиальным клеткам и как бы ползут по ним. Достигнув своего постоянного места расположения, клетка образует контакты с другими нейрона-


Рис. 4.21.


Рис. 4.22.

а - незрелые нервные клетки, мигрирующие вдоль отростков радиальных глиальных клеток; 6 - постепенное утолщение стенки нервной трубки и установление ориентации пирамидных нейронов будущей коры больших

полушарий

ми. Сразу же устанавливается ориентация клеток: например, пирамидные нейроны выстраиваются в ряды так, что их ден- дриты направлены к поверхности коры, а аксоны - в подлежащее белое вещество (рис. 4.22, б).

Второй этап характеризуется интенсивным ростом уже мигрировавшего нейрона за счет образования аксона и денд- ритов. На конце отростка, идущего от тела клетки, имеется утолщение - конус роста (см. рис. 4.19). В нем скапливаются необходимые для роста аксона вещества. Конус роста перемещается с помощью амебоидных движений в сторону клетки-мишени, прокладывая себе путь через окружающие ткани. Движение конуса роста происходит с участием микро- шипиков, отходящих от более крупных выпячиваний. Часть микрошипиков, вступивших в контакт с клеткой-мишенью, образуют синапсы, остальные - втягиваются обратно. В большинстве случаев аксоны «правильно выбирают» направление и находят «свою» мишень с высокой точностью. Исследования на молекулярном уровне показали, что конусы роста аксонов «распознают» нужное направление благодаря специфическим веществам на поверхности клеток, расположенных вдоль пути роста. Эти биологически активные вещества - молекулярные метки - выделяются самими клетками-мишенями. Удаление таких меток приводит к бесцельному росту аксона. Выбор мишени происходит не сразу и включает в себя процесс корректировки многих ошибочных первоначальных связей. Биологически активные вещества, выделяемые клеткой-мишенью, регулируют также ветвление отростков.

Определенные группы нейронов выделяют специфические метки, которые узнаются другими нейронами, благодаря этому возможно установление высокоизбирательных нервных связей. Кроме того, имеются специфические биологически активные вещества, ускоряющие рост нейронов. Например, фактор роста нервов влияет на рост и созревание нейронов спинальных и симпатических ганглиев.

Важными моментами в процессе развития нейрона считают появление способности к генерации и проведению нервных импульсов, а также формирование синаптических контактов.

Третий этап - образование «адресных» и стабильно работающих нервных связей. Формирование нервных сетей требует особенно высокой точности. Нередко причиной отклонений в поведении человека может быть «ошибка в адресе» межнейронных синаптических связей. Активное синаптическое взаимодействие нейронов происходит в процессе прохождения импульсов. При регулярном и интенсивном поступлении сигналов в виде ПД синаптические связи в сетях нейронов укрепляются и, напротив, ослабление или полное прекращение стимуляции нарушает синаптическое взаимодействие и даже приводит к деградации не задействованных синапсов. Разрушение таких контактов, сокращение отростков и гибель части образовавшихся нервных клеток запрограммированы в онтогенезе. Таким путем устраняется заведомо избыточное число образующихся в раннем эмбриогенезе нейронов и их контактов. Сохраняются активно работающие нейронные структуры, а именно те, которые получают достаточный приток информации из внешней и внутренней среды организма.

В процессе онтогенеза в нейронах происходят и другие изменения. Так, после рождения увеличиваются длина и диаметр аксонов (рис. 4.23) и продолжается их миелинизация. Эти процессы заканчиваются в основном к 9-10 годам. При этом существенно повышается скорость проведения возбуждения по нервным волокнам: у новорожденных она составляет только 5% уровня взрослых. Другая причина увеличения

Рис. 4.23.

скорости проведения импульсов - возрастание числа ионных каналов в нейронах, повышение мембранного потенциала и амплитуды ПД. Эффекты положительного влияния стимуляции на развитие мозга ограничены чувствительным периодом. Ослабление стимуляции в этот период не лучшим образом сказывается на морфофункциональном формировании мозга.

Поступление достаточного объема многосторонней информации в развивающийся мозг способствует появлению нейронов, специфически реагирующих на сложные комбинации сигналов. Этот механизм, по-видимому, лежит в основе способности человека отражать реально существующие феномены внешнего мира на основе индивидуального (субъективного) опыта.

Замечательная особенность нервной системы взрослого человека - точность межнейронных связей, но для ее достижения с раннего детства необходима постоянная стимуляция мозга. Дети, которые провели первый год жизни в ограниченном, бедном информацией окружении, развиваются медленно. Для нормального развития мозга ребенок должен получать из внешней среды разные виды сенсорных стимулов: тактильных, зрительных, слуховых, в том числе обязательно речевых. Вместе с гем положительная роль «сверхстимуляции» в развитии нервной системы не доказана.

Связи между центральными нейронами наиболее активно формируются в период от рождения до 3 лет (рис. 4.24; 4.25). От того, как нейроны соединяются друг с другом на начальных этапах формирования мозга, во многом зависят его индивидуальные особенности. Информация, поступающая в мозг,


Рис. 4.24.

обеспечивает создание все новых сочетаний соединений и увеличение числа контактов между нейронами за счет роста их дендритов. Интенсивная нагрузка мозга до самого преклонного возраста защищает его от преждевременной деградации. Известно, что у образованных людей, постоянно пополняющих свои знания, число связей между нейронами возрастает, причем высокий уровень образования даже снижает опасность заболеваний, связанных с нарушением этих связей.

Известно, что у человека после рождения каждый нейрон па протяжении жизни сохраняет способность к росту, обра-


Рис. 4.25.

зованию отростков и новых синаптических связей, особенно при наличии интенсивной сенсорной информации. Под ее влиянием синаптические связи могут также перестраиваться и менять медиатор. Это свойство лежит в основе процессов научения, памяти, адаптации к постоянно меняющимся условиям внешней среды, восстановительных процессов в период реабилитации после различных заболеваний и перенесенных травм.