Теорема умножения вероятностей несовместных событий примеры. Теоремы сложения и умножения вероятностей: основные задачи

Теоремы сложения и умножения вероятностей.
Зависимые и независимые события

Заголовок выглядит страшновато, но в действительности всё очень просто. На данном уроке мы познакомимся с теоремами сложения и умножения вероятностей событий, а также разберём типовые задачи, которые наряду с задачей на классическое определение вероятности обязательно встретятся или, что вероятнее, уже встретились на вашем пути. Для эффективного изучения материалов этой статьи необходимо знать и понимать базовые термины теории вероятностей и уметь выполнять простейшие арифметические действия. Как видите, требуется совсем немного, и поэтому жирный плюс в активе практически гарантирован. Но с другой стороны, вновь предостерегаю от поверхностного отношения к практическим примерам – тонкостей тоже хватает. В добрый путь:

Теорема сложения вероятностей несовместных событий : вероятность появления одного из двух несовместных событий или (без разницы какого) , равна сумме вероятностей этих событий:

Аналогичный факт справедлив и для бОльшего количества несовместных событий, например, для трёх несовместных событий и :

Теорема-мечта =) Однако, и такая мечта подлежит доказательству, которое можно найти, например, в учебном пособии В.Е. Гмурмана.

Знакомимся с новыми, до сих пор не встречавшимися понятиями:

Зависимые и независимые события

Начнём с независимых событий. События являются независимыми , если вероятность наступления любого из них не зависит от появления/непоявления остальных событий рассматриваемого множества (во всех возможных комбинациях). …Да чего тут вымучивать общие фразы:

Теорема умножения вероятностей независимых событий : вероятность совместного появления независимых событий и равна произведению вероятностей этих событий:

Вернёмся к простейшему примеру 1-го урока, в котором подбрасываются две монеты и следующим событиям:

– на 1-й монете выпадет орёл;
– на 2-й монете выпадет орёл.

Найдём вероятность события (на 1-й монете появится орёл и на 2-й монете появится орёл – вспоминаем, как читается произведение событий !) . Вероятность выпадения орла на одной монете никак не зависит от результата броска другой монеты, следовательно, события и независимы.

Аналогично:
– вероятность того, что на 1-й монете выпадет решка и на 2-й решка;
– вероятность того, что на 1-й монете появится орёл и на 2-й решка;
– вероятность того, что на 1-й монете появится решка и на 2-й орёл.

Заметьте, что события образуют полную группу и сумма их вероятностей равна единице: .

Теорема умножения очевидным образом распространяется и на бОльшее количество независимых событий, так, например, если события независимы, то вероятность их совместного наступления равна: . Потренируемся на конкретных примерах:

Задача 3

В каждом из трех ящиков имеется по 10 деталей. В первом ящике 8 стандартных деталей, во втором – 7, в третьем – 9. Из каждого ящика наудачу извлекают по одной детали. Найти вероятность того, что все детали окажутся стандартными.

Решение : вероятность извлечения стандартной или нестандартной детали из любого ящика не зависит от того, какие детали будут извлечены из других ящиков, поэтому в задаче речь идёт о независимых событиях. Рассмотрим следующие независимые события:

– из 1-го ящика извлечена стандартная деталь;
– из 2-го ящика извлечена стандартная деталь;
– из 3-го ящика извлечена стандартная деталь.

По классическому определению:
– соответствующие вероятности.

Интересующее нас событие (из 1-го ящика будет извлечена стандартная деталь и из 2-го стандартная и из 3-го стандартная) выражается произведением .

По теореме умножения вероятностей независимых событий:

– вероятность того, что из трёх ящиков будет извлечено по одной стандартной детали.

Ответ : 0,504

После бодрящих упражнений с ящиками нас поджидают не менее интересные урны:

Задача 4

В трех урнах имеется по 6 белых и по 4 черных шара. Из каждой урны извлекают наудачу по одному шару. Найти вероятность того, что: а) все три шара будут белыми; б) все три шара будут одного цвета.

Опираясь на полученную информацию, догадайтесь, как разобраться с пунктом «бэ» ;-) Примерный образец решения оформлен в академичном стиле с подробной росписью всех событий.

Зависимые события . Событие называют зависимым , если его вероятность зависит от одного или бОльшего количества событий, которые уже произошли. За примерами далеко ходить не надо – достаточно до ближайшего магазина:

– завтра в 19.00 в продаже будет свежий хлеб.

Вероятность этого события зависит от множества других событий: завезут ли завтра свежий хлеб, раскупят ли его до 7 вечера или нет и т.д. В зависимости от различных обстоятельств данное событие может быть как достоверным , так и невозможным . Таким образом, событие является зависимым .

Хлеба… и, как требовали римляне, зрелищ:

– на экзамене студенту достанется простой билет.

Если идти не самым первым, то событие будет зависимым, поскольку его вероятность будет зависеть от того, какие билеты уже вытянули однокурсники.

Как определить зависимость/независимость событий?

Иногда об этом прямо сказано в условии задачи, но чаще всего приходится проводить самостоятельный анализ. Какого-то однозначного ориентира тут нет, и факт зависимости либо независимости событий вытекает из естественных логических рассуждений.

Чтобы не валить всё в одну кучу, задачам на зависимые события я выделю следующий урок, а пока мы рассмотрим наиболее распространённую на практике связку теорем:

Задачи на теоремы сложения вероятностей несовместных
и умножения вероятностей независимых событий

Этот тандем, по моей субъективной оценке, работает примерно в 80% задач по рассматриваемой теме. Хит хитов и самая настоящая классика теории вероятностей:

Задача 5

Два стрелка сделали по одному выстрелу в мишень. Вероятность попадания для первого стрелка равна 0,8, для второго – 0,6. Найти вероятность того, что:

а) только один стрелок попадёт в мишень;
б) хотя бы один из стрелков попадёт в мишень.

Решение : вероятность попадания/промаха одного стрелка, очевидно, не зависит от результативности другого стрелка.

Рассмотрим события:
– 1-й стрелок попадёт в мишень;
– 2-й стрелок попадёт в мишень.

По условию: .

Найдём вероятности противоположных событий – того, что соответствующие стрелки промахнутся:

а) Рассмотрим событие: – только один стрелок попадёт в мишень. Данное событие состоит в двух несовместных исходах:

1-й стрелок попадёт и 2-й промахнётся
или
1-й промахнётся и 2-й попадёт.

На языке алгебры событий этот факт запишется следующей формулой:

Сначала используем теорему сложения вероятностей несовместных событий, затем – теорему умножения вероятностей независимых событий:

– вероятность того, что будет только одно попадание.

б) Рассмотрим событие: – хотя бы один из стрелков попадёт в мишень.

Прежде всего, ВДУМАЕМСЯ – что значит условие «ХОТЯ БЫ ОДИН»? В данном случае это означает, что попадёт или 1-й стрелок (2-й промахнётся) или 2-й (1-й промахнётся) или оба стрелка сразу – итого 3 несовместных исхода.

Способ первый : учитывая готовую вероятность предыдущего пункта, событие удобно представить в виде суммы следующих несовместных событий:

попадёт кто-то один (событие , состоящее в свою очередь из 2 несовместных исходов) или
попадут оба стрелка – обозначим данное событие буквой .

Таким образом:

По теореме умножения вероятностей независимых событий:
– вероятность того, что 1-й стрелок попадёт и 2-й стрелок попадёт.

По теореме сложения вероятностей несовместных событий:
– вероятность хотя бы одного попадания по мишени.

Способ второй : рассмотрим противоположное событие: – оба стрелка промахнутся.

По теореме умножения вероятностей независимых событий:

В результате:

Особое внимание обратите на второй способ – в общем случае он более рационален.

Кроме того, существует альтернативный, третий путь решения, основанный на умолчанной выше теореме сложения совместных событий.

! Если вы знакомитесь с материалом впервые, то во избежание путаницы, следующий абзац лучше пропустить.

Способ третий : события совместны, а значит, их сумма выражает событие «хотя бы один стрелок попадёт в мишень» (см. алгебру событий ). По теореме сложения вероятностей совместных событий и теореме умножения вероятностей независимых событий:

Выполним проверку: события и (0, 1 и 2 попадания соответственно) образуют полную группу, поэтому сумма их вероятностей должна равняться единице:
, что и требовалось проверить.

Ответ :

При основательном изучении теории вероятностей вам встретятся десятки задач милитаристского содержания, и, что характерно, после этого никого не захочется пристрелить – задачи почти подарочные. А почему бы не упростить ещё и шаблон? Cократим запись:

Решение : по условию: , – вероятность попадания соответствующих стрелков. Тогда вероятности их промаха:

а) По теоремам сложения вероятностей несовместных и умножения вероятностей независимых событий:
– вероятность того, что только один стрелок попадёт в мишень.

б) По теореме умножения вероятностей независимых событий:
– вероятность того, что оба стрелка промахнутся.

Тогда: – вероятность того, что хотя бы один из стрелков попадёт в мишень.

Ответ :

На практике можно пользоваться любым вариантом оформления. Конечно же, намного чаще идут коротким путём, но не нужно забывать и 1-й способ – он хоть и длиннее, но зато содержательнее – в нём понятнее, что, почему и зачем складывается и умножается. В ряде случаев уместен гибридный стиль, когда прописными буквами удобно обозначить лишь некоторые события.

Похожие задачи для самостоятельного решения:

Задача 6

Для сигнализации о возгорании установлены два независимо работающих дат­чика. Вероятности того, что при возгорании датчик сработает, для первого и второго датчиков соответственно равны 0,5 и 0,7. Найти вероятность того, что при пожаре:

а) оба датчика откажут;
б) оба датчика сработают.
в) Пользуясь теоремой сложения вероятностей событий, образующих полную группу , найти вероятность того, что при пожаре сработает только один датчик. Проверить результат прямым вычислением этой вероятности (с помощью теорем сложения и умножения) .

Здесь независимость работы устройств непосредственно прописана в условии, что, кстати, является важным уточнением. Образец решения оформлен в академичном стиле.

Как быть, если в похожей задаче даны одинаковые вероятности, например, 0,9 и 0,9? Решать нужно точно так же! (что, собственно, уже продемонстрировано в примере с двумя монетами)

Задача 7

Вероятность поражения цели первым стрелком при одном выстреле равна 0,8. Вероятность того, что цель не поражена после выполнения первым и вторым стрелками по одному выстрелу равна 0,08. Какова вероятность поражения цели вторым стрелком при одном выстреле?

А это небольшая головоломка, которая оформлена коротким способом. Условие можно переформулировать более лаконично, но переделывать оригинал не буду – на практике приходится вникать и в более витиеватые измышления.

Знакомьтесь – он самый, который настрогал для вас немереное количество деталей =):

Задача 8

Рабочий обслуживает три станка. Вероятность того, что в течение смены первый станок потребует настройки, равна 0,3, второй – 0,75, третий – 0,4. Найти вероятность того, что в течение смены:

а) все станки потребуют настройки;
б) только один станок потребует настройки;
в) хотя бы один станок потребует настройки.

Решение : коль скоро в условии ничего не сказано о едином технологическом процессе, то работу каждого станка следует считать не зависимой от работы других станков.

По аналогии с Задачей №5, здесь можно ввести в рассмотрение события , состоящие в том, что соответствующие станки потребуют настройки в течение смены, записать вероятности , найти вероятности противоположных событий и т.д. Но с тремя объектами так оформлять задачу уже не очень хочется – получится долго и нудно. Поэтому здесь заметно выгоднее использовать «быстрый» стиль:

По условию: – вероятности того, что в течение смены соответствующие станки потребуют настойки. Тогда вероятности того, что они не потребуют внимания:

Один из читателей обнаружил тут прикольную опечатку, даже исправлять не буду =)

а) По теореме умножения вероятностей независимых событий:
– вероятность того, что в течение смены все три станка потребуют настройки.

б) Событие «В течение смены только один станок потребует настройки» состоит в трёх несовместных исходах:

1) 1-й станок потребует внимания и 2-й станок не потребует и 3-й станок не потребует
или :
2) 1-й станок не потребует внимания и 2-й станок потребует и 3-й станок не потребует
или :
3) 1-й станок не потребует внимания и 2-й станок не потребует и 3-й станок потребует .

По теоремам сложения вероятностей несовместных и умножения вероятностей независимых событий:

– вероятность того, что в течение смены только один станок потребует настройки.

Думаю, сейчас вам должно быть понятно, откуда взялось выражение

в) Вычислим вероятность того, что станки не потребуют настройки, и затем – вероятность противоположного события:
– того, что хотя бы один станок потребует настройки.

Ответ :

Пункт «вэ» можно решить и через сумму , где – вероятность того, что в течение смены только два станка потребуют настройки. Это событие в свою очередь включает в себя 3 несовместных исхода, которые расписываются по аналогии с пунктом «бэ». Постарайтесь самостоятельно найти вероятность , чтобы проверить всю задачу с помощью равенства .

Задача 9

Из трех орудий произвели залп по цели. Вероятность попадания при одном выстреле только из первого орудия равна 0,7, из второго – 0,6, из третьего – 0,8. Найти вероятность того, что: 1) хотя бы один снаряд попадет в цель; 2) только два снаряда попадут в цель; 3) цель будет поражена не менее двух раз.

Решение и ответ в конце урока.

И снова о совпадениях: в том случае, если по условию два или даже все значения исходных вероятностей совпадают (например, 0,7; 0,7 и 0,7), то следует придерживаться точно такого же алгоритма решения.

В заключение статьи разберём ещё одну распространённую головоломку:

Задача 10

Стрелок попадает в цель с одной и той же вероятностью при каждом выстреле. Какова эта вероятность, если вероятность хотя бы одного попадания при трех выстрелах равна 0,973.

Решение : обозначим через – вероятность попадания в мишень при каждом выстреле.
и через – вероятность промаха при каждом выстреле.

И таки распишем события:
– при 3 выстрелах стрелок попадёт в мишень хотя бы один раз;
– стрелок 3 раза промахнётся.

По условию , тогда вероятность противоположного события:

С другой стороны, по теореме умножения вероятностей независимых событий:

Таким образом:

– вероятность промаха при каждом выстреле.

В результате:
– вероятность попадания при каждом выстреле.

Ответ : 0,7

Просто и изящно.

В рассмотренной задаче можно поставить дополнительные вопросы о вероятности только одного попадания, только двух попаданий и вероятности трёх попаданий по мишени. Схема решения будет точно такой же, как и в двух предыдущих примерах:

Однако принципиальное содержательное отличие состоит в том, что здесь имеют место повторные независимые испытания , которые выполняются последовательно, независимо друг от друга и с одинаковой вероятностью исходов.

Глава 3.

Основные теоремы теории вероятностей и следствия из них

Теорема сложения вероятностей несовместных

Событий

Во второй главе было показано, как можно определить вероятность отдельного случайного события при выполнении определенных условий. Как известно, со случайными событиями можно проводить арифметические действия, главными из которых являются сложение и умножение событий. Теория вероятностей позволяет с помощью своих основных теорем найти вероятность суммы и произведения событий, т.е. определить либо вероятность появления хотя бы одного из рассматриваемых событий, либо вероятность одновременного появления этих событий.

К основным теоремам теории вероятностей относятся:

1. Теорема сложения вероятностей.

2. Теорема умножения вероятностей.

Рассмотрим теорему сложения вероятностей для частного случая. Предположим, что А и В несовместные события, причем будем считать, что вероятности этих событий известны, или могут быть найдены.

Теорема 3.1. Вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий, т.е.

Доказательство. Пусть n – общее число всех равновозможных элементарных событий испытания, в котором могут появиться события А или В . Обозначим через т А и т В число элементарных событий благоприятствующих событиям А и В соответственно. Так как события А и В несовместны, то сумме этих событий А + В благоприятствуют т А + т В элементарных событий. Поэтому .

Теорема доказана.

Следствие. Вероятность появления одного из нескольких попарно несовместных событий равна сумме вероятностей этих событий, т.е.

Доказательство нетрудно провести, используя метод математической индукции.

Пример 3.1. В ящике находятся 8 белых, 5 черных и 10 красных шаров. Случайным образом выбирается один шар. Какова вероятность того, что этот шар не белый?

Решение. Пусть событие А – выбор черного шара, В – выбор красного шара. Тогда событие С = А + В определяет выбор не белого шара (либо черного, либо красного).

По классической формуле . По теореме 3.1 окончательно получаем .■

Пример 3.2. На фирме имеется две вакантные должности, на занятие которых претендуют трое мужчин и пять женщин. Найти вероятность того, что среди взятых на работу людей будет хотя бы один мужчина, если отбор претендентов производится случайным образом.

Решение. Пусть событие С состоит в том, что среди взятых на работу людей будет хотя бы один мужчина. Очевидно, что событие С произойдет в том случае, когда произойдет одно из следующих двух несовместных событий: А – приняты на работу двое мужчин; В – приняты на работу одна женщина и один мужчина. Таким образом, С = А + В .

Найдем вероятности событий А и В , используя классическую формулу, получим

и .

События А и В – несовместны, следовательно, можно применить теорему 3.1. Получаем . ■

При решении примера 3.2 не было рассмотрено только одно из возможных событий, состоящее в том, что будут приняты на работу две женщины. Обозначим его буквой D и найдем его вероятность. Применяя классическую формулу, получим

.

Нетрудно понять, что события А , В и D образуют полную группу для испытания: выбор двух человек из восьми. Найдем сумму вероятностей этих событий: . Полученный результат можно представить в общем виде.

Теорема 3.2. Сумма вероятностей событий, образующих полную группу, равна 1.

Доказательство. Пусть события А 1 , А 2 , …, А n образуют полную группу для некоторого испытания. Тогда по определению в результате этого испытания одно из событий обязательно произойдет, т.е. сумма этих событий является достоверным событием. Вероятность достоверного события равна 1. Следовательно, справедливо равенство:

Напомним, что по определению полной группы она состоит из несовместных событий. Тогда по следствию из теоремы 3.1 получаем

Теорема доказана.

Следствие . Сумма вероятностей противоположных событий равна 1.

Доказательство непосредственно следует из того, что противоположные события образуют полную группу, следовательно, по теореме 3.2 имеет место формула

(3.3)

где А и Ā – противоположные события.

Следствие доказано.

При решение задач чаще применяется преобразованная формула (3.3), а именно

(3.4)

Пример 3.3. Из девяти кандидатов для выбора на три должности пятеро имеют диплом с отличием. Все имеют одинаковые шансы быть выбранными на эти должности. Определить вероятность того, что среди выбранных будет хотя бы один, имеющий диплом с отличием.

Решение. Пусть событие А означает, что среди выбранных кандидатов хотя бы один имеет диплом с отличием. Очевидно, что событие Ā противоположное А будет состоять в том, что все три выбранных человека не имеют диплома с отличием. Найдем вероятность противоположного события. Для этого применим классическую формулу, получаем

.

По формуле (3.3) найдем вероятность события А :

. ■

Решение примера 3.3 может быть получено и другим, более длинным способом. Нетрудно понять, что событие А есть сумма следующих событий:

А 1 – среди выбранных только один кандидат с дипломом с отличием;

А 2 – среди выбранных два кандидата с дипломом с отличием;

А 3 – среди выбранных три кандидата с дипломом с отличием.

По классической формуле получаем

Очевидно, что события А 1 , А 2 , А 3 – несовместны, следовательно можно применить теорему 3.3. Таким образом

Понятно, что первый способ решения намного проще.

В выше рассмотренных теоремах и примерах предполагалась несовместность соответствующих случайных событий. Естественно, может возникнуть задача, в которой требуется найти вероятность появления хотя бы одного из совместных событий. Теорему 3.1 в этом случае применять нельзя. Существует более общий вид теоремы сложения вероятностей, который использует понятие вероятности произведения событий.

Теорема умножения вероятностей событий

Пусть рассматривается некоторое испытание, в котором возможно появление случайного события А . Если кроме условия испытания никаких ограничений для события А не существует, то вероятность события А называют безусловной вероятностью. Если же задаются некоторые дополнительные условия, то появляется условная вероятность этого события. Чаще всего дополнительные условия связаны с появлением другого случайного события. Итак, при анализе того или иного явления может возникнуть вопрос: влияет ли на возможность появления некоторого события А наступление другого случайного события В и если влияет, то как? Например, наступление В ведет к обязательному наступлению события А или, наоборот, исключает возможность появления события А , а может быть лишь изменяет значение вероятности. Легко понять, что если событие В является благоприятствующим событию А , то при наступлении события В событие А всегда наступает, или если А и В – два несовместных в данном испытании события, то при наступлении события В событие А никогда не будет происходить. Однако это так называемые крайние случаи. Наибольший интерес возникает тогда, когда наступление события В как-то изменяет (увеличивает или уменьшает) вероятность появления события А , не превращая его в достоверное или невозможное при новых условиях событие. Характеристикой такого влияния одного события на другое служит условная вероятность.

Условной вероятностью события А при условии В называется вероятность события А , вычисленная в предположении, что событие В уже произошло.

Аналогично можно определить условную вероятность события В , при условии, что событие А уже произошло.

Пример 3.4. Пусть в урне находятся 6 белых и 8 черных шаров. Из урны последовательно друг за другом случайным образом вынимают два шара, не возвращая их обратно. Найти вероятность того, что второй шар окажется белым, если первым был вынут также белый шар?

Решение . Пусть событие А состоит в том, что второй шар окажется белым, а событие В , что первый шар белый. В задаче требуется найти вероятность события А , при условии, что событие В произошло, т.е. найти . Если событие В произошло, то в урне осталось 13 шаров, из которых 5 белых. Следовательно, вероятность вынуть белый шар из 13, среди которых 5 белых равна .■

Отметим два момента.

Во-первых, для события А может быть найдена не только его условная вероятность, но и так называемая полная вероятность события, т.е. вероятность того, что второй шар окажется белым при выборе первым любого шара. О нахождении такой вероятности речь пойдет в пункте 3.4.

Во-вторых, условие примера может быть так изменено, что цвет первого выбранного шара вообще не будет влиять на вероятность появления события А . Будем считать, что шары после фиксирования их цвета возвращаются обратно в урну. Тогда, очевидно, вероятность события А не зависит от того, какого цвета был выбран первый шар, т.е. от появления (или не появления) события В . В этом случае , т.е. вероятность события А совпадает с условной вероятностью этого события. Сами же события А и В являются независимыми в данном испытании.

Два события А и В называются независимыми, если вероятность появления каждого из них не зависит от того, появилось другое событие или нет. В противном случае, события называются зависимыми.

Из определения следует, что для независимых событий А и В справедливы формулы:

. (3.5)

Получим формулу для нахождения условной вероятности, используя классическое определение. Пусть испытание состоит из n равновозможных элементарных событий. Число событий, благоприятствующих событию А , равно т А ; событию В т В ; произведению событий АВ т АВ . Очевидно, что и . Так как событию В благоприятствует т В исходов, из которых только т А благоприятствуют А , то условная вероятность равна

. Окончательно, получаем

(3.6)

Необходимо обратить внимание на то, что знаменатель в формуле (3.6) отличен от нуля, так как по условию событие В может произойти, т.е. т В не равно нулю.

Рассуждая аналогично, можно получить формулу для условной вероятности события В : . Но, так как событие АВ ничем не отличается от события ВА и , то условную вероятность события В можно определить по формуле

(3.7)

В наиболее полных, применяющих аксиоматический подход, курсах теории вероятностей формулы (3.6) и (3.7) принимают за определение условной вероятности, а формулы (3.5) – за определение независимых событий.

Из формул (3.6) и (3.7) непосредственно вытекает следующая теорема умножения вероятностей.

Теорема 3.2. Вероятность одновременного появления двух случайных событий равна произведению вероятности одного события на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило, т.е.

(3.8)

Следствие. Вероятность одновременного появления нескольких случайных событий равна произведению вероятности одного события на условные вероятности всех остальных, при этом вероятность каждого последующего события вычисляется в предположении, что все предыдущие события уже появились, т.е.

Пример 3.5. В лотереи находятся 20 билетов, из которых 5 выигрышных. Случайным образом выбирают последовательно друг за другом 3 билета без возвращения. Определить вероятность того, что первый, второй и третий билеты будут выигрышными.

Решение. Пусть событие А состоит в том, что первым выберут выигрышный билет, событие В – в том, что второй билет будет выигрышным и, наконец, С – третий билет выигрышный. Очевидно, что .

Условная вероятность события В при условии, что событие А произошло, т.е. из лотереи был выбран один выигрышный билет, равна (всего билетов осталось 19, из них 4 выигрышных).

Условная вероятность события С при условии, что события А и В произошли, т.е. были выбраны два выигрышных билета, равна .

По следствию к теореме 3.2 вероятность произведения равна

Необходимо отметить, что задача 3.5 может быть решена с помощью классической формулы и формул комбинаторики:

.

Теорема 3.2 верна для любых случайных событий А и В . В частном случае, когда события А и В являются независимыми справедливо следующее утверждение.

Теорема 3.3. Вероятность одновременного появления двух несовместных событий А и В равна произведению вероятностей этих событий, т.е.

Доказательство. События А и В – независимы. По теореме 3.2 с учетом формулы (3.5), получим

Теорема доказана.

Итак, теорема 3.3 говорит о том, что вероятность произведения независимых событий находится по формуле (3.9). Верно и обратное утверждение.

Теорема 3.4. Если для двух событий верна формула (3.9), то эти события независимы.

Приведем без доказательства несколько важных свойств, справедливых для независимых событий.

1. Если событие В не зависит от А , то событие А не зависит от В .

2. Если события А и В – независимы, то независимы и события А и .

3. Если два события независимы, то независимы и противоположные им события.

Теорема 3.3 может быть обобщена на конечное число событий. Однако, прежде чем это сделать, необходимо более подробно остановиться на понятии независимости трех и более событий.

Для группы, состоящей из трех и более событий, существует понятие попарной независимости и независимости в совокупности.

События А 1 , А 2 , …, А n называются попарно независимыми , если любые два из этих событий независимы.

События А 1 , А 2 , …, А n называются независимыми в совокупности (или просто независимыми) , если они попарно независимы и независимы каждое событие и все возможные произведения всех остальных.

Например, три события А 1 , А 2 , А 3 независимы в совокупности, если независимы следующие события:

А 1 и А 2 , А 1 и А 3 , А 2 и А 3 ,

А 1 и А 2 А 3 , А 2 и А 1 А 3 , А 3 и А 1 А 2 .

Теорема 3.5. Если события А 1 , А 2 , …, А n независимы в совокупности, то вероятность их одновременного появления вычисляется по формуле:

Доказательство. Покажем, что формула верна для трех событий. Если событий больше трех, то справедливость формулы доказывается методом математической индукции.

Итак, покажем, что . По условию теоремы события А 1 , А 2 , А 3 независимы в совокупности. Следовательно, независимыми являются, например, два события А 1 А 2 и А 3 . По формуле (3.9), получим . По условию события А 1 и А 2 также независимы. Применив к первому сомножителю формулу (3.9), окончательно, получим .

Теорема доказана.

Необходимо отметить, что если события попарно независимы, то отсюда не следует, что они будут и независимы в совокупности. И, наоборот, если события независимы в совокупности, то они, очевидно, по определению будут и попарно независимы.

Рассмотрим пример событий попарно независимых, но зависимых в совокупности.

Пример 3.6. Пусть в коробке лежат 4 одинаковых карточки с написанными на них числами:


Случайным образом выбирает одну карточку. Событие А означает, что выбрали карточку, на которой есть число 1, событие В предполагает, что на выбранной карточке есть число 2, событие С – число 3. Выяснить являются ли события А , В и С попарно независимыми или независимыми в совокупности.

Решение. Вероятность каждого из событий А , В и С можно найти по классической формуле (всего карточек 4, на двух из них есть числа 1, 2, 3 соответственно): .

Покажем, что события А , В и С попарно независимы. Выберем любые два события, например, А и В . Вероятность их произведения , так как одновременное появление чисел 1 и 2 может быть только на одной карточке из четырех.

Таким образом, справедливо равенство . По теореме 3.4 события А и В независимы. Аналогично можно показать независимость событий В и С , а также событий А и С . Попарная независимость доказана.

Покажем, что эти события не являются независимыми в совокупности. Вероятность одновременного появления всех трех событий, т.е. появления всех трех чисел, равна , так как только на одной карточке из четырех есть все три числа. Произведение вероятностей событий равно . Таким образом, , следовательно, независимость в совокупности отсутствует. ■

Из теоремы умножения вероятностей и теоремы сложения вероятностей несовместных событий непосредственно следует теорема сложения вероятностей совместных событий.

Теорема умножения вероятностей двух произвольных событий: вероятность произведения двух произвольных событий равна произведению вероятности одного из событий на условную вероятность другого события, при условии, что первое уже произошло:

P(AB)=P(A)P(B|A) = P(B)P(A|B). (10)

Доказательство (не строгое): докажем теорему умножения для схемы шансов (равновероятных гипотез). Пусть возможные исходы опыта являются n шансами. Предположим, что событию A благоприятны m шансов (на рис. 11 имеют штриховку); событию B - k шансов; одновременно событиям A и B (AB) - l шансов (на. рис. 11 имеют светлую штриховку).

Рисунок 11

Очевидно, что m+k-l=n. По классическому способу вычисления вероятностей P(AB)=l/n; P(A)=m/n; P(B)=k/n. А вероятность P(B|A)=l/m, поскольку известно, что один из m шансов события A произошел, а событию B благоприятны l подобных шансов. Подставив данные выражения в теорему (10), получим тождество l/n=(m/n)(l/m). Теорема доказана.

Теорема умножения вероятностей трёх произвольных событий:

P(ABC)=|AB=D|=P(DC)=P(D)P(C|D)=P(AB)P(C|AB)=P(A)P(B|A)P(C|AB).(11)

По аналогии можно записать теоремы умножения вероятностей для большего количества событий.

Следствие 1. Если событие A не зависит от B, то и событие B не зависит от A.

Доказательство. Т.к. событие A не зависит от B, то по определению независимости событий P(A)=P(A|B)=P(А|). Требуется доказать, что P(B)=P(B|A).

По теореме умножения P(AB)=P(A)P(B|A)=P(B)P(A|B), следовательно, P(A)P(B|A)=P(B)P(A). Предполагая, что P(A)>0, разделим обе части равенства на P(A) и получим: P(B)=P(B|A).

Из следствия 1 вытекает, что два события независимы, если появление одного из них не изменяет вероятность появления другого. На практике, зависимыми являются события (явления), связанные между собой причинно-следственной связью.

Следствие 2. Вероятность произведения двух независимых событий равна произведению вероятностей этих событий. Т.е. если события A и B независимы, то

P(AB)=P(A)P(B). (11)

Доказательство очевидно, поскольку для независимых событий P(B|A)=P(B).

Тождество (11) наряду с выражениями (12) и (13) являются необходимыми и достаточными условиями независимости двух случайных событий A и B.

P(A)=P(A|B); P(A)=P(А|); P(A|B)=P(А|); (12)

P(B)=P(B|A); P(B)=P(B|); P(B|A)=P(B|). (13)

Надёжность некоторой системы повышается двукратным резервированием (см. рис. 12). Вероятность безотказной работы первой подсистемы (в течение некоторой наработки) равна 0.9, второй - 0,8. Определить вероятность отказа системы в целом в течение заданной наработки, если отказы подсистем независимы.

Рисунок 12 - Двукратно резервированная система

E: исследование безотказности двукратно резервированной системы управления;

A 1 ={безотказная работа (в течение некоторой наработки) первой подсистемы}; P(A 1)=0,9;

A 2 ={безотказная работа второй подсистемы}; P(A 2)=0,8;

A={безотказная работа системы в целом}; P(A)=?

Решение. Выразим событие A через события A 1 и A 2 вероятности которых известны. Поскольку для безотказной работы системы достаточно безотказной работы хотя бы одного из её подсистем, то очевидно A=A 1 A 2.

Применяя теорему сложения вероятностей получим: P(A)=P(A 1 A 2)=P(A 1)+P(A 2)-P(A 1 A 2). Вероятность совместного наступления событий A 1 и A 2 определим по теореме умножения вероятностей: P(A 1 A 2)=P(A 1)P(A 2 |A 1). Учитывая, что (по условию) события A 1 и A 2 независимы, P(A 1 A 2)=P(A 1)P(A 2). Таким образом, вероятность безотказной работы системы равна P(A)=P(A 1 A 2)=P(A 1)+P(A 2)-P(A 1)P(A 2)=0,9+0,8-0,90,8=0,98.

Ответ: вероятность безотказной работы системы в течение заданной наработки равна 0,98.

Замечание. В примере 20 возможен другой способ определения события A через события A 1 и A 2: , т.е. отказ системы возможен при одновременном отказе обоих её подсистем. Применяя теорему умножения вероятностей независимых событий получим следующее значение вероятности отказа системы: . Следовательно, вероятность безотказной работы системы в течение заданной наработки равна.

Пример 21 (парадокс независимости)

E: бросается две монеты.

A={выпадение герба на первой монете}, P(A)=0,5;

B={выпадение герба на второй монете}, P(B)=0,5;

C={выпадение герба только на одной из монет}, P(C)=0,5.

События A, B и C попарно независимы, поскольку выполняются условия независимости двух событий (11)-(13):

P(A)=P(A|B)=0,5; P(B)=P(B|C)=0,5; P(C)=P(C|A)=0,5.

Однако P(A|BC)=0P(A); P(A|C)=1P(A); P(B|AC)=0P(B); P(C|AB)=0P(C).

Замечание. Попарная независимость случайных событий не означает их независимость в совокупности.

Случайные события называются независимыми в совокупности, если вероятность наступления каждого из них не изменяется с наступлением любой комбинации остальных событий. Для случайных событий A 1, A 2, … A n, независимых в совокупности, справедлива следующая теорема умножения вероятностей (необходимое и достаточное условие независимости в совокупности n случайных событий):

P(A 1 A 2 …A n)=P(A 1)P(A 2)…P(A n). (14)

Для примера 21 условие (14) не выполняется: P(ABC)=0P(A)P(B)P(C)=0,50,50,5=0,125. Следовательно, попарно независимые события A, B и C зависимы в совокупности.

Пример 22

В коробке находятся 12 транзисторов, три из которых неисправны. Для сборки двухкаскадного усилителя случайным образом извлекаются два транзистора. С какой вероятностью собранный усилитель будет неисправен?

E: выбор двух транзисторов из коробки с 9-ю исправными и 3-мя неисправными транзисторами;

A={неисправность собранного усилителя}; P(A)=?

Решение. Очевидно, что собранный двухкаскадный усилитель будет неисправен, если будет неисправен хотя бы один из двух отобранных для сборки транзисторов. Поэтому переопределим событие A следующим образом:

A={хотя бы один из двух отобранных транзисторов неисправен};

Определим следующие вспомогательные случайные события:

A 01 ={неисправен только первый из двух отобранных транзисторов};

A 10 ={неисправен только второй из двух отобранных транзисторов};

A 00 ={неисправны оба отобранных транзистора};

Очевидно, что A=A 01 A 10 A 00 (для наступления события A необходимо наступление хотя бы одного из событий A 01 или A 10 или A 00), причем события A 01, A 10 и A 00 несовместны (вместе произойти не могут), поэтому вероятность события найдем по теореме сложения вероятностей несовместных событий:

P(A)=P(A 01 A 10 A 00)=P(A 01)+P(A 10)+P(A 00).

Для определения вероятностей событий A 01, A 10 и A 00 введем вспомогательные события:

B 1 ={первый отобранный транзистор неисправен};

B 2 ={второй отобранный транзистор неисправен}.

Очевидно, что A 01 =B 1 ; A 10 =B 2 ; A 00 =B 1 B 2 ; поэтому для определения вероятностей событий A 01, A 10 и A 00 применим теорему умножения вероятностей.

P(A 01)=P(B 1)=P(B 1)P(|B 1),

где P(B 1) - вероятность того, что первый отобранный транзистор будет неисправен; P(|B 1) - вероятность того, что второй отобранный транзистор будет исправен, при условии, что первый отобранный транзистор неисправен. Применяя классический способ вычисления вероятностей, P(B 1)=3/12, а P(|B 1)=9/11 (поскольку после выбора первого неисправного транзистора в коробке осталось 11 транзисторов, 9 из которых исправны).

Таким образом, P(A 01)=P(B 1)=P(B 1)P(|B 1)=3/129/11=0,20(45). По аналогии:

P(A 10)=P(B 2)=P()P(B 2 |)=9/123/11=0,20(45);

P(A 00)=P(B 1 B 2)=P(B 1)P(B 2 |B 1)=3/122/11=0,041(6).

Подставим полученные значения вероятностей A 01, A 10 и A 00 в выражение для вероятности события A:

P(A)=P(A 01 A 10 A 00)=P(A 01)+P(A 10)+P(A 00)=3/129/11+9/123/11+3/122/11=0,45(45).

Ответ: вероятность того, что собранный усилитель будет неисправен, равна 0,4545.

Теорема. (Умножения вероятностей) Вероятность произведения двух событий (совместного появления этих событий) равна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое событие уже наступило.

Также можно записать:

Доказательство этой теоремы непосредственно вытекает из определения условной вероятности.

Если события независимые, то , и теорема умножения вероятностей принимает вид:

В случае произведения нескольких зависимых событий вероятность равна произведению одного из них на условные вероятности всех остальных при условии, что вероятность каждого последующего вычисляется в предположении, что все остальные события уже совершились.

Из теоремы произведения вероятностей можно сделать вывод о вероятности появления хотя бы одного события .

Если в результате испытания может появиться п событий, независимых в совокупности, то вероятность появления хотя бы одного из них равна

Здесь событие А обозначает наступление хотя бы одного из событий A i , а q i – вероятность противоположных событий .

Пример 1. Из полной колоды карт (52 шт.) одновременно вынимают четыре карты. Найти вероятность того, что среди этих четырех карт будет хотя бы одна бубновая или одна червонная карта.



Решение.

Обозначим появление хотя бы одной бубновой карты – событие А , появление хотя бы одной червонной карты – событие В . Таким образом нам надо определить вероятность события С = А + В .

Кроме того, события А и В – совместны, т.е. появление одного из них не исключает появления другого.

Всего в колоде 13 червонных и 13 бубновых карт.

Найдем вероятность события, противоположного событию С (среди извлеченных карт не будет ни бубновых ни червовых):

при вытаскивании первой карты вероятность того, что не появится ни червонной ни бубновой карты равна , при вытаскивании второй карты - , третьей - , четвертой - .

Тогда вероятность того, что среди вынутых карт не будет ни бубновых, ни червонных равна .

Искомая вероятность

Пример 2. Чему равна вероятность того, что при бросании трех игральных костей 6 очков появится хотя бы на одной из костей?

Решение .

Вероятность выпадения 6 очков при одном броске кости равна . Вероятность того, что не выпадет 6 очков - . Вероятность того, что при броске трех костей не выпадет ни разу 6 очков равна .

Тогда вероятность того, что хотя бы один раз выпадет 6 очков равна .

Пример 3. В барабане револьвера находятся 4 патрона из шести в произвольном порядке. Барабан раскручивают, после чего нажимают на спусковой крючок два раза. Найти вероятности: а) хотя бы одного выстрела, б) двух выстрелов, в) двух осечек.

Решение .

Вероятность выстрела при первом нажатии на курок (событие А ) равна , вероятность осечки - Вероятность выстрела при втором нажатии на курок зависит от результата первого нажатия.

Так если в первом случае произошел выстрел, то в барабане осталось только 3 патрона, причем они распределены по 5 гнездам, т.к. при втором нажатии на курок напротив ствола не может оказаться гнездо, в котором был патрон при первом нажатии на курок.

Условная вероятность выстрела при второй попытке - если в первый раз был выстрел, - если в первый раз произошла осечка.

Условная вероятность осечки во второй раз - , если в первый раз произошел выстрел, - если в первый раз была осечка.

Рассмотрим вероятности того, что во втором случае произойдет выстрел (событие В ) или произойдет осечка (событие ) при условии, что в первом случае произошел выстрел (событие А ) или осечка (событие ).

Два выстрела подряд

Первая осечка, второй выстрел

Первый выстрел, вторая осечка

Две осечки подряд

Эти четыре случая образуют полную группу событий (сумма их вероятностей равна единице)

Анализируя полученные результаты, видим, что вероятность хотя бы одного выстрела равна сумме

Пример 4. Два стрелка стреляют по мишени. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,7, а для второго – 0,8. Найти вероятность того, что при одном залпе в мишень попадает только один из стрелков.

Решение .

Обозначим попадание в цель первым стрелком – событие А, вторым – событие В, промах первого стрелка – событие , промах второго – событие .

Вероятность того, что первый стрелок попадет в мишень, а второй – нет равна

Вероятность того, что второй стрелок попадет в цель, а первый – нет равна

Тогда вероятность попадания в цель только одним стрелком равна

Тот же результат можно получить другим способом – находим вероятности того, что оба стрелка попали в цель и оба промахнулись. Эти вероятности соответственно равны:

Тогда вероятность того, что в цель попадет только один стрелок равна:

Пример 5. Вероятность того, что взятая наугад деталь из некоторой партии деталей, будет бракованной равна 0,2. Найти вероятность того, что из трех взятых деталей 2 окажется не бракованными.

Решение .

Обозначим бракованную деталь – событие А, не бракованную – событие .

Если среди трех деталей оказывается только одна бракованная, то это возможно в одном из трех случаев: бракованная деталь будет первой, второй или третьей.

Пример 6. Вероятности того, что нужная деталь находится в первом, втором, третьем или четвертом ящике, соответственно равны 0,6, 0,7, 0,8, 0,9. Найти вероятности того, что эта деталь находится: а) не более, чем в трех ящиках; б) не менее, чем в двух ящиках.

Решение .

а) Вероятность того, что данная деталь находится во всех четырех ящиках, равна

Вероятность того, что нужная деталь находиться не более, чем в трех ящиках равна вероятности того, что она не находится во всех четырех ящиках.

б) Вероятность того, что нужная деталь находится не менее, чем в двух ящиках, складывается из вероятностей того, что деталь находиться только в двух ящиках, только в трех ящиках, только в четырех ящиках. Конечно, эти вероятности можно посчитать, а потом сложить, однако, проще поступить иначе. Та же вероятность равна вероятности того, что деталь не находится только в одном ящике и имеется вообще.

\(\blacktriangleright\) Если для выполнения события \(C\) необходимо выполнение обоих совместных (которые могут произойти одновременно) событий \(A\) и \(B\) (\(C=\{A\) и \(B\}\) ), то вероятность события \(C\) равна произведению вероятностей событий \(A\) и \(B\) .

Заметим, что если события несовместны, то вероятность их одновременного происхождения равна \(0\) .

\(\blacktriangleright\) Каждое событие можно обозначить в виде круга. Тогда если события совместны, то круги должны пересекаться. Вероятность события \(C\) – это вероятность попасть в оба круга одновременно.

\(\blacktriangleright\) Например, при подбрасывании игральной кости найти вероятность \(C=\) {выпадение числа \(6\) }.
Событие \(C\) можно сформулировать как \(A=\) {выпадение четного числа} и \(B=\) {выпадение числа, делящегося на три}.
Тогда \(P\,(C)=P\,(A)\cdot P\,(B)=\dfrac12\cdot \dfrac13=\dfrac16\) .

Задание 1 #3092

Уровень задания: Равен ЕГЭ

В магазине продаются кроссовки двух фирм: Dike и Ananas. Вероятность того, что случайно выбранная пара кроссовок будет фирмы Dike, равна \(0,6\) . Каждая фирма может ошибиться в написании своего названия на кроссовках. Вероятность того, что фирма Dike ошибется в написании названия, равна \(0,05\) ; вероятность того, что фирма Ananas ошибется в написании названия, равна \(0,025\) . Найдите вероятность того, что случайно купленная пара кроссовок будет с правильным написанием названия фирмы.

Событие A: “пара кроссовок будет с правильным названием” равно сумме событий B: “пара кроссовок будет фирмы Dike и с правильным названием” и C: “пара кроссовок будет фирмы Ananas и с правильным названием”.
Вероятность события B равна произведению вероятностей событий “кроссовки будут фирмы Dike” и “название фирма Dike написала правильно”: \ Аналогично для события C: \ Следовательно, \

Ответ: 0,96

Задание 2 #166

Уровень задания: Равен ЕГЭ

Если Тимур играет белыми шашками, то он выигрывает у Вани с вероятностью 0,72. Если Тимур играет черными шашками, то он выигрывает у Вани с вероятностью 0,63. Тимур и Ваня играют две партии, причем во второй партии меняют цвет шашек. Найдите вероятность того, что Ваня выиграет оба раза.

Ваня выигрывает белыми с вероятностью \(0,37\) , а черными с вероятностью \(0,28\) . События “из двух партий Ваня выиграл белыми”\(\ \) и “из двух партий Ваня выиграл черными”\(\ \) – независимы, тогда вероятность их одновременного наступления равна \

Ответ: 0,1036

Задание 3 #172

Уровень задания: Равен ЕГЭ

Вход в музей охраняют два охранника. Вероятность того, что старший из них забудет рацию равна \(0,2\) , а вероятность того, что младший из них забудет рацию равна \(0,1\) . Какова вероятность того, что у них не будет ни одной рации?

Так как рассматриваемые события независимы, то вероятность их одновременного наступления равна произведению их вероятностей. Тогда искомая вероятность равна \

Ответ: 0,02

Задание 4 #167

Уровень задания: Равен ЕГЭ

Прыгая с высоты 1 метр, Костя ломает ногу с вероятностью \(0,05\) . Прыгая с высоты 1 метр, Ваня ломает ногу с вероятностью \(0,01\) . Прыгая с высоты 1 метр, Антон ломает ногу с вероятностью \(0,01\) . Костя, Ваня и Антон одновременно прыгают с высоты 1 метр. Какова вероятность того, что из них только Костя сломает ногу? Ответ округлите до тысячных.

События “при прыжке с высоты 1 метр Костя сломал ногу”\(,\ \) “при прыжке с высоты 1 метр Ваня не сломал ногу”\(\ \) и “при прыжке с высоты 1 метр Антон не сломал ногу”\(\ \) – независимы, следовательно, вероятность их одновременного наступления равна произведению их вероятностей: \ После округления окончательно получаем \(0,049\) .

Ответ: 0,049

Задание 5 #170

Уровень задания: Равен ЕГЭ

Максим и Ваня решили поиграть в боулинг. Максим справедливо прикинул, что в среднем он выбивает страйк один раз в восемь бросков. Ваня справедливо прикинул, что в среднем он выбивает страйк один раз в пять бросков. Максим и Ваня делают ровно по одному броску (независимо от результата). Какова вероятность того, что среди них не будет страйков?

Так как рассматриваемые события независимы, то вероятность их одновременного наступления равна произведению их вероятностей. При этом вероятность того, что Максим не выбьет страйк равна \ Вероятность того, что Ваня не выбьет страйк равна \(1 - 0,2 = 0,8\) . Тогда искомая вероятность равна \[\dfrac{7}{8}\cdot 0,8 = 0,7.\]

Ответ: 0,7

Задание 6 #1646

Уровень задания: Равен ЕГЭ

Антон и Костя играют в настольный теннис. Вероятность того, что Костя попадет своим коронным ударом в стол равна \(0,9\) . Вероятность того, что Антон выиграет розыгрыш, в котором Костя попытался нанести коронный удар равна \(0,3\) . Костя попытался попасть своим коронным ударом в стол. Какова вероятность того, что Костя действительно попадет своим коронным ударом и в итоге выиграет этот розыгрыш?

Так как рассматриваемые события независимы, то вероятность их одновременного наступления равна произведению их вероятностей. При этом вероятность того, что Антон не выиграет розыгрыш, в котором Костя попытался нанести свой коронный удар равна \(1 - 0,3 = 0,7\) . Тогда искомая вероятность равна \