Уравнение клапейрона клаузиуса для плавления. Уравнения клапейрона и клаузиуса—клапейрона

УРАВНЕНИЯ КЛАПЕЙРОНА И КЛАУЗИУСА-КЛАПЕЙРОНА

Как следует из правила фаз Гиббса, число независимых интенсивных переменных в двухфазной однокомпонентной системе равно единице. Поэтому должно существовать уравнение, связывающее р и Тв такой системе. Эта связь является следствием условия равновесия фаз:

где обозначение р(р, Т) подчеркивает, что химический потенциал каждой фазы является функцией риТ.

Если бы зависимость р от р и Т была известна в явном виде, то (3.7) можно было бы в принципе решить относительно р или Т и найти зависимостьр = р{Т) или Т = Т(р). Однако в общем случае зависимость р отр и 7"не известна и сделать этого нельзя. Но можно найти производнуюр по Т (или обратную ей).

Предположим, что две фазы а и b одного вещества находятся в равновесии. Если изменить температуру на величину d7", то давление должно измениться так, чтобы химические потенциалы обеих фаз изменились одинаково, не нарушая условия равновесия (3.7), т.е.:

Раскладывая оба дифференциала по переменным Тир, получим

Вместе с соотношениями (2.31) это дает:

Из этого получается:

где Дф П? - энтропия фазового перехода; А фп У=У^ - - молярный

объем фазового перехода (изменение молярного объема при Т = const, р = const).

Энтропия и энтальпия фазового перехода связаны между собой соотношением (3.5): AS = АН/Т. Поэтому (3.9) можно записать в следующей форме:

где Т - температура фазового перехода.

Уравнения (3.9) и (3.10) эквивалентны и любое из них называется уравнением Клапейрона.

Практическое применение уравнения Клапейрона ограничено тем, что энтальпия фазового перехода и молярные объемы фаз зависят от температуры у разных фаз по-разному. Это значит, что не существует общего способа интегрирования этого уравнения. Но для малых интервалов температуры эти уравнения можно интегрировать с точностью, достаточной для многих целей, приняв те или иные приближения.

Первое приближение состоит в том, что для узкого интервала температуры энтальпию фазового перехода можно принять приблизительно постоянной. То же можно сделать в отношении молярных объемов конденсированных фаз - твердых и жидких, так как они слабо зависят от Тир. Тогда для фазовых равновесий между твердыми фазами и между твердой и жидкой фазами изменение молярного объема можно принять также постоянным. С этими приближениями (3.10) интегрируется так (для плавления):

Аналогично для равновесий между твердыми фазами.

Молярный объем газовой фазы нельзя считать постоянным. Но для случая невысоких давлений возможны другие приближения. Во-первых, молярный объем газа при небольших давлениях много больше молярного объема любой конденсированной фазы (к.ф). Поэтому для испарения можно принять:

Во-вторых, при небольших давлениях многие газы имеют

тт т^газ КТ д __ ЯТ

свойства, близкие к идеальным. Поэтому ~-и Л исп к т ~-.

Подставив это в уравнение (3.10), получим:

Так как &р/р = с!1пр, получается соотношение, называемое уравнением Клаузиуса-Клапейрона:

Оно применимо к испарению как жидкой, так и твердой фазы (сублимация).

В приближении постоянной энтальпии фазового перехода это уравнение интегрируется так:

Для применения этих уравнений часто используются данные об энтальпиях фазовых переходов и температурах фазовых переходов при нормальном давлении. Они приводятся во многих справочниках физико-химических величин. Нормальным давлением называется величина 101 325 Па = 101,325 кПа = 1,01325 бар = 1 атм = = 760 мм рт. ст. = 760 Торр. Данные из справочников служат основой для приблизительных вычислений с помощью уравнений (3.11) и (3.13) при давлениях, не сильно отличающихся от нормального.

Молярные объемы конденсированных фаз, необходимые для вычислений по уравнению (3.11), обычно не приводятся в справочниках. Но вместо них можно найти данные о плотностях р. Их можно использовать для вычисления молярных объемов, зная определения У т = У/п, р = т/У и М = т/п. Из них следует: У т = М/ р, где М - молярная масса.

С другой стороны, некоторые справочники дают удельные теплоты фазовых переходов. Для этого случая уравнение (3.10) может быть записано в следующей форме:

где Аф п /г и Аф П у - изменения удельной энтальпии и удельного объема соответственно при фазовом переходе (причем v= 1/р).

Если энтальпия испарения не известна, то иногда ее можно оценить приблизительно по эмпирическому правилу Трутона, согласно которому молярная энтропия испарения большинства жидкостей равна приблизительно 90 Дж К -1 моль -1 . Так как Дфп^ - АфпЯ/Г, Л исп Я/Дж моль -1 = 90(Г М /К), где 7^ - температура кипения при нормальном давлении. Подставив это значение энтальпии испарения в (3.13) и приняв для р х нормальное давление 1 атм, а для температуры Т ! нормальную температуру кипения Т получим для равновесного давления пара над жидкостью:

Правило Трутона не применимо к жидкостям с высокой полярностью и особенно к ассоциированным жидкостям, таким как вода и спирты. (Ассоциированные жидкости - жидкости, молекулы которых взаимодействуют между собой посредством водородных связей.) Правило является удовлетворительным только в применении к неполярным веществам, причем с температурой кипения, не выходящей за пределы интервала приблизительно от 150 до 1000 К.

ТЕПЛОВЫЕ ЭФФЕКТЫ ФАЗОВЫХ ПЕРЕХОДОВ.

УРАВНЕНИЕ КЛАПЕЙРОНА – КЛАУЗИУСА.

Переход компонента из одной фазы в другую сопровождается выделением или поглощением теплоты, которую можно определить количественно на основе фундаментального уравнения термодинамики:

ВЫВОД И АНАЛИЗ УРАВНЕНИЯ КЛАПЕЙРОНА – КЛАУЗИУСА.

Для любого равновесного перехода вещества из одной фазы α в другую фазу β, применяя уравнение (* ) к каждой из фаз, можно написать

Индексы α и β отражают принадлежность параметров к соответствующей фазе. В равновесных условиях между фазами α и β изменение энергии Гиббса отсутствует, т.е.

,

П
риравнивая правые части уравнений 1 и 2, получим

Для равновесного обратимого процесса согласно уравнениям
и
запишем

а уравнение (3) примет вид

,

где ∆H пер – теплота фазового перехода.

Тепловой эффект, сопровождающий фазовый переход, определяется следующим образом:

уравнение

Клапейрона Клаузиуса

где ∆V – изменение объема в результате фазового перехода; dP/dT – изменение давления в зависимости от температуры при сохранении равновесия между двумя фазами.

Уравнение Клапейрона–Клаузиуса связывает тепловой эффект процесса с изменением давления насыщенного пара, температурой и изменением объема в процессе фазового перехода.

Для процессов испарения ж→п и сублимации тв→п уравнение Клапейрона–Клаузиуса можно представить следующим образом:

где ∆H исп, ∆H суб – теплоты испарения и сублимации; V п, V ж, V тв – мольные объемы пара, жидкости и твердого тела соответственно.

В процессе испарения и сублимации наблюдается значительное изменение удельного объема ∆V и существенное изменение величины dP/dT. При плавлении, напротив, изменение ∆V невелико, и величина dP/dT незначительна.

Пример 1. Проведем расчет по уравнению Клапейрона–Клаузиуса температуры плавления фенола Т пл. Плотность твердого фенола ρ тв при атмосферном давлении составляет 1,072∙10 3 кг/м 3 , а жидкого ρ ж = 1,056∙10 3 кг/м 3 ; теплота плавления ∆H пл = 1,045∙10 5 Дж/кг; температура замерзания 314,2 К. Определим dP/dT и температуру плавления при Р = 5,065∙10 7 Па:

Прирост температуры плавления при повышении давления на 1 атм (1,013∙10 5 Па) составляет 4,525∙10 -8 град/Па. При увеличении давления до 5,065∙10 7 Па температура плавления увеличивается на ∆T = (dT/dP)∆P = 4,525∙10 -8 ∙ 5,065∙10 7 = 2,29 К, т.е. составит Т пл = 314,2+2,29 = 316,49 К.

Следует иметь в виду, что в процессе плавления у большинства веществ V ж > V тв, тогда ∆V>0 и при повышении давления Р температура плавления повышается Т.

Однако, такие вещества как вода (Н 2 О), висмут (Bi), имеют объем твердой фазы V тв больше, чем объем жидкой фазы V ж < V тв. Тогда в процессе плавления этих веществ изменение мольного объема ∆V будет <0 и при повышении давления Р температура плавления будет уменьшаться Т↓

ПРИМЕР 2. Скольжение коньков по льду обусловлено образованием в плоскости скольжения воды, которая выполняет роль жидкой смазки. Ранее считали, что образование воды происходит за счет плавления льда под давлением острого конька. Однако термодинамические расчеты по уравнению Клапейрона–Клаузиуса не подтверждают этого. Действительно, удельный объем воды (ж) и льда (тв) равны соответственно V ж уд = 10 -3 м 3 /кг и V тв уд = 1,091·10 -3 м 3 /кг; теплота плавления ∆H пл = 332,4 кДж/кг:

Решение:

Это значение показывает, что для понижения температуры таяния льда на один градус Кельвина необходимо увеличить давление на 1,34∙10 7 Па, т.е. примерно на 134 атмосферы, что нереально, поскольку такое давление лед не выдерживает – трескается.

Таяние льда происходит в основном в результате трения и превращения работы в теплоту при скольжении конька по льду, а не за счет повышения давления на лед.

Уравнение для процесса испарения
можно представить в интегральном виде. Мольный объем пара значительно превосходит мольный объем жидкости, V п >> V ж, т.е. величиной V ж можно пренебречь. Тогда уравнение Клапейрона–Клаузиуса запишется в виде:

Пар подчиняется законам идеального газа: PV=RT
, тогда
, преобразуем уравнение, переставляя давление Р в левую часть уравнения, а dT в правую часть. Получаем:

или

Проведем интегрирование уравнения (1) в пределах от Т 1 до Т 2 и соответственно от Р 1 до Р 2 при условии, что в области невысоких давлений пара ∆Н исп ≈ const; в результате интегрирования получим:

∆Н исп / R = const, выносим за знак интеграла

При помощи уравнения (2) можно графически определить значения теплоты испарения, если известны давления Р 1 и Р 2 и соответствующие им температуры испарения Т 1 и Т 2 . Для этого необходимо отложить на оси абсцисс значения обратной температуры, а на оси ординат – lnP.

Зависимость lnP от 1/Т будет линейной, а тангенс угла наклона этой прямой равен
, т.е.
, а

Расчетные значения ∆Н исп получаются с достаточной для практики точностью, не уступающей точности непосредственного измерения. Возможно использование уравнения (2) для обратного расчета, когда по значению ∆Н исп определяют изменение давления при изменении температуры в процессе испарения.

Теплоту фазовых переходов можно определить и по величине стандартной энтальпии образования, в зависимости от фазового состояния продуктов реакции.

Пример . Лучше всего это показать на примере теплоты образования воды из газообразных кислорода и водорода, которая составляет

H 2(г) +1/2О 2(г) =Н 2 О (г),(ж),(тв)

для водяного пара ∆Н (г) 0 = -241,82 кДж/моль; для воды в жидком состоянии ∆Н (ж) 0 = -285,83 кДж/моль; для льда ∆Н (тв) 0 = -291,82 кДж/моль. Теплота конденсации воды равна:

а теплота превращения воды в лед:

Как видно, тепловой эффект фазовых переходов значительно меньше теплоты образования веществ.

В результате фазовых переходов происходит изменение энтропии . Такие изменения в зависимости от температуры представим на рисунке.

Как известно, энтропия идеального кристалла при абсолютном нуле равна нулю. С ростом температуры атомы (ионы) флуктуировать относительно равновесного положения, число возможных способов их размещения растет, и энтропия увеличивается (ΔS>0). При достижении температуры плавления (точка А на рисунке) кристаллическая решетка разрушается скачкообразно (отрезок АБ), увеличивается термодинамическая вероятность системы W, а в соответствии с формулой S=k∙lnW (где k – постоянная Больцмана) энтропия при переходе от твердого в жидкое состояние растет. Более значительный скачок энтропии имеет место при переходе из жидкого состояния в газообразное (отрезок ВГ), когда ближний порядок расположения частиц друг относительно друга нарушается, и движение частиц становится хаотичным.

Пример. Оценим скачок энтропии на примере фазовых переходов воды:

,

когда известны стандартные абсолютные значения энтропии S тв 0 =39,4; S ж 0 =69,9; S г 0 =188,7 Дж/(моль·К).

Тогда имеем

В соответствии с рисунком для воды

По известной энтальпии фазового перехода можно рассчитать изменение энтропии в соответствии с формулой

Пример. Вычислим изменение энтропии в процессе парообразования 1 моля этилхлорида при 12,3 0 С, когда теплота испарения ∆Н исп =24,16 кДж/моль.

Молекулярная масса
= 64,5 г/моль.

В заключение отмечу, что мы рассматривали лишь фазовые переходы I рода. При фазовых переходах I рода свойства веществ, выражаемые, например, через химический потенциал, первыми производными одной из характеристических функций, изменяются скачком при непрерывном изменении соответствующих параметров: температуры, давления, объема и энтропии. При этом выделяется или поглощается теплота перехода ∆Н пер в соответствии с уравнением Клапейрона–Клаузиуса.

Кроме них, однако, существуют фазовые переходы II рода. Они не сопровождаются выделением или поглощением теплоты, для них уравнение Клапейрона–Клаузиуса теряет смысл. Эти переходы характеризуют изменения в системе, которые не определяются объемом и запасом энергии. В этом случае первые производные одной из характеристических функций непрерывны, а вторые производные (например, теплоемкость) изменяются скачком. К фазовым переходам II рода относятся переходы парамагнетика в ферромагнетик, диэлектрика в сегнетоэлектрик, а также процессы возникновения сверхтекучести, сверхпроводимости и др.

В настоящее время насчитывается около 400 твердых минералов, для которых наблюдаются фазовые переходы II рода: рутил, анатаз, алмаз и особенно кварц, который имеет семь модификаций, причем наряду с фазовыми переходами I рода наблюдаются фазовые переходы II рода. Так, при 573 0 С и переходе модификации кварца β
α теплоемкость и коэффициент линейного расширения изменяются скачкообразно (I род), но при этом поглощается теплота 10,9 кДж/моль (II род).

При переходах индивидуального вещества из одного агрегат­ного состояния в другое каждому давлению соответствует опреде­ленная температура, при которой фазы находятся в состоянии термодинамического равновесия. Зависимость давления фазового перехода от температуры описывается уравнением Клапей­рона-Клаузиуса, выведенном на основе второго закона термоди­намики. Для вывода этого уравнения рассмотрим в р- v μ -коорди­натах элементарный цикл, соответствующий площади 1-2-3-4 (рис. 30).

Предположим, что в точке f находится 1 кмоль рабочего тела, например жидкости. В процессе, соответствующем линии 1-2, при постоянном давлении подводится теплота и при постоянной

температуре происходит превраще­ние жидкости в пар. Следовательно, процесс, соответствующий линии 1-2, является изобарно-изотермическим. Жидкость, превращаясь в пар, увеличивается в объеме от V" μ , в точке 1 до V"" μ , в точке 2. В точке 2 вся жидкость превратится в пар. Паро­образование происходит за счет подведенной теплоты Q 1 , равной теплоте парообразования (r).

Пусть из точки 2 пар расширяется по адиабате до объема, со­ответствующего объему в точке 3, при незначительном изменении давления от р до (р-dp).. Температура при этом уменьшится от Т до (Т-dT). Затем при постоянных температуре (Т -dT) и дав­лении (р - dp) осуществим сжатие пара до объема, соответствую­щего точке 4. В точке 4 весь пар сконденсируется -превратится в жидкость.

Отводимая теплота в процессе, соответствующем линии 3-4, равна Q 2 = Q 1 - δQ .

Заменим процесс 4-1 адиабатным процессом 4"-1 перехода жидкости в состояние, соответствующее точке 1. Из-за малой ве­личины dp изменением разности объемов (V" μ - V" μ) и (V 3 μ - V 4 μ ,) можно пренебречь. Тогда цикл 1-2-3-4 превращается в эле­ментарный цикл Карно 1-2-3-4", для которого справедливы равенства

δL = (V" μ - V" μ) dp

η t = [Т - (T - dT)]/T = dT/T .

Так как термический КПД цикла Карно можно записать также в виде η t = δL/Q l то, заменив в этом равенстве Q 1 нa r и прирав­няв правые части полученных для η t соотношений, можно записать

δL/r = dT/T

Подставив вместо δL полученное значение, получим

[(V" μ - V" μ) dp]/r = dt/T

dp/dT = r/. (173)

Уравнение (173) называется уравнением Клапейрона-Клаузиуса. С помощью этого уравнения определяют давление или температуру при переходе индивидуального вещества из жидкого состояния в газообразное, а также объем (применительно к пару) и теплоту парообразования. Для любого другого фазового перехода вещества из одного состояния в другое в уравнении (173) следует заменить r на λ - теплоту фазового перехода (из различных фаз) в условиях равновесия. Тогда

dp/dT = λ/ (174)

Уравнение Клапейрона-Клаузиуса (174) можно вывести и другим путем, исходя из равенства химических потенциалов при равновесии.

Как было показано ранее, условием равновесия двухфазной системы (при одинаковых давлении и температуре обеих фаз) является равенство их химических потенциалов (см. рис. 25), т. е. μ" = μ" , где μ" и μ" - химические потенциалы индивидуаль­ного вещества соответственно в первой и во второй фазах.

Так как для однокомпонентной системы химический потенциал равен киломольной энергии Гиббса μ = G/n , то условие равнове­сия можно записать в виде dG"/dn" = dG"/dn".

Учитывая что уменьшение количества вещества в одной фазе должно равняться увеличению его в другой фазе, условие равно­весия можно также записать в виде равенства энергий Гиббса в первой и во второй фазах, т. е. dG" = dG" . Выразив dG" и dG" через соответствующие параметры (110), получим

V" μ dp - S"dT = V"" μ dp - S"dT .

dp/dT = (S"" - S")/ (V" μ - V" μ)

Учитывая, что приращение энтропии равно ΔS = ΔQ/T , и заменяя в полученном уравнении теплоту, подводимую на участке про­цесса перехода вещества из одной фазы в другую через λ, получим уравнение Клапейрона-Клаузиуса (174):

dp/dT = λ/.

При рассмотрении процесса парообразования объемом жидкости V" μ можно пренебречь вследствие малости его по сравнению с объ­емом пара V" μ . Тогда уравнение (174) можно записать в виде

dp/dT=λp/T V" μ (175)

Если при этом заменить объем пара из уравнения Менделеева- Клапейрона (2) на RT/p , то уравнение Клапейрона-Клаузиуса будет иметь вид

dp/dT = λp/RT 2

или, перенеся р в левую часть равенства и заменив dp/p на d (ln p) , получим

d (In p)/dT = λ/RT 2 . (176)

(177)

где С = const.

Если сделать еще одно допущение, т. е. принять, что λ не за­висит от температуры (λ = const) и проинтегрировать уравнение (177), то для небольшого интервала температур приближенная зависимость давления от температуры имеет вид

lg р = - λ/2,303RТ + С

(178)

где С = const.

Таким образом, по формуле (178) с достаточной для практики точностью можно определить теплоту парообразования (или другого фазового перехода) по известным р 1 и р 2 , соответствующим им температурам T 1 и Т 2 при небольшом их перепаде.

Уравнение (173) Клапейрона-Клаузиуса характеризует фазо­вые переходы, сопровождающиеся поглощением или выделением теплоты. Такие переходы обусловлены равенством энергии Гиббса двух находящихся в равновесии фаз и скачкообразным изменением первых ее производных, т. е. объема V = (дG/дp ) T и энтропии S = - (дG/дp ) р.

Эти переходы называются фазовыми переходами первого рода (к ним относятся испарение и конденсация, плавление и кристал­лизация) и, следовательно, уравнение Клапейрона-Клаузиуса отражает особенности перехода первого рода.

Кроме фазовых переходов первого рода существуют также фазовые переходы второго рода. Впервые представления о перехо­дах второго рода высказал Эренфест, объясняя явления перехода гелия из одного состояния в другое.

Для переходов второго рода характерным является отсутствие выделения и поглощения теплоты и, как следствие, равенство объ­ема и энтропии сосуществующих в равновесии фаз. Для этих пере­ходов характерно также скачкообразное изменение вторых произ­водных энергии Гиббса, которыми являются такие физические величины, как теплоемкость

μc p = - T(д 2 G/дT 2) p

коэффициент термического расширения

и коэффициент сжимаемости

Продифференцируем обе стороны условия равновесия

по температуре. При этом, разумеется, надо помнить, что давление Р - не независимая переменная, а функция температуры, определяемая этим самым уравнением. Поэтому пишем:

и, поскольку (см. (24,12)), получаем

где - молекулярные энтропии и объемы обеих фаз.

В этой формуле разность удобно выразить через теплоту перехода из одной фазы в другую. Подставляя находим формулу Клапейрона-Клаузиуса

(82,2)

Она определяет изменение давления находящихся в равновесии фаз при изменении температуры, или, другими словами, изменение давления с температурой вдоль кривой равновесия фаз. Та же формула, написанная в виде

определяет изменение температуры перехода между двумя фазами (например, точки замерзания или кипения) при изменении давления.

Так как молекулярный объем газа всегда больше объема жидкости, а при переходе жидкости в пар тепло поглощается, то, следовательно, температура кипения при увеличении давления всегда повышается . Точка же замерзания при увеличении давления повышается или понижается, смотря по тому, увеличивается или уменьшается объем при плавлении.

Все эти следствия формулы (82,2) находятся в полном согласии с принципом Ле-Шателье. Рассмотрим, например, жидкость, находящуюся в равновесии со своим насыщенным паром. Если увеличить давление, то температура кипения должна повыситься, вследствие чего часть пара перейдет в жидкость, что в свою очередь повлечет за собой уменьшение давления, т. е. система как бы противодействует выводящему ее из равновесия воздействию.

Рассмотрим частный случай формулы (82,2), когда речь идет о равновесии твердого или жидкого тела с его паром. Формула (82,2) определяет тогда изменение давления насыщенного пара с температурой.

Объем газа обычно значительно больше объема конденсированного тела, содержащего столько же частиц. Поэтому мы можем пренебречь в (82,2) объемом по сравнению с объемом (мы считаем второй фазой газ), т. е. принять Рассматривая пар как идеальный газ, выразим его объем через давление и температуру согласно формуле ; тогда или

Отметим, что в интервалах температуры, в которых теплоту перехода можно считать постоянной, давление насыщенного пара меняется с температурой по экспоненциальному закону

Задачи

1. Определить теплоемкость пара вдоль кривой равновесия жидкости и ее насыщенного пара (т. е. теплоемкость для процесса, при котором жидкость все время находится в равновесии со своим насыщенным паром). Пар считается идеальным газом.

Решение. Искомая теплоемкость h равна

где - производная вдоль кривой равновесия, т. е.

Подставляя для выражение (82,3) и находим

Определение теплоты испарения жидкости

Для равновесия между жидкостью и паром уравнение Клапейрона-Клаузиуса может быть получено следующим образом.

Согласно второму закону термодинамики если система находится в равновесии, то при данных условиях (Р, Т ) работа не совершается

Ap = 0; G ж - G п = 0; G ж = G п (2)

то есть свободные энергии Гиббса чистой жидкости и её пара равны (это условия равновесия).

Изменим одно из условий, определяющих равновесие, например, температуру (то есть нагреем систему на Т ), в результате этого установится новое давление, новое равновесие жидкость-пар:

G " ж = G " п (3)

или G ж = G п (4)

Если изменение внешнего параметра произойдет на бесконечно малую величину - dT , то и изобарно-изотермические потенциалы изменятся на бесконечно малую величину:

dG ж =dG п (5)

Изобарно-изотермический потенциал представляет собой свободную энергию системы и является функцией давления и температуры:

dG =VdP SdT (6)

поэтому с его помощью можно установить количественную зависимость между давлением насыщенного пара и температурой.

После подстановки (6) в (5) имеем в состоянии равновесия

V ж dP - S ж dT = V п dP - S п dT (7)

откуда (8)

где (S п - S ж ) и (V п - V ж ) - изменение соответственно энтропии и объема системы при переходе вещества из жидкого в парообразное состояние. Согласно второму закону термодинамики изменение энтропии системы при испарении равно приведенной теплоте испарения

(9)

Подставив выражение (9) в (8) получим

(10)

где ∆H исп и ∆V исп - соответственно изменение энтальпии и объема при испарении, аT кип - температура кипения.

Уравнение (10) называется уравнением Клапейрона-Клаузиуса . Согласно (10) наклон линий на фазовой диаграмме воды (рис. 1) определяется знаком производнойdP/dT или обратной ей величиныdT/dP - характеризующей изменение температуры с увеличением дав­ления.

Из фазовых переходов рассмотрим испарение и плавление. Теплота испарения - перехода жидкой фазы в газообразную положитель­на. Молярной теплотой испарения называется количество тепла, затраченное на испарение одного моля жидкого вещества. Объем газа при испарении всегда больше соответствующего объема жидкости, то есть в уравнении (10)V п > V ж . ПоэтомуdP/dT , а значит, иdT/dP также всегда положительны (dT/dP > 0). Следовательно, температура испарения всегда повышается с ростом давления (кривая ОК на рис. 1 или см. табл. 1 Приложения). С увеличением температуры давление насыщенного пара над жидкостью возрастает, принимая максимальное значение при критической температуре. Последняя является предельной температурой (например, для воды она равна 374,12 о С) при которой возможно равновесие между жидкой и паровой фазой ве­щества. При более высоких температурах вещество может находиться только в газообразном состоянии, и понятие насыщенного пара теряет свой смысл.

Теплота плавления - перехода твердой фазы в жидкую также всегда положительна.

Рис. 1. Диаграмма состояния воды при невысоких давлениях

Области: 1 - твердая фаза (лед); II- жидкость; III - пар.

Кривые: АО - возгонки; ОК - испарения; ОВ - плавления.

О - тройная точка, отвечающая равновесию трех фаз.

Объем жидкой фазы в общем случае может быть больше или меньше объёма того же количества твердой фазы. Отсюда в соответствии с уравнением (10) вытекает, что величина dP /dT или обратная её величинаdT /dP , может быть положительной или отрицательной. Это значит, что температура плавления может повышаться или снижаться с увеличением давления. ВеличинаdT /dP положительна для большинства веществ. Она имеет отрицательное значение лишь для воды, висмута и немногих других веществ, для которых плотность жидкости при температуре плавления больше плотности твердой фазы (V ж -V т ) < 0. В связи с этим при увеличении давления температура плавления льда понижается (криваяОВ ).

Необходимо отметить, что рассмотренные закономерности справедливы для невысоких давлений.

Уравнение Клапейрона-Клаузиуса (10) можно преобразовать приняв следующие приближения:

1) Поскольку ∆V исп =(V п -V ж ) >> 0 (например, для воды мольный объём в парообразном состоянии при н.у.V п ≈ 22400 см 2 , а в жидком состоянииV ж ≈ 18 см 3), то без большой погрешности можно пренебречь величиной V ж и принять, что∆V исп V п .

2) При не слишком высоких давлениях и температурах (вдали от критических) можно применять уравнение состояния для идеальных газов и к реальным системам. Погрешность, получаемая при этом, оказывается незначительной.

(11)

Подставив (11) в (10) получим:

(12)

которое после преобразования

(13)

принимает вид

(14)

Теплота испарения зависит от температуры : с повышением температуры теплота испарения понижается. При критической температуре теплота испарения равна нулю. Однако при температурах, далеких от критической, изменения∆Н исп с температурой не очень велики. В не слишком большом интервале температур∆Н исп можно считать постоянной.

Интегрирование уравнения Клапейрона-Клаузиуса (14) в пределах температур Т 1 иТ 2 , которым отвечают давленияР 1 иР 2 при постоянном значении ∆Н исп , дает

(15)

или при переходе к десятичным логарифмам

(16)

(R - универсальная газовая постоянная равная 8,314 Дж/моль · К).

Уравнения (15), (16) позволяют рассчитать теплоту испарения. Для этого по экспериментальным данным строят зависимость l n P =f (1/T ) илиlgP =f (1/T ) и на полученной прямой выбирают две точки (рис. 2). Подставляют соответствующие этим точкам значения логарифма давления и обратной температуры в уравнение (17):

(17)

Значение∆Н исп по уравнению (17) зависит от взятого интервала температур и тем ближе к истинному, чем этот интервал меньше. Однако для такого вычисления требуется весьма точное измерение температуры кипения и давления пара.

Для вычисления∆Н исп в относительно широком интервале температур (50...100 о С) следует выбирать точки, наиболее точно укладывающиеся на прямую lgP =f (1/T ).

Температура кипения жидкости, давление пара при данной тем­пературе и теплота испарения являются специфическими константами вещества , значения которых необходимы для многих теоретических и практических расчетов. На основе этих данных можно определять чистоту химических веществ, провести расчет разделения смесей путем перегонки, рассчитать энергетические затраты на испарение жидкости, необходимые для проведения реакции в газовой фазе.