Векторы называют равными если они. Векторы




Что такое вектор? Понятие вектора возникает там, где приходится иметь дело с объектами, которые характеризуются величиной и направлением: например, скорость, сила, давление. Такие величины называются векторными величинами или векторами. Понятие вектора возникает там, где приходится иметь дело с объектами, которые характеризуются величиной и направлением: например, скорость, сила, давление. Такие величины называются векторными величинами или векторами.


Понятие вектора Рассмотрим произвольный отрезок. На нем можно указать два направления. Чтобы выбрать одно из направлений, один конец отрезка назовем НАЧАЛОМ, а другой – КОНЦОМ и будем считать, что отрезок направлен от начала к концу. Определение. Определение. Отрезок, для которого указано, какой из его концов считается началом, а какой - концом, называется направленным отрезком или вектором. Отрезок, для которого указано, какой из его концов считается началом, а какой - концом, называется направленным отрезком или вектором.




Понятие вектора Векторы часто обозначают и одной строчной латинской буквой со стрелкой над ней: Векторы часто обозначают и одной строчной латинской буквой со стрелкой над ней: Любая точка плоскости также является вектором, который называется НУЛЕВЫМ. Начало нулевого вектора совпадает с его концом: Любая точка плоскости также является вектором, который называется НУЛЕВЫМ. Начало нулевого вектора совпадает с его концом: ММ = 0. ММ = 0. a b c М


Понятие вектора Длиной или модулем ненулевого вектора АВ называется длина отрезка АВ: Длиной или модулем ненулевого вектора АВ называется длина отрезка АВ: АВ = а = АВ = 5 АВ = а = АВ = 5 с = 17 с = 17 Длина нулевого вектора считается равной нулю: Длина нулевого вектора считается равной нулю: ММ = 0. ММ = 0. a М В А с


Коллинеарные векторы Ненулевые векторы называются коллинеарными, если они лежат либо на одной прямой, либо на параллельных прямых. Коллинеарные векторы могут быть сонаправленными или противоположно направленными. Ненулевые векторы называются коллинеарными, если они лежат либо на одной прямой, либо на параллельных прямых. Коллинеарные векторы могут быть сонаправленными или противоположно направленными. Нулевой вектор считается коллинеарным любому вектору. Нулевой вектор считается коллинеарным любому вектору. аb c d m n s L




Откладывание вектора от данной точки Если точка А – начало вектора а, то говорят, что вектор а отложен от точки А. Если точка А – начало вектора а, то говорят, что вектор а отложен от точки А. Утверждение: От любой точки М можно отложить вектор, равный данному вектору а, и притом только один. Утверждение: От любой точки М можно отложить вектор, равный данному вектору а, и притом только один. Равные векторы, отложенные от разных точек, часто обозначают одной и той же буквой Равные векторы, отложенные от разных точек, часто обозначают одной и той же буквой А а М а


Сумма двух векторов Рассмотрим пример: Рассмотрим пример: Петя из дома(D) зашел к Васе(V), а потом поехал в кинотеатр(К). Петя из дома(D) зашел к Васе(V), а потом поехал в кинотеатр(К). В результате этих двух перемещений, которые можно представить векторами DV и VK, Петя переместился из точки D в К, т.е. на вектор DК: В результате этих двух перемещений, которые можно представить векторами DV и VK, Петя переместился из точки D в К, т.е. на вектор DК: DK=DB+BK. DK=DB+BK. Вектор DK называется суммой векторов DB и BK. D V K


Сумма двух векторов Правило треугольника Пусть а и b – два вектора. Отметим произвольную точку А и отложим от этой точки АВ = а, затем от точки В отложим вектор ВС = b. Пусть а и b – два вектора. Отметим произвольную точку А и отложим от этой точки АВ = а, затем от точки В отложим вектор ВС = b. АС = а + b АС = а + b a b A a b B C
Противоположные векторы Пусть а – произвольный ненулевой вектор. Пусть а – произвольный ненулевой вектор. Определение. Вектор b называется противоположным вектору а, если а и b имеют равные длины и противоположно направлены. a = АВ, b = BA Вектор, противоположный вектору c, обозначается так: -c. Очевидно, с+(-с)=0 или АВ+ВА=0 А B a b c -c


Вычитание векторов Определение. Разностью двух векторов а и b называется такой вектор, сумма которого с вектором b равна вектору а. Определение. Разностью двух векторов а и b называется такой вектор, сумма которого с вектором b равна вектору а. Теорема. Для любых векторов а и b справедливо равенство а - b = а + (-b). Задача. Даны векторы а и b. Построить вектор а – b. а а b -b a - b



Г – 9 класс Урок № 2

Тема: Понятие вектора. Равенство векторов. Откладывание вектора от данной точки.

Цели:

    ввести понятие вектора, его длины, коллинеарных и равных векторов;

    научить обучающихся изображать и обозначать векторы, откладывать от любой точки плоскости вектор, равный данному;

    закрепить знания обучающихся в ходе решения задач;

    развивать память, внимание, математическое мышление;

    вырабатывать трудолюбие, стремление достигать поставленные цели и задачи.

Ход урока.

    Организационные моменты.

Сообщение темы и целей урока.

    Актуализация знаний и умений обучающихся.

1. Проверка выполнения домашнего задания. Разбор нерешенных заданий.

2. Проверка теоретических сведений:

    Равнобедренный треугольник и его свойства. Признаки равенства треугольников.

    Определение средней линии треугольника и ее свойство.

    Теорема Пифагора и обратная ей теорема.

    Формула для вычисления площади треугольника.

    Понятие параллелограмма, свойства и признаки параллелограмма, ромба, прямоугольника.

    Определение трапеции, виды трапеций.

    Площадь параллелограмма, площадь трапеции.

    Изучение нового материала.

Материал пунктов 76–78 изложить в виде небольшой лекции с применением разнообразных презентации «Вектора»

1. Понятие векторных величин (или коротко векторов).

2. Примеры векторных величин, известных обучающимся из курса физики: сила, перемещение материальной точки, скорость и другие (рис. 240 учебника).

3. Определение вектора (рис. 241, 242).

4. Обозначение вектора – двумя заглавными латинскими буквами со стрелкой над ними, например, , или часто обозначают одной строчной латинской буквой со стрелкой над ней: (рис. 243, а, б).

5. Понятие нулевого вектора: любая точка плоскости также является вектором; в этом случае вектор называется нулевым; обозначают: (рис. 243, а).

6. Определение длины или модуля ненулевого вектора . Обозначение: . Длина нулевого вектора = 0.

7. Найти длины векторов, изображенных на рисунках 243, а и 243, б.

8. Выполнить практические задания № 738, 739.

9. Рассмотреть пример движения тела, при котором все его точки движутся с одной и той же скоростью и в одном и том же направлении (из пп. 77 учебника), рис. 244.

10. Ввести понятие коллинеарных векторов (рис. 245).

11. Определение понятий сонаправленных векторов и противоположно направленных векторов, их обозначение (рис. 246).

12. Нулевой вектор сонаправлен с любым вектором.

13. Определение равных векторов: если и , то .

14. Объяснение смысла выражения: «Вектор отложен от точки А» (рис. 247).

15. Доказательство утверждения, что от любой точки можно отложить вектор, равный данному, и притом только один (рис. 248).

16. Выполнение практического задания № 743.

17. Устно по готовому чертежу на доске решить задачу № 749.

    Решение задач.

1. Решить задачу № 740 (а) на доске и в тетрадях.

2. Устно решить задачу № 744.

3. Решить задачу № 742.

4. Решить задачу № 745 (выборочно).

5. Устно по заготовленному чертежу решить задачу № 746.

6. Доказать прямое утверждение в задаче № 750:

Доказательство

По условию , то AB || CD, значит, по признаку параллелограмма АВDС – параллелограмм, а диагонали параллелограмма точкой пересечения делятся пополам, значит, середины отрезков AD и BC совпадают.

Повторение организовать в ходе решения следующих задач - Задания для повторения из банка заданий ОГЭ (ГИА)-2016:

9, 10, 11, 12, 13 – из модуля «Геометрия»; № 24 – из части 2 модуля «Геометрия» Вариант № 3

    Итоги урока.

Подведение итогов урока. Выставление отметок.

В результате изучения § 1 обучающиеся должны знать определения вектора и равных векторов; уметь изображать и обозначать векторы, откладывать от данной точки вектор, равный данному; решать задачи типа №№ 741–743; 745–752.



    Домашнее задание: изучить материал пунктов 76–78; ответить на вопросы 1–6, с. 213 учебника; решить задачи №№ 747, 749, 751.

Наконец-то у меня добрались руки до обширной и долгожданной темы аналитической геометрии . Сначала немного о данном разделе высшей математики…. Наверняка вам сейчас вспомнился курс школьной геометрии с многочисленными теоремами, их доказательствами, чертежами и т.д. Что скрывать, нелюбимый и часто малопонятный предмет для значительной доли учеников. Аналитическая геометрия, как ни странно, может показаться более интересной и доступной. Что означает прилагательное «аналитическая»? На ум сразу приходят два штампованных математических оборота: «графический метод решения» и «аналитический метод решения». Графический метод , понятно, связан с построением графиков, чертежей. Аналитический же метод предполагает решение задач преимущественно посредством алгебраических действий. В этой связи алгоритм решений практически всех задач аналитической геометрии прост и прозрачен, зачастую достаточно аккуратно применить нужные формулы – и ответ готов! Нет, конечно, совсем без чертежей тут не обойдется, к тому же для лучшего понимания материала я постараюсь приводить их сверх необходимости.

Открываемый курс уроков по геометрии не претендует на теоретическую полноту, он ориентирован на решение практических задач. Я включу в свои лекции только то, что с моей точки зрения, является важным в практическом плане. Если вам необходима более полная справка по какому-либо подразделу, рекомендую следующую вполне доступную литературу:

1) Вещь, с которой, без шуток, знакомо несколько поколений: Школьный учебник по геометрии , авторы – Л.С. Атанасян и Компания . Сия вешалка школьной раздевалки уже выдержала 20-ть (!) переизданий, что, конечно, не является пределом.

2) Геометрия в 2 томах . Авторы Л.С. Атанасян, Базылев В.Т . Это литература для высшей школы, вам потребуется первый том . Из моего поля зрения могут выпадать редко встречающиеся задачи, и учебное пособие окажет неоценимую помощь.

Обе книги можно бесплатно закачать в Интернете. Кроме того, можете использовать мой архив с готовыми решениями, который можно найти на странице Скачать примеры по высшей математике .

Из инструментальных средств предлагаю опять же собственную разработку – программный комплекс по аналитической геометрии, который значительно упростит жизнь и сэкономит массу времени.

Предполагается, что читатель знаком с базовыми геометрическими понятиями и фигурами: точка, прямая, плоскость, треугольник, параллелограмм, параллелепипед, куб и т.д. Желательно помнить некоторые теоремы, хотя бы теорему Пифагора, привет второгодникам)

А сейчас мы последовательно рассмотрим: понятие вектора, действия с векторами, координаты вектора. Далее рекомендую прочитать важнейшую статью Скалярное произведение векторов , а также и Векторное и смешанное произведение векторов . Не лишней будет и локальная задача – Деление отрезка в данном отношении . На основе вышеуказанной информации можно освоить уравнение прямой на плоскости с простейшими примерами решений , что позволит научиться решать задачи по геометрии . Также полезны следующие статьи: Уравнение плоскости в пространстве , Уравнения прямой в пространстве , Основные задачи на прямую и плоскость , другие разделы аналитической геометрии. Естественно, попутно будут рассматривать типовые задания.

Понятие вектора. Свободный вектор

Сначала повторим школьное определение вектора. Вектором называется направленный отрезок, для которого указано его начало и конец:

В данном случае началом отрезка является точка , концом отрезка – точка . Сам вектор обозначен через . Направление имеет существенное значение, если переставить стрелку в другой конец отрезка, то получится вектор , и это уже совершенно другой вектор . Понятие вектора удобно отождествлять с движением физического тела: согласитесь, зайти в двери института или выйти из дверей института – это совершенно разные вещи.

Отдельные точки плоскости, пространства удобно считать так называемым нулевым вектором . У такого вектора конец и начало совпадают.

!!! Примечание: Здесь и далее можете считать, что векторы лежат в одной плоскости или можете считать, что они расположены в пространстве – суть излагаемого материала справедлива и для плоскости и для пространства.

Обозначения: Многие сразу обратили внимание на палочку без стрелочки в обозначении и сказали, там же вверху еще стрелку ставят! Верно, можно записать со стрелкой: , но допустима и запись , которую я буду использовать в дальнейшем . Почему? Видимо, такая привычка сложилась из практических соображений, слишком разнокалиберными и мохнатыми получались мои стрелки в школе и ВУЗе. В учебной литературе иногда вообще не заморачиваются клинописью, а выделяют буквы жирным шрифтом: , подразумевая тем самым, что это вектор.

То была стилистика, а сейчас о способах записи векторов:

1) Векторы можно записать двумя большими латинскими буквами:
и так далее. При этом первая буква обязательно обозначает точку-начало вектора, а вторая буква – точку-конец вектора.

2) Векторы также записывают маленькими латинскими буквами:
В частности, наш вектор можно для краткости переобозначить маленькой латинской буквой .

Длиной или модулем ненулевого вектора называется длина отрезка . Длина нулевого вектора равна нулю. Логично.

Длина вектора обозначается знаком модуля: ,

Как находить длину вектора мы узнаем (или повторим, для кого как) чуть позже.

То были элементарные сведения о векторе, знакомые всем школьникам. В аналитической же геометрии рассматривается так называемый свободный вектор .

Если совсем просто – вектор можно отложить от любой точки :

Такие векторы мы привыкли называть равными (определение равных векторов будет дано ниже), но чисто с математической точки зрения это ОДИН И ТОТ ЖЕ ВЕКТОР или свободный вектор . Почему свободный? Потому что в ходе решения задач вы можете «пристроить» тот или иной вектор в ЛЮБУЮ, нужную вам точку плоскости или пространства. Это очень крутое свойство! Представьте вектор произвольной длины и направления – его можно «клонировать» бесконечное количество раз и в любой точке пространства, по сути, он существует ВЕЗДЕ. Есть такая студенческая присказка: Каждому лектору в ж**у по вектору. Ведь не просто остроумная рифма, всё математически корректно – вектор можно пристроить и туда. Но не спешите радоваться, чаще страдают сами студенты =)

Итак, свободный вектор – это множество одинаковых направленных отрезков. Школьное определение вектора, данное в начале параграфа: «Вектором называется направленный отрезок…», подразумевает конкретный направленный отрезок, взятый из данного множества, который привязан к определённой точке плоскости или пространства.

Следует отметить, что с точки зрения физики понятие свободного вектора в общем случае некорректно, и точка приложения вектора имеет значение. Действительно, прямой удар одинаковой силы по носу или по лбу хватит развивать мой дурацкий пример влёчет разные последствия. Впрочем, несвободные векторы встречаются и в курсе вышмата (не ходите туда:)).

Действия с векторами. Коллинеарность векторов

В школьном курсе геометрии рассматривается ряд действий и правил с векторами: сложение по правилу треугольника, сложение по правилу параллелограмма, правило разности векторов, умножения вектора на число, скалярное произведение векторов и др. Для затравки повторим два правила, которые особенно актуальны для решения задач аналитической геометрии.

Правило сложения векторов по правилу треугольников

Рассмотрим два произвольных ненулевых вектора и :

Требуется найти сумму данных векторов. В силу того, что все векторы считаются свободными, отложим вектор от конца вектора :

Суммой векторов и является вектор . Для лучшего понимания правила в него целесообразно вложить физический смысл: пусть некоторое тело совершило путь по вектору , а затем по вектору . Тогда сумма векторов представляет собой вектор результирующего пути с началом в точке отправления и концом в точке прибытия. Аналогичное правило формулируется для суммы любого количества векторов. Как говорится, тело может пройти свой путь сильно поддатым по зигзагу, а может и на автопилоте – по результирующему вектору суммы.

Кстати, если вектор отложить от начала вектора , то получится эквивалентное правило параллелограмма сложения векторов.

Сначала о коллинеарности векторов. Два вектора называются коллинеарными , если они лежат на одной прямой или на параллельных прямых. Грубо говоря, речь идёт о параллельных векторах. Но применительно к ним всегда используют прилагательное «коллинеарные».

Представьте два коллинеарных вектора. Если стрелки данных векторов направлены в одинаковом направлении, то такие векторы называются сонаправленными . Если стрелки смотрят в разные стороны, то векторы будут противоположно направлены .

Обозначения: коллинеарность векторов записывают привычным значком параллельности: , при этом возможна детализация: (векторы сонаправлены) или (векторы направлены противоположно).

Произведением ненулевого вектора на число является такой вектор , длина которого равна , причём векторы и сонаправлены при и противоположно направлены при .

Правило умножения вектора на число легче понять с помощью рисунка:

Разбираемся более детально:

1) Направление. Если множитель отрицательный, то вектор меняет направление на противоположное.

2) Длина. Если множитель заключен в пределах или , то длина вектора уменьшается . Так, длина вектора в два раза меньше длины вектора . Если множитель по модулю больше единицы, то длина вектора увеличивается в раз.

3) Обратите внимание, что все векторы коллинеарны , при этом один вектор выражен через другой, например, . Обратное тоже справедливо : если один вектор можно выразить через другой, то такие векторы обязательно коллинеарны. Таким образом: если мы умножаем вектор на число, то получится коллинеарный (по отношению к исходному) вектор .

4) Векторы сонаправлены. Векторы и также сонаправлены. Любой вектор первой группы противоположно направлен по отношению к любому вектору второй группы.

Какие векторы являются равными?

Два вектора равны, если они сонаправлены и имеют одинаковую длину . Заметьте, что сонаправленность подразумевает коллинеарность векторов. Определение будет неточным (избыточным), если сказать: «Два вектора равны, если они коллинеарны, сонаправлены и имеют одинаковую длину».

С точки зрения понятия свободного вектора, равные векторы – это один и тот же вектор, о чём уже шла речь в предыдущем параграфе.

Координаты вектора на плоскости и в пространстве

Первым пунктом рассмотрим векторы на плоскости. Изобразим декартову прямоугольную систему координат и от начала координат отложим единичные векторы и :

Векторы и ортогональны . Ортогональны = Перпендикулярны. Рекомендую потихоньку привыкать к терминам: вместо параллельности и перпендикулярности используем соответственно слова коллинеарность и ортогональность .

Обозначение: ортогональность векторов записывают привычным значком перпендикулярности, например: .

Рассматриваемые векторы называют координатными векторами или ортами . Данные векторы образуют базис на плоскости. Что такое базис, думаю, интуитивно многим понятно, более подробную информацию можно найти в статье Линейная (не) зависимость векторов. Базис векторов .Простыми словами, базис и начало координат задают всю систему – это своеобразный фундамент, на котором кипит полная и насыщенная геометрическая жизнь.

Иногда построенный базис называют ортонормированным базисом плоскости: «орто» – потому что координатные векторы ортогональны, прилагательное «нормированный» означает единичный, т.е. длины векторов базиса равны единице.

Обозначение: базис обычно записывают в круглых скобках, внутри которых в строгой последовательности перечисляются базисные векторы, например: . Координатные векторы нельзя переставлять местами.

Любой вектор плоскости единственным образом выражается в виде:
, где – числа , которые называются координатами вектора в данном базисе. А само выражение называется разложением вектора по базису .

Ужин подан:

Начнем с первой буквы алфавита: . По чертежу хорошо видно, что при разложении вектора по базису используются только что рассмотренные:
1) правило умножения вектора на число: и ;
2) сложение векторов по правилу треугольника: .

А теперь мысленно отложите вектор от любой другой точки плоскости. Совершенно очевидно, что его разложение будет «неотступно следовать за ним». Вот она, свобода вектора – вектор «всё носит при себе». Это свойство, разумеется, справедливо для любого вектора. Забавно, что сами базисные (свободные) векторы не обязательно откладывать от начала координат, один можно нарисовать, например, слева внизу, а другой – справа вверху, и от этого ничего не изменится! Правда, делать так не нужно, поскольку преподаватель тоже проявит оригинальность и нарисует вам «зачтено» в неожиданном месте.

Векторы , иллюстрируют в точности правило умножения вектора на число, вектор сонаправлен с базисным вектором , вектор направлен противоположно по отношению к базисному вектору . У данных векторов одна из координат равна нулю, дотошно можно записать так:


А базисные векторы, к слову, так: (по сути, они выражаются сами через себя).

И, наконец: , . Кстати, что такое вычитание векторов, и почему я не рассказал о правиле вычитания? Где-то в линейной алгебре, уже не помню где, я отмечал, что вычитание – это частный случай сложения. Так, разложения векторов «дэ» и «е» преспокойно записываются в виде суммы: , . Переставьте слагаемые местами и проследите по чертежу, как чётко в этих ситуациях работает старое доброе сложение векторов по правилу треугольника.

Рассмотренное разложение вида иногда называют разложением вектора в системе орт (т.е. в системе единичных векторов). Но это не единственный способ записи вектора, распространён следующий вариант:

Или со знаком равенства:

Сами базисные векторы записываются так: и

То есть, в круглых скобках указываются координаты вектора. В практических задачах используются все три варианта записи.

Сомневался, говорить ли, но всё-таки скажу: координаты векторов переставлять нельзя . Строго на первом месте записываем координату, которая соответствует единичному вектору , строго на втором месте записываем координату, которая соответствует единичному вектору . Действительно, и – это ведь два разных вектора.

С координатами на плоскости разобрались. Теперь рассмотрим векторы в трехмерном пространстве, здесь практически всё так же! Только добавится ещё одна координата. Трехмерные чертежи выполнять тяжко, поэтому ограничусь одним вектором, который для простоты отложу от начала координат:

Любой вектор трехмерного пространства можно единственным способом разложить по ортонормированному базису :
, где – координаты вектора (числа) в данном базисе.

Пример с картинки: . Давайте посмотрим, как здесь работают правила действий с векторами. Во-первых, умножение вектора на число: (красная стрелка), (зеленая стрелка) и (малиновая стрелка). Во-вторых, перед вами пример сложения нескольких, в данном случае трёх, векторов: . Вектор суммы начинается в исходной точке отправления (начало вектора ) и утыкается в итоговую точку прибытия (конец вектора ).

Все векторы трехмерного пространства, естественно, тоже свободны, попробуйте мысленно отложить вектор от любой другой точки, и вы поймёте, что его разложение «останется при нём».

Аналогично плоскому случаю, помимо записи широко используются версии со скобками: либо .

Если в разложении отсутствует один (или два) координатных вектора, то вместо них ставятся нули. Примеры:
вектор (дотошно ) – запишем ;
вектор (дотошно ) – запишем ;
вектор (дотошно ) – запишем .

Базисные векторы записываются следующим образом:

Вот, пожалуй, и все минимальные теоретические знания, необходимые для решения задач аналитической геометрии. Возможно многовато терминов и определений, поэтому чайникам рекомендую перечитать и осмыслить данную информацию ещё раз. Да и любому читателю будет полезно время от времени обращаться к базовому уроку для лучшего усвоения материала. Коллинеарность, ортогональность, ортонормированный базис, разложение вектора – эти и другие понятия будут часто использоваться в дальнейшем. Отмечу, что материалов сайта недостаточно для сдачи теоретического зачета, коллоквиума по геометрии, так как все теоремы (к тому же без доказательств) я аккуратно шифрую – в ущерб научному стилю изложения, но плюсом к вашему пониманию предмета. Для получения обстоятельной теоретической справки прошу следовать на поклон к профессору Атанасяну.

А мы переходим к практической части:

Простейшие задачи аналитической геометрии.
Действия с векторами в координатах

Задания, которые будут рассмотрены, крайне желательно научиться решать на полном автомате, а формулы запомнить наизусть , даже специально не запоминать, сами запомнятся =) Это весьма важно, поскольку на простейших элементарных примерах базируются другие задачи аналитической геометрии, и будет досадно тратить дополнительное время на поедание пешек. Не нужно застёгивать верхние пуговицы на рубашке, многие вещи знакомы вам со школы.

Изложение материала пойдет параллельным курсом – и для плоскости, и для пространства. По той причине, что все формулы… сами увидите.

Как найти вектор по двум точкам?

Если даны две точки плоскости и , то вектор имеет следующие координаты:

Если даны две точки пространства и , то вектор имеет следующие координаты:

То есть, из координат конца вектора нужно вычесть соответствующие координаты начала вектора .

Задание: Для тех же точек запишите формулы нахождения координат вектора . Формулы в конце урока.

Пример 1

Даны две точки плоскости и . Найти координаты вектора

Решение: по соответствующей формуле:

Как вариант, можно было использовать следующую запись:

Эстеты решат и так:

Лично я привык к первой версии записи.

Ответ:

По условию не требовалось строить чертежа (что характерно для задач аналитической геометрии), но в целях пояснения некоторых моментов чайникам, не поленюсь:

Обязательно нужно понимать различие между координатами точек и координатами векторов :

Координаты точек – это обычные координаты в прямоугольной системе координат. Откладывать точки на координатной плоскости, думаю, все умеют ещё с 5-6 класса. Каждая точка обладает строгим местом на плоскости, и перемещать их куда-либо нельзя.

Координаты же вектора – это его разложение по базису , в данном случае . Любой вектор является свободным, поэтому при необходимости мы легко можем отложить его от какой-нибудь другой точки плоскости. Интересно, что для векторов можно вообще не строить оси, прямоугольную систему координат, нужен лишь базис, в данном случае ортонормированный базис плоскости .

Записи координат точек и координат векторов вроде бы схожи: , а смысл координат абсолютно разный , и вам следует хорошо понимать эту разницу. Данное отличие, разумеется, справедливо и для пространства.

Дамы и господа, набиваем руку:

Пример 2

а) Даны точки и . Найти векторы и .
б) Даны точки и . Найти векторы и .
в) Даны точки и . Найти векторы и .
г) Даны точки . Найти векторы .

Пожалуй, достаточно. Это примеры для самостоятельного решения, постарайтесь ими не пренебрегать, окупится;-). Чертежи делать не нужно. Решения и ответы в конце урока.

Что важно при решении задач аналитической геометрии? Важно быть ПРЕДЕЛЬНО ВНИМАТЕЛЬНЫМ, чтобы не допустить мастерскую ошибку «два плюс два равно нулю». Сразу извиняюсь, если где ошибся =)

Как найти длину отрезка?

Длина, как уже отмечалось, обозначается знаком модуля.

Если даны две точки плоскости и , то длину отрезка можно вычислить по формуле

Если даны две точки пространства и , то длину отрезка можно вычислить по формуле

Примечание: Формулы останутся корректными, если переставить местами соответствующие координаты: и , но более стандартен первый вариант

Пример 3

Решение: по соответствующей формуле:

Ответ:

Для наглядности выполню чертёж

Отрезок – это не вектор , и перемещать его куда-либо, конечно, нельзя. Кроме того, если вы выполните чертеж в масштабе: 1 ед. = 1 см (две тетрадные клетки), то полученный ответ можно проверить обычной линейкой, непосредственно измерив длину отрезка.

Да, решение короткое, но в нём есть ещё пара важных моментов, которые хотелось бы пояснить:

Во-первых, в ответе ставим размерность: «единицы». В условии не сказано, ЧТО это, миллиметры, сантиметры, метры или километры. Поэтому математически грамотным решением будет общая формулировка: «единицы» – сокращенно «ед.».

Во-вторых, повторим школьный материал, который полезен не только для рассмотренной задачи:

Обратите внимание на важный технический приём вынесение множителя из-под корня . В результате вычислений у нас получился результат и хороший математический стиль предполагает вынесение множителя из-под корня (если это возможно). Подробнее процесс выглядит так: . Конечно, оставить ответ в виде не будет ошибкой – но недочетом-то уж точно и весомым аргументом для придирки со стороны преподавателя.

Вот другие распространенные случаи:

Нередко под корнем получается достаточно большое число, например . Как быть в таких случаях? На калькуляторе проверяем, делится ли число на 4: . Да, разделилось нацело, таким образом: . А может быть, число ещё раз удастся разделить на 4? . Таким образом: . У числа последняя цифра нечетная, поэтому разделить в третий раз на 4 явно не удастся. Пробуем поделить на девять: . В результате:
Готово.

Вывод: если под корнем получается неизвлекаемое нацело число, то пытаемся вынести множитель из-под корня – на калькуляторе проверяем, делится ли число на: 4, 9, 16, 25, 36, 49 и т.д.

В ходе решения различных задач корни встречаются часто, всегда пытайтесь извлекать множители из-под корня во избежание более низкой оценки да ненужных заморочек с доработкой ваших решений по замечанию преподавателя.

Давайте заодно повторим возведение корней в квадрат и другие степени:

Правила действий со степенями в общем виде можно найти в школьном учебнике по алгебре, но, думаю, из приведённых примеров всё или почти всё уже ясно.

Задание для самостоятельного решения с отрезком в пространстве:

Пример 4

Даны точки и . Найти длину отрезка .

Решение и ответ в конце урока.

Как найти длину вектора?

Если дан вектор плоскости , то его длина вычисляется по формуле .

Если дан вектор пространства , то его длина вычисляется по формуле .

Страница 1 из 2

Вопрос 1. Что такое вектор? Как обозначаются векторы?
Ответ. Вектором мы будем называть направленный отрезок (рис. 211). Направление вектора определяется указанием его начала и конца. На чертеже направление вектора отмечается стрелкой. Для обозначения векторов будем пользоваться строчными латинскими буквами a, b, c, ... . Можно также обозначить вектор указанием его начала и конца. При этом начало вектора ставится на первом месте. Вместо слова "вектор" над буквенным обозначением вектора иногда ставится стрелка или черта. Вектор на рисунке 211 можно обозначить так:

\(\overline{a}\), \(\overrightarrow{a}\) или \(\overline{AB}\), \(\overrightarrow{AB}\).

Вопрос 2. Какие векторы называются одинаково направленными (противоположно направленными)?
Ответ. Векторы \(\overline{AB}\) и \(\overline{CD}\) называются одинаково направленными, если полупрямые AB и CD одинаково направлены.
Векторы \(\overline{AB}\) и \(\overline{CD}\) называются противоположно направленными, если полупрямые AB и CD противоположно направлены.
На рисунке 212 векторы \(\overline{a}\) и \(\overline{b}\) одинаково направлены, а векторы \(\overline{a}\) и \(\overline{c}\) противоположно направлены.

Вопрос 3. Что такое абсолютная величина вектора?
Ответ. Абсолютной величиной (или модулем) вектора называется длина отрезка, изображающего вектор. Абсолютная величина вектора \(\overline{a}\) обозначается |\(\overline{a}\)|.

Вопрос 4. Что такое нулевой вектор?
Ответ. Начало вектора может совпадать с его концом. Такой вектор будем называть нулевым вектором. Нулевой вектор обозначается нулём с чёрточкой (\(\overline{0}\)). О направлении нулевого вектора не говорят. Абсолютная величина нулевого вектора считается равной нулю.

Вопрос 5. Какие векторы называются равными?
Ответ. Два вектора называются равными, если они совмещаются параллельным переносом. Это означает, что существует параллельный перенос, который переводит начало и конец одного вектора соответственно в начало и конец другого вектора.

Вопрос 6. Докажите, что равные векторы одинаково направлены и равны по абсолютной величине. И обратно: одинаково направленные векторы, равные по абсолютной величине, равны.
Ответ. При параллельном переносе вектор сохраняет своё направление, а также свою абсолютную величину. Значит, равные векторы направлены одинаково и равны по абсолютной величине.
Пусть \(\overline{AB}\) и \(\overline{CD}\) – одинаково направленные векторы, равные по абсолютной величине (рис. 213). Параллельный перенос, переводящий точку C в точку A, совмещает полупрямую CD с полупрямой AB, так как они одинаково направлены. А так как отрезки AB и CD равны, то при этом точка D совмещается с точкой B, т.е. параллельный перенос переводит вектор \(\overline{CD}\) в вектор \(\overline{AB}\). Значит, векторы \(\overline{AB}\) и \(\overline{CD}\) равны, что и требовалось доказать.

Вопрос 7. Докажите, что от любой точки можно отложить вектор, равный данному вектору, и только один.
Ответ. Пусть CD – прямая, а вектор \(\overline{CD}\) – часть прямой CD. Пусть AB – прямая, в которую переходит прямая CD при параллельном переносе, \(\overline{AB}\) – вектор, в который при параллельном переносе переходит вектор \(\overline{CD}\), а значит, векторы \(\overline{AB}\) и \(\overline{CD}\) равны, а прямые AB и CD параллельны (см. рис. 213). Как мы знаем, через точку не лежащую на данной прямой, можно провести на плоскости не более одной прямой, параллельной данной (аксиома параллельных прямых). Значит, через точку A можно провести одну прямую, параллельную прямой CD. Так как вектор \(\overline{AB}\) – часть прямой AB, то через точку A можно провести один вектор \(\overline{AB}\), равный вектору \(\overline{CD}\).

Вопрос 8. Что такое координаты вектора? Чему равна абсолютная величина вектора с координатами a 1 , a 2 ?
Ответ. Пусть вектор \(\overline{a}\) имеет началом точку A 1 (x 1 ; y 1), а концом точку A 2 (x 2 ; y 2). Координатами вектора \(\overline{a}\) будем называть числа a 1 = x 2 - x 1 , a 2 = y 2 - y 1 . Координаты вектора будем ставить рядом с буквенным обозначением вектора, в данном случае \(\overline{a}\) (a 1 ; a 2) или просто \((\overline{a 1 ; a 2 })\). Координаты нулевого вектора равны нулю.
Из формулы, выражающей расстояние между двумя точками через их координаты, следует, что абсолютная величина вектора с координатами a 1 , a 2 равна \(\sqrt{a^2 1 + a^2 2 }\).

Вопрос 9. Докажите, что равные векторы имеют соответственно равные координаты, а векторы с соответственно равными координатами равны.
Ответ. Пусть A 1 (x 1 ; y 1) и A 2 (x 2 ; y 2) – начало и конец вектора \(\overline{a}\). Так как равный ему вектор \(\overline{a"}\) получается из вектора \(\overline{a}\) параллельным переносом, то его началом и концом будут соответственно A" 1 (x 1 + c; y 1 + d), A" 2 (x 2 + c; y 2 + d). Отсюда видно, что оба вектора \(\overline{a}\) и \(\overline{a"}\) имеют одни и те же координаты: x 2 - x 1 , y 2 - y 1 .
Докажем теперь обратное утверждение. Пусть соответствующие координаты векторов \(\overline{A 1 A 2 }\) и \(\overline{A" 1 A" 2 }\) равны. Докажем, что векторы равны.
Пусть x" 1 и y" 1 - координаты точки A" 1 , а x" 2 , y" 2 - координаты точки A" 2 . По условию теоремы x 2 - x 1 = x" 2 - x" 1 , y 2 - y 1 = y" 2 - y" 1 . Отсюда x" 2 = x 2 + x" 1 - x 1 , y" 2 = y 2 + y" 1 - y 1 . Параллельный перенос, заданный формулами

x" = x + x" 1 - x 1 , y" = y + y" 1 - y 1 ,

переводит точку A 1 в точку A" 1 , а точку A 2 в точку A" 2 , т.е. векторы \(\overline{A 1 A 2 }\) и \(\overline{A" 1 A" 2 }\) равны, что и требовалось доказать.

Вопрос 10. Дайте определение суммы векторов.
Ответ. Суммой векторов \(\overline{a}\) и \(\overline{b}\) с координатами a 1 , a 2 и b 1 , b 2 называется вектор \(\overline{c}\) с координатами a 1 + b 1 , a 2 + b a 2 , т.е.

\(\overline{a} (a 1 ; a 2) + \overline{b}(b 1 ; b 2) = \overline{c} (a 1 + b 1 ; a 2 + b 2)\).

Вектор – одно из основных геометрических понятий. Вектор характеризуется числом (длиной) и направлением. Наглядно его можно представить себе в виде направленного отрезка, хотя, говоря о векторе, правильнее иметь в виду целый класс направленных отрезков, которые все параллельны между собой, имеют одинаковую длину и одинаковое направление (рис. 1). Примерами физических величин, которые имеют векторный характер, могут служить скорость (поступательно движущегося тела), ускорение, сила и др.

Понятие вектора появилось в работах немецкого математика XIX в. Г. Грассмана и ирландского математика У. Гамильтона; затем оно было охотно воспринято многими математиками и физиками. В современной математике и ее приложениях это понятие играет важнейшую роль. Векторы применяются в классической механике Галилея-Ньютона (в ее современном изложении), в теории относительности, квантовой физике, в математической экономике и многих других разделах естествознания, не говоря уже о применении векторов в различных областях математики.

Каждый из направленных отрезков, составляющих вектор (рис. 1), можно назвать представителем этого вектора. Вектор, представителем которого является направленный отрезок, идущий от точки к точке , обозначается через . На рис. 1 имеем , т.е. и - это один и тот же вектор (представителями которого являются оба направленных отрезка, выделенных на рис. 1). Иногда вектор обозначают малой буквой со стрелкой: , .

Вектор, изображаемый направленным «отрезком», у которого начало и конец совпадают, называется нулевым; он обозначается через , т.е. . Два параллельных вектора, имеющих одинаковые длины, но противоположные направления, называются противоположными. Если вектор обозначен через , то противоположный ему вектор обозначается через .

Назовем основные операции, связанные с векторами.

I. Откладывание вектора от точки. Пусть - некоторый вектор и - точка. Среди направленных отрезков, являющихся представителями вектора , имеется направленный отрезок, начинающийся в точке . Конец этого направленного отрезка называется точкой, получающейся в результате откладывания вектора от точки (рис. 2). Эта операция обладает следующим свойством:

I1. Для любой точки и любого вектора существует, и притом только одна, точка , для которой .

Сложение векторов. Пусть и - два вектора. Возьмем произвольную точку и отложим вектор от точки , т.е. найдем такую точку , что (рис. 3). Затем от точки отложим вектор , т. е. найдем такую точку , что . Вектор называется суммой векторов и и обозначается через . Можно доказать, что сумма не зависит от выбора точки , т.е. если заменить другой точкой , то получится вектор , равный (рис. 3). Из определения суммы векторов вытекает, что для любых трех точек справедливо равенство

I2:

(«правило трех точек»). Если ненулевые векторы и не параллельны, то их сумму удобно находить с помощью правила параллелограмма (рис. 4).

II. Основные свойства суммы векторов выражают следующие 4 равенства (справедливые для любых векторов , , ):

II2. .

Заметим еще, что сумма нескольких векторов находится последовательным нахождением суммы двух из них. Например: .

При этом, в каком бы порядке мы ни складывали заданные векторы, результат (как это вытекает из свойств, названных в пунктах II1, и II2) всегда будет одним и тем же. Например:

Далее, геометрически сумма нескольких векторов может быть получена следующим образом: надо направленные отрезки, являющиеся представителями этих векторов, последовательно отложить друг за другом (т.е. так, чтобы начало второго направленного отрезка совпадало с концом первого, начало третьего – с концом второго и т.д.); тогда вектор будет иметь своим представителем «замыкающий» направленный отрезок, идущий от начала первого к концу последнего (рис. 5). (Заметим, что если при таком последовательном откладывании получается «замкнутая векторная ломаная», то .)

III. Умножение вектора на число. Пусть - ненулевой вектор и - отличное от нуля число. Через обозначается вектор, определяемый следующими двумя условиями: а) длина вектора равна ; б) вектор параллелен вектору , причем его направление совпадает с направлением вектора при и противоположно ему при (рис. 6). Если справедливо хотя бы одно из равенств , , то произведение считается равным . Таким образом, произведение определено для любого вектора и любого числа .

Следующие 4 равенства (справедливые для любых векторов , и любых чисел ) выражают основные свойства операции умножения вектора на число:

III2. .

III3. .

Из этих свойств вытекает ряд дальнейших фактов, связанных с рассмотренными операциями над векторами. Отметим некоторые из них, часто применяемые при решении задач.

а) Если - такая точка отрезка , что , то для любой точки справедливо равенство , в частности если - середина отрезка , то .

б) Если - точка пересечения медиан треугольника , то ; кроме того, для любой точки справедливо равенство (обратные теоремы также справедливы).

в) Пусть - точка прямой и - ненулевой вектор, параллельный этой прямой. Точка в том и только в том случае принадлежит прямой , если (где - некоторое число).

г) Пусть - точка плоскости и , - ненулевые и непараллельные между собой векторы, параллельные этой плоскости. Точка в том и только в том случае принадлежит плоскости , если вектор выражается через и , т.е. .

Наконец, отметим еще свойство размерности, выражающее тот факт, что пространство трехмерно.

IV. В пространстве существуют такие три вектора , , , что ни один из них не выражается через два других; любой четвертый вектор выражается через эти три вектора: . определяется равенством: обозначено скалярное произведение вектора (и тогда угол между ними не определяется).

Перечисленные выше свойства векторных операций во многом похожи на свойства сложения и умножения чисел. В то же время вектор – геометрический объект, и в определении векторных операций используются такие геометрические понятия, как длина и угол; этим и объясняется польза векторов для геометрии (и ее приложений к физике и другим областям знания). Однако для решения геометрических задач с помощью векторов необходимо прежде всего научиться «переводить» условие геометрической задачи на векторный «язык». После такого «перевода» осуществляются алгебраические вычисления с векторами, а затем полученное векторное решение снова «переводится» на геометрический «язык». В этом и состоит векторное решение геометрических задач.

При изложении курса геометрии в школе вектор дается как определяемое понятие (см. Определение), и потому принятая в школьном учебнике аксиоматика (см. Аксиоматика и аксиоматический метод) геометрии ничего не говорит о свойствах векторов, т.е. все эти свойства должны доказываться как теоремы.

Существует, однако, и другой путь изложения геометрии, при котором первоначальными (неопределяемыми) понятиями считаются вектор и точка, а отмеченные выше свойства I1, I2, II1-II4, III1-III4, IV, V1-V4 принимаются за аксиомы. Такой путь построения геометрии был предложен в 1917 г. немецким математиком Г. Вейлем. Здесь прямые и плоскости являются определяемыми понятиями. Преимущество такого построения в его краткости и в органической связи с современным пониманием геометрии как в самой математике, так и в других областях знания. В частности, аксиомы II1-II4, III1-III4 вводят так называемое векторное пространство, используемое в современной математике, в физике, математической экономике и т.д.