Что относится к нанотехнологиям. Понятие нанотехнологии

Новые технологии – это то, что двигает человечество вперёд на его пути к прогрессу. Технологии определяют качество жизни каждого из нас и мощь государства, в котором мы живём.

Считается, что зарождение многих технологий, которые мы до сих пор используем, произошло на рубеже XVIII и XIX веков, когда на смену ручному труду пришли тепловые двигатели - сначала в текстильной, а затем и в других отраслях промышленности. Этот скачкообразный переход к машинному производству обычно называют промышленной революцией. Промышленная революция привела не только к массовому применению машин, но и изменению всей структуры общества – произошла трансформация аграрного общества в индустриальное. В результате резко выросли производительность труда и уровень жизни людей.

Промышленная революция, начавшись в текстильной промышленности, подтолкнула развитие технологий железнодорожного сообщения. В свою очередь, дальнейший рост перевозок различных товаров был невозможен без новых технологий автомобилестроения. Так, каждая новая технология всегда вызывает рождение и развитие смежных технологий.

Вторая мировая война способствовала рождению новых технологий – информационных, и поэтому период времени, в который мы живём, называют информационной революцией (см. рисунок). Начало информационной революции совпало с развитием компьютерных технологий, без которых жизнь современного человека кажется немыслимой.

Развитие компьютерных технологий всегда было связано с миниатюризацией элементов электронных схем. В настоящее время размер одного логического элемента (транзистора) компьютерной схемы составляет около 10-7 м, и учёные полагают, что дальнейшая миниатюризация элементов компьютера возможна только тогда, когда будут разработаны специальные технологии, получившие название «НАНОТЕХНОЛОГИИ».

Что такое «нано»?

В переводе с греческого слово «нано» означает карлик. Один нанометр (нм) – это одна миллиардная часть метра (10 -9 м). Нанометр очень и очень мал. Нанометр во столько же раз меньше одного метра, во сколько толщина пальца меньше диаметра Земли. Большинство атомов имеют диаметр от 0,1 до 0,2 нм, а толщина нитей ДНК – около 2 нм. Диаметр эритроцитов – 7000 нм, а толщина человеческого волоса – 80 000 нм.

На рисунке слева направо в порядке роста размеров показаны самые разные объекты – от атома до Солнечной системы. Человек уже научился извлекать выгоду из объектов самых разных размеров. Мы можем расщеплять ядра атомов, добывая атомную энергию. Проводя химические реакции, мы получаем новые молекулы и вещества, обладающие уникальными свойствами. С помощью специальных инструментов человек научился создавать объекты – от булавочной головки до огромнейших сооружений, которые видны даже из космоса.

Однако, если взглянуть на рисунок, то можно заметить, что существует довольно большой диапазон (в логарифмическом масштабе), куда долгое время не ступала нога учёных – между сотней нанометров и 0,1 нм. С объектами, имеющими размер от 0,1 нм до 100 нм, и предстоит работать нанотехнологиям, о которых в последнее время так много говорят. И есть все основания считать, что можно заставить наномир работать на нас.

На наших глазах фантастика становится реальностью – становится возможным перемещать отдельные атомы и складывать из них, как из кубиков, устройства и механизмы необычайно малых размеров и поэтому невидимые обычным глазом. Нанотехнологии, использующие самые последние достижения физики, химии и биологии – это не, просто, количественный, а качественный скачок от работы с веществом к манипуляции отдельными атомами.

Ричард Фейнман – пророк нанотехнологической революции

Самолёты, ракеты, телевизоры и компьютеры изменили окружающий мир в 20 веке. Учёные утверждают, что в наступившем 21-м веке стержнем новой технической революции станут материалы, лекарства, устройства, средства связи и доставки, сделанные с использованием нанотехнологий.

Идея о том, что вполне возможно собирать устройства и работать с объектами, которые имеют наноразмеры, была впервые высказана в выступлении речи лауреата Нобелевской премии Ричарда Фейнмана в 1959 году в Калифорнийском технологическом институте ("Там, внизу, полно места!"). Слово «внизу» в названии лекции означало в «мире очень малых размеров». Тогда Фейнман сказал, что когда-нибудь, например, в 2000 г., люди будут удивляться тому, почему учёные первой половины XIX века, проскочили этот нанодиапазон размеров, сконцентрировав все свои усилия на изучении атома и атомного ядра. По словам Фейнмана люди очень долго жили, не замечая, что рядом с ними живёт целый мир объектов, разглядеть которые было невозможно. Ну, а если мы не видели эти объекты, то мы и не могли работать с ними.

Тем не менее, мы сами состоим из устройств, которые прекрасно научились работать с нанообъектами. Это наши клетки – кирпичики, из которых состоит наш организм. Клетка всю свою жизнь работает с нанообъектами, собирая из различных атомов молекулы сложных веществ. Собрав эти молекулы, клетка размещает их в различных частях – одни оказываются в ядре, другие – в цитоплазме, а третьи – в мембране. Представьте себе возможности, которые открываются перед человечеством, если оно овладеет такими же нанотехнологиями, которыми уже владеет каждая клетка человека.

Фейнман так описывает последствия нанотехнологической революции для компьютеров. «Если, например, диаметр соединяющих проводов будет составлять от 10 до 100 атомов, то размер любой схемы не будет превышать нескольких тысяч ангстрем. Каждый, кто связан с компьютерной техникой, знает о тех возможностях, которые обещает ее развитие и усложнение. Если число используемых элементов возрастет в миллионы раз, то возможности компьютеров существенно расширятся. Они научатся рассуждать, анализировать опыт и рассчитывать собственные действия, находить новые вычислительные методы и т. п. Рост числа элементов приведет к важным качественным изменениям характеристик ЭВМ.»

Позвав учёных в наномир, Фейнман сразу же предупреждает о тех препятствиях, которые их там ожидают, на примере изготовления микроавтомобиля длиной всего 1 мм. Так как детали обычного автомобиля сделаны с точностью 10-5 м, то детали микроавтомобиля следует изготовлять с точностью в 4000 раз выше, т.е. 2,5.10-9 м. Таким образом, размеры деталей микроавтомобиля должны соответствовать расчётным с точностью ± 10 слоёв атомов.

Наномир не только полон препятствий и проблем. Нас в наномире ожидают и хорошие новости - все детали наномира оказываются очень прочными. Происходит это из-за того, что масса нанообъектов уменьшается пропорционально третьей степени их размеров, а площадь их поперечного сечения – пропорционально второй степени. Значит, механическая нагрузка на каждый элемент объекта – отношение веса элемента к площади его поперечного сечения – уменьшается пропорционально размерам объекта. Таким образом, пропорционально уменьшенный наностол обладает в миллиард раз более толстыми наноножками, чем это необходимо.

Фейнман считал, что человек сможет легко освоить наномир, если создаст машину-робота, способного делать уменьшенную, но работоспособную копию самого себя. Пусть, например, мы научились делать робот, который может без нашего участия создавать свою уменьшенную в 4 раза копию. Тогда уже этот маленький робот сможет сделать копию первоначального, уменьшенную уже в 16 раз и т.д. Очевидно, что 10-е поколение таких роботов будут создавать роботы, размеры которых будут в миллионы раз меньше первоначальных

Конечно, по мере уменьшения размеров мы будем постоянно сталкиваться с очень необычными физическими явлениями. Ничтожный вес деталей наноробота приведёт к тому, что они будут прилипать друг другу под действием сил межмолекулярного взаимодействия, и, например, гайка не будет отделяться от болта после откручивания. Однако известные нам законы физики не запрещают создавать объекты «атом за атомом». Манипуляция атомами, в принципе, вполне реальна и не нарушает никаких законов природы. Практические же трудности ее реализации обусловлены лишь тем, что мы сами являемся слишком крупными и громоздкими объектами, вследствие чего нам сложно осуществлять такие манипуляции.

Чтобы как-то стимулировать создание микрообъектов, Фейнман обещал заплатить 1000 долларов тому, кто соорудит электромоторчик размером 1/64 дюйма (1 дюйм » 2,5 см). И совсем скоро такой микромоторчик был создан. С 1993 года премия имени Фейнмана присуждается ежегодно за выдающиеся достижения в области нанотехнологий.

В своей лекции Фейнман говорил и о перспективах нанохимии. Сейчас химики используют для синтеза новых веществ сложные и разнообразные приемы. Как только физики создадут устройства, способные оперировать отдельными атомами, многие методы традиционного химического синтеза могут быть заменены приемами «атомной сборки». При этом, как считал Фейнман, физики, в принципе, действительно могут научиться синтезировать любое вещество, исходя из записанной химической формулы. Химики будут заказывать синтез, а физики - просто «укладывать» атомы в предлагаемом порядке. Развитие техники манипуляции на атомарном уровне позволит решить многие проблемы химии и биологии.

Машины созидания Э. Дрекслера

Нанотехнология стала самостоятельной областью науки и превратилась в долгосрочный технический проект после детального анализа, проведенного американским учёным Эриком Дрекслером в начале 1980-х годов и публикации его книги «Машины созидания: грядущая эра нанотехнологии».

Вот, как начинается его книга. «УГОЛЬ И АЛМАЗЫ, песок и чипы компьютера, рак и здоровая ткань - на всём протяжении истории, в зависимости от упорядочения атомов, возникало дешевое или драгоценное, больное или здоровое. Упорядоченные одним образом, атомы составляют почву, воздух и воду; упорядоченные другим, они составляют спелую землянику. Упорядоченные одним образом, они образуют дома и свежий воздух; упорядоченные другим, они образуют золу и дым.

Наша способность упорядочивать атомы лежит в основе технологии. Мы ушли далеко в своей способности упорядочивать атомы, от заточки кремня для наконечников стрел до обработки алюминия для космических кораблей. Мы гордимся нашей технологией, нашими лекарствами, спасающими жизнь, и настольными компьютерами. Однако наши космические корабли всё ещё грубы, наши компьютеры пока ещё глупые, а молекулы в наших тканях всё ещё постепенно приходят в беспорядок, вначале разрушая здоровье, а затем и саму жизнь. При всех наших успехах в упорядочении атомов мы всё ещё используем примитивные методы упорядочения. При нашей имеющейся технологии мы всё ещё вынуждены манипулировать большими, плохо управляемыми группами атомов.

Но законы природы дают много возможностей для прогресса, и давление мировой конкуренции всегда толкает нас вперед. Хорошо это или плохо, но самое большое технологическое достижение в истории ожидает нас впереди.»

По определению Дрекслера нанотехнология - "ожидаемая технология производства, ориентированная на дешевое получение устройств и веществ с заранее заданной атомарной структурой". Как считают многие специалисты, в течение следующих 50-ти лет многие устройства станут такими маленькими, что тысяча таких наномашин вполне смогут разместиться на площади, занимаемой точкой в конце этого предложения. Чтобы собирать наномашины, необходимо:

  1. научиться работать с одиночными атомами – брать их и ставить на нужное место.
  2. разработать сборщики (assemblers) – наноустройства, которые могли бы работать с одиночными атомами так, как это объяснено в (1), по программам, написанным человеком, но без его участия. Так как каждая манипуляция с атомом требует определённого времени, а атомов очень много, то по оценкам учёных необходимо изготовить миллиарды или даже триллионы таких наносборщиков, чтобы процесс сборки не занимал много времени.
  3. разработать репликаторы – устройства, которые бы изготовляли наносборщики, т.к. их придётся изготовить очень и очень много.

Пройдут годы, пока появятся наносборщики и репликаторы, но их появление кажется почти неизбежным. При этом каждый шаг на этом пути сделает следующий более реальным. Первые шаги на пути создания наномашин уже сделаны. Это - "генная инженерия" и "биотехнология".

Принцип неопределённости Гейзенберга и наномашины

Из квантовой физики известно – невозможно точно определить местоположение частицы и её импульс. Ограничивает ли это то, что могут делать наномашины?

Действительно, принцип неопределённости делает местоположение электронов довольно расплывчатым, и эта расплывчатость определяет размер и структуру атомов. Однако атом как целое имеет сравнительно определённое местоположение, т.к. масса его ядра в тысячи раз больше, чем у электронов. Кроме того, если бы атомы не сохраняли своё положение сравнительно хорошо, молекулы бы не существовали. Поэтому принцип неопределённости не накладывает существенные ограничения на точность, с которой можно размещать атомы по своим местам, конструируя наномашины.

Однако использовать квантовую механику, чтобы ответить на поставленный выше вопрос вообще нет необходимости. Ведь, существующие в каждой живой клетке молекулярные машины, собирающие «атом-за-атомом» огромные молекулы белков, имеющие наноразмеры, уже доказывают то, что наномашины возможны!

Тепловые колебания молекул и наномашины

Анализируя возможности создания наномашин, Э. Дрекслер обсуждает в своей книге, насколько тепловые колебания молекул способны повлиять на работу этих машин. Не приведут ли эти колебания к многочисленным ошибкам в работе наномашин?

Ответить на этот вопрос снова помогают молекулярные машины живых клеток, которые прекрасно работают при температуре около 300 К, несмотря на тепловые колебания молекул. Как показали исследования, в некоторых клетках при копировании ДНК совершается всего ОДНА ошибка на 100 000 000 000 операций! Чтобы достичь такой высокой точности, живые клетки используют специальные наномашины, например, фермент ДНК-полимераза I, которые проверяют копию и исправляют ошибки копирования. Очевидно, что для будущих автоматических сборщиков наномашин будут необходимы аналогичные алгоритмы проверки и исправления ошибок.

Машины исцеления

Э. Дрекслер предложил использовать наномашины для лечения человека. Человеческое тело сделано из молекул, и люди становятся больными и старыми из-за того, что появляются «ненужные» молекулы, а концентрация «нужных» уменьшается или их структура изменяется. В результате этого люди и страдают. Ничто не мешает человеку изобрести наномашины, способные переупорядочить атомы в «испорченных» молекулах или собирать их заново. Очевидно, что такие наномашины могут сделать революцию в медицине.

В будущем будут созданы наномашины (нанороботы), приспособленные для того, чтобы проникать в живую клетку, анализировать её состояние и в случае необходимости «лечить» её, изменяя структуру молекул, из которых она состоит. Эти наномашины, предназначенные для ремонта клеток, будут сопоставимы по размеру с бактериями и будут двигаться через ткани организма человека так, как это делают лейкоциты (белые клетки крови), и входить внутрь клеток, как это делают вирусы.

С созданием наномашин для ремонта клеток лечение больного превратится в последовательность следующих операций. Сначала, отрабатывая молекулу за молекулой и структуру за структурой, наномашины будут восстанавливать (лечить) клетку за клеткой какой-либо ткани или органа. Затем, отрабатывая орган за органом по всему телу, они восстановят здоровье человека.

Схематическое изображение наноробота на поверхности клетки. Видно, как щупальца наноробота проникли внутрь клетки. Автор: Ю. Свидиненко. Взято из http://www.nanonewsnet.ru/

Фотолитография – дорога в наномир: сверху вниз

Учёные и технологи уже давно стремятся в мир маленьких размеров, особенно, те из них, которые разрабатывают новые электронные приборы и устройства. Чтобы электронное устройство было умным и надёжным, оно должно состоять из огромного числа блоков, а значит, содержать тысячи, а иногда и миллионы транзисторов.

При изготовлении транзисторов и интегральных схем применяется оптическая фотолитография. Суть ее в следующем. На окисленную поверхность кремния наносится слой фоторезиста (полимерный светочувствительный материал), и затем на него накладывается фотошаблон - стеклянная пластинка с рисунком элементов интегральной схемы

Пучок света проходит через фотошаблон, и там, где черного цвета нет, свет попадает на фоторезист и засвечивает его

После этого все те участки фоторезиста, которые не обрабатывались светом, удаляются, а те которые освещались, подвергаются термообработке и химическому травлению. Таким образом, на поверхности окисла кремния образуется рисунок, и пластинка кремния готова, чтобы стать основной частью электронной схемы.

Транзистор был изобретен в 1947 году, и тогда его размеры составляли около 1 см. Совершенствование фотолитографических методов позволило довести размер транзистора до 100 нм. Однако основой фотолитографии является геометрическая оптика, а значит, с помощью этого метода невозможно провести две параллельные прямые на расстоянии, меньшем длины волны. Поэтому сейчас при фотолитографическом изготовлении микросхем используют ультрафиолет с малой длиной волны, но дальше уменьшать длину волны становится дорого и сложно, хотя современные технологии уже используют электронные пучки для создания микросхем.

Внедрение в мир наноразмеров, по которому шли изготовители микросхем до сих пор, можно назвать дорогой «сверху вниз». Они используют технологии, хорошо себя зарекомендовавшие в макромире, и лишь пытаются менять масштаб. Но есть и другой путь – «снизу вверх». А что, если заставить сами атомы и молекулы самоорганизовываться в упорядоченные группы и структуры размером в несколько нанометров?

Примерами самоорганизации молекул, образующих наноструктуры, являются углеродные нанотрубки, квантовые точки, нанопроволоки и дендримеры

(По материалам Богданова К.Ю.)

Нанотехнолог — специалист по нанотехнологиям, учёный, который исследует материалы на молекулярном и атомарном уровне и создаёт объекты из компонентов, обладающих наноразмерами.

Приставка нано- используется при обозначении физических величин и указывает на размер, равный одной миллиардной доле какой-либо единицы. Например, одна миллиардная метра называется нанометром.

В других случаях приставка нано- означает использование мельчайших компонентов размером от 1 до 100 нанометров (нм).

Особенности профессии

Нанотехнологи создают новые материалы с чётко заданной атомарной структурой. Контролируемые манипуляции отдельными молекулами и атомами для «сборки» таких материалов - это и есть нанотехнология.

Работа с мельчайшими элементами возможна, благодаря мощным электронным микроскопам высокого разрешения. Таким, как сканирующий атомно-силовой микроскоп (АСМ), растровый электронный микроскоп (РЭМ).

К нанотехнологиям относят также разработку и создание электронных схем, основанных на элементах размером с молекулу или атом. Разработку роботов (наномашин, нанороботов) размером с молекулу. А также методы исследования таких объектов.

Таким образом, нанотехнология — междисциплинарная область, находящаяся на стыке науки (фундаментальной и прикладной) и техники.

Почему это направление стало таким актуальным в последнее время? Дело в том, что нанотехнология — это наиболее глубинное и направленное вмешательство в материю на сегодняшний день. Это качественно новый уровень точности.

Принцип создания наноматериалов (манипуляции отдельными атомами) позволяет получать такие свойства, которых невозможно добиться традиционным способом. Потому что традиционный способ (проведение химических реакций) — это работа с порциями вещества, состоящими из миллиардов атомов.

Словарь

Наноматериал — материал, состоящий из структурных элементов, размеры которых (хотя бы в одном измерении) не превышают 100 нм.

Наносистемная техника — системы и устройства, созданные на основе наноматериалов и нанотехнологий.

Наноиндустрия — производство на основе нанотехнологий.

Нанобактерии — органо-минеральные структуры (30—200 нм), способные к самостоятельному размножению.

История

Термин «нанотехнологии» первым начал использовать японский физик Норио Танигучи в 1974 году, обозначая им создание материалов с нанометровой точностью.

Однако отцом нанотехнологий считается американский учёный Ким Эрик Дрекслер, который начал свою работу в этой области в 1970-х годах (тогда он разрабатывал солнечные батареи на основе нанотехнологий). Он автор теории создания молекулярных нанороботов, нанотехнологического механосинтеза.

В 1992 году Дрекслер выступил перед комиссией Конгресса США с докладом, в котором описал, как именно нанотехнологии должны преобразить мир. По его мнению, они должны избавить мир от голода и болезней, а также уберечь от экологической катастрофы, т.к. всё, что нужно человечеству, можно сделать с помощью нанороботов из атомов и молекул почвы, воздуха и песка.

Но у нанотехнологий есть и тёмная сторона. Об этом говорит и сам Декслер. Ему принадлежит концепция конца света от «серой слизи», т.е. неуправляемых саморазмножающихся нанороботов, которые могут поглотить жизнь на Земле.

Перспективы профессии

Искусственный фагоцит сможет уничтожать чужеродные бактерии и вирусы.

В утверждении, что нанотехнологи избавят человечество от голода и болезней, почти нет преувеличения. Например, ученые уже разработали методики лечения злокачественных опухолей с помощью нанополимеров, которые доставляют большие дозы лекарства напрямую в раковые клетки. У этого метода гораздо меньше побочных эффектов, чем у традиционной химиотерапии.

Разработали способы восстановления клеток организма (нанопластырь для восстановления миокарда, повреждённого инфарктом, и пр.). Таких примеров очень много. Попытки использовать нанотехнологи для лечения предпринимают и в России. Предприятие «Нанокор» в Томске в 2012 году начинает разрабатывать технологию использования биоактивных наночастиц для лечения атеросклеротических бляшек в кровеносных сосудах.

Миниатюрные технологии нужны не только в медицине. Например, американские военные планируют в 2015 году запустить в космос наноспутники, которые отправятся к отработавшим свой срок орбитальным аппаратам, встроятся в их системы управления и таким образом дадут списанным спутникам новую жизнь. Энергию они будут получать от солнечных батарей старых спутников.

Теперь уже очевидно, что нанотехнологии — это новые возможности для бизнеса и конкуренции. Сегодня отрасль развивается стремительно. По мнению европейских экспертов, в 2010—2015 гг. во всём мире (включая Европу, Японию, Китай, США и Россию) в ней будут работать больше 2 000 000 специалистов.

В России за развитие нанотехнологий отвечает «Российская корпорация нанотехнологий» (РосНа-ноТех). Уже ближайшие годы профессия специалист по нанотехнологиям должна стать одной из самых востребованных профессий в России.

Рабочее место

Профессия нанотехнолог позволяет работать в производственных компаниях, в научно-исследовательских центрах всего мира. Например, в «Центре конвергентных нано-, био-, информационных и когнитивных наук и технологий» Курчатовского института.

Важные качества

Профессия нанотехнолога предполагает интерес к исследовательской работе, научный склад ума.

Оплата труда

Зарплата на 05.09.2019

Россия 15000—15000 ₽

Знания и навыки

Нанотехнология находится на стыке химии, биологии, физики, математики, информатики. Для успешной работы нужны знания по математике, физике, химии, биологи, информатике. А также специальные знания, которые зависят от конкретной специализации. Для общения с иностранными коллегами и чтения литературы требуется знание английского языка.

Где учат

Для работы в сфере нанотехнологий необходимо получить в вузе одну из специальностей: «нанотехнологии», «нанотехнологии в электронике», «наноматериалы».

Вузы, в которых можно получить профессию нанотехнолога (неполный список)

  • Московский физико-технический институт (государственный университет)

Факультет нано-, био-, информационных и когнитивных технологий (ФНБИК).

Научно-техническая база - в Курчатовском институте.

  • Московский государственный технический университет им. Н.Э.Баумана.

Научно-техническая база - договор с РОСНАНО.

  • Национальный исследовательский технологический университет «МИСиС».

Институт новых материалов и нанотехнологий.

  • Московский государственный институт радиотехники, электроники и автоматики (МИРЭА).

Факультет электроники.

  • Московский государственный институт электроники и математики (МИЭМ).

Факультет электроники.

  • Московский государственный институт электронной техники (технический университет) МИЭТ.

Факультет электроники и компьютерных технологий.

  • Московский государственный университет инженерной экологии (МГУИЭ).

Факультет автоматизации и информационных технологий.

  • Московский энергетический институт (государственный университет) (МЭИ).
  • Институт тепловой и атомной энергетики.
  • Российский государственный технологический университет им. К. Э. Циолковского (МАТИ).
  • Российский химико-технологический университет им. М.Д. Менделеева (РХТУ).
  • Институт материалов современной энергетики и нанотехнологии.

Президент России Дмитрий Медведев уверен, что в стране есть все условия для успешного развития нанотехнологий.

Нанотехнологии - это новое направление науки и технологии, активно развивающееся в последние десятилетия. Нанотехнологии включают создание и использование материалов, устройств и технических систем, функционирование которых определяется наноструктурой, то есть ее упорядоченными фрагментами размером от 1 до 100 нанометров.

Приставка "нано", пришедшая из греческого языка ("нанос" по‑гречески ‑ гном), означает одну миллиардную долю. Один нанометр (нм) - одна миллиардная доля метра.

Термин "нанотехнология" (nanotechnology) был введен в 1974 году профессором‑материаловедом из Токийского университета Норио Танигучи (Norio Taniguchi), который определил его как "технология производства, позволяющая достигать сверхвысокую точность и ультрамалые размеры...порядка 1 нм...".

В мировой литературе четко отличают нанонауку (nanoscience) от нанотехнологий (nanotechnology). Для нанонауки используется также термин ‑ nanoscale science (наноразмерная наука).

На русском языке и в практике российского законодательства и нормативных документов термин "нанотехнологии" объединяет "нанонауку", "нанотехнологии", и иногда даже "наноиндустрию" (направления бизнеса и производства, где используются нанотехнологии).

Важнейшей составной частью нанотехнологии являются наноматериалы , то есть материалы, необычные функциональные свойства которых определяются упорядоченной структурой их нанофрагментов размером от 1 до 100 нм.

‑ нанопористые структуры;
‑ наночастицы;
‑ нанотрубки и нановолокна
‑ нанодисперсии (коллоиды);
‑ наноструктурированные поверхности и пленки;
‑ нанокристаллы и нанокластеры.

Наносистемная техника ‑ полностью или частично созданные на основе наноматериалов и нанотехнологий функционально законченные системы и устройства, характеристики которых кардинальным образом отличаются от показателей систем и устройств аналогичного назначения, созданных по традиционным технологиям.

Области применения нанотехнологий

Перечислить все области, в которых эта глобальная технология может существенно повлиять на технический прогресс, практически невозможно. Можно назвать только некоторые из них:

‑ элементы наноэлектроники и нанофотоники (полупроводниковые транзисторы и лазеры;
‑ фотодетекторы; солнечные элементы; различные сенсоры);
‑ устройства сверхплотной записи информации;
‑ телекоммуникационные, информационные и вычислительные технологии; суперкомпьютеры;
‑ видеотехника — плоские экраны, мониторы, видеопроекторы;
‑ молекулярные электронные устройства, в том числе переключатели и электронные схемы на молекулярном уровне;
‑ нанолитография и наноимпринтинг;
‑ топливные элементы и устройства хранения энергии;
‑ устройства микро‑ и наномеханики, в том числе молекулярные моторы и наномоторы, нанороботы;
‑ нанохимия и катализ, в том числе управление горением, нанесение покрытий, электрохимия и фармацевтика;
‑ авиационные, космические и оборонные приложения;
‑ устройства контроля состояния окружающей среды;
‑ целевая доставка лекарств и протеинов, биополимеры и заживление биологических тканей, клиническая и медицинская диагностика, создание искусственных мускулов, костей, имплантация живых органов;
‑ биомеханика; геномика; биоинформатика; биоинструментарий;
‑ регистрация и идентификация канцерогенных тканей, патогенов и биологически вредных агентов;
‑ безопасность в сельском хозяйстве и при производстве пищевых продуктов.

Компьютеры и микроэлектроника

Нанокомпьютер — вычислительное устройство на основе электронных (механических, биохимических, квантовых) технологий с размерами логических элементов порядка нескольких нанометров. Сам компьютер, разрабатываемый на основе нанотехнологий, также имеет микроскопические размеры.

ДНК‑компьютер — вычислительная система, использующая вычислительные возможности молекул ДНК. Биомолекулярные вычисления — это собирательное название для различных техник, так или иначе связанных с ДНК или РНК. При ДНК‑вычислениях данные представляются не в форме нулей и единиц, а в виде молекулярной структуры, построенной на основе спирали ДНК. Роль программного обеспечения для чтения, копирования и управления данными выполняют особые ферменты.

Атомно‑силовой микроскоп ‑ сканирующий зондовый микроскоп высокого разрешения, основанный на взаимодействии иглы кантилевера (зонда) с поверхностью исследуемого образца. В отличие от сканирующего туннельного микроскопа (СТМ), может исследовать как проводящие, так и непроводящие поверхности даже через слой жидкости, что позволяет работать с органическими молекулами (ДНК). Пространственное разрешение атомно‑силового микроскопа зависит от размера кантилевера и кривизны его острия. Разрешение достигает атомарного по горизонтали и существенно превышает его по вертикали.

Антенна‑осциллятор ‑ 9 февраля 2005 года в лаборатории Бостонского университета была получена антенна‑осциллятор размерами порядка 1 мкм. Это устройство насчитывает 5000 миллионов атомов и способно осциллировать с частотой 1,49 гигагерц, что позволяет передавать с ее помощью огромные объемы информации.

Наномедицина и фармацевтическая промышленность

Направление в современной медицине, основанное на использовании уникальных свойств наноматериалов и нанообъектов для отслеживания, конструирования и изменения биологических систем человека на наномолекулярном уровне.

ДНК‑нанотехнологии ‑ используют специфические основы молекул ДНК и нуклеиновых кислот для создания на их основе четко заданных структур.

Промышленный синтез молекул лекарств и фармакологических препаратов четко определенной формы (бис‑пептиды).

В начале 2000‑го года, благодаря быстрому прогрессу в технологии изготовления частиц наноразмеров, был дан толчок к развитию новой области нанотехнологии ‑ наноплазмонике . Оказалось возможным передавать электромагнитное излучение вдоль цепочки металлических наночастиц с помощью возбуждения плазмонных колебаний.

Робототехника

Нанороботы ‑ роботы, созданные из наноматериалов и размером сопоставимые с молекулой, обладающие функциями движения, обработки и передачи информации, исполнения программ. Нанороботы, способные к созданию своих копий, т.е. самовоспроизводству, называются репликаторами.

В настоящее время уже созданы электромеханические наноустройства, ограниченно способные к передвижению, которые можно считать прототипами нанороботов.

Молекулярные роторы ‑ синтетические наноразмерные двигатели, способные генерировать крутящий момент при приложении к ним достаточного количества энергии.

Место России среди стран, разрабатывающих и производящих нанотехнологии

Мировыми лидерами по общему объему капиталовложений в сфере нанотехнологий являются страны ЕС, Япония и США. В последнее время значительно увеличили инвестиции в эту отрасль Россия, Китай, Бразилия и Индия. В России объем финансирования в рамках программы "Развитие инфраструктуры наноиндустрии в Российской Федерации на 2008 ‑ 2010 годы" составит 27,7 млрд.руб.

В последнем (2008 год) отчете лондонской исследовательской фирмы Cientifica, который называется "Отчет о перспективах нанотехнологий", о российских вложениях написано дословно следующее: "Хотя ЕС по уровню вложений все еще занимает первое место, Китай и Россия уже обогнали США".

В нанотехнологиях существуют такие области, где российские ученые стали первыми в мире, получив результаты, положившие начало развитию новых научных течений.

Среди них можно выделить получение ультрадисперсных наноматериалов, проектирование одноэлектронных приборов, а также работы в области атомно‑силовой и сканирующей зондовой микроскопии. Только на специальной выставке, проводившейся в рамках XII Петербургского экономического форума (2008 год), было представлено сразу 80 конкретных разработок.

В России уже производится целый ряд нанопродуктов, востребованных на рынке: наномембраны, нанопорошки, нанотрубки. Однако, по мнению экспертов, по комммерциализации нанотехнологических разработок Россия отстает от США и других развитых стран на десять лет.

Материал подготовлен на основе информации открытых источников

Природа непрерывна, а любое определение требует установления каких-то границ. Поэтому формулировка определений - достаточно неблагодарное занятие. Тем не менее это надо делать, так как четкое определение позволяет отделить одно явление от другого, выявить существенные различия между ними и таким образом глубже понять сами явления. Поэтому целью этого эссе является попытка разобраться в значении модных сегодня терминов c приставкой «нано» (от греческого слова «карлик») - «нанонаука», «нанотехнология», «нанообъект», «наноматериал».

Несмотря на то что эти вопросы с той или иной степенью глубины неоднократно обсуждались в специальной и научно-популярной литературе, анализ литературы и личный опыт показывают, что до сих пор в широких научных кругах, не говоря уже о ненаучных, нет четкого понимания как самой проблемы, так и определений. Именно поэтому мы постараемся дать определения всем перечисленным выше терминам, акцентируя внимание читателя на значении базового понятия «нанообъект». Мы приглашаем читателя к совместному размышлению о том, существует ли нечто, принципиально отличающее нанообъекты от их более крупных и более мелких «собратьев», «населяющих» окружающий нас мир. Более того, мы предлагаем ему самому принять участие в серии мысленных экспериментов по конструированию наноструктур и их синтезу. Мы также попытаемся продемонстрировать, что именно в наноразмерном интервале происходит изменение характера физических и химических взаимодействий, причем происходит это именно на том же участке размерной шкалы, где проходит граница между живой и неживой природой.

Но сначала - откуда всё это появилось, почему была введена приставка «нано», что является определяющим при отнесении материалов к наноструктурам, почему нанонаука и нанотехнологии выделяются в отдельные области, что в этом выделении относится (и относится ли) к действительно научным основам?

Что такое «нано» и откуда всё началось

Это приставка, которая показывает, что исходная величина должна быть уменьшена в миллиард раз, т. е. поделена на единицу с девятью нулями - 1 000 000 000. Например, 1 нанометр - это миллиардная часть метра (1 нм = 10 –9 м). Чтобы представить себе, насколько мал 1 нм, выполним следующий мысленный эксперимент (рис. 1). Если мы уменьшим диаметр нашей планеты (12 750 км = 12,75 × 10 6 м ≈ 10 7 м) в 100 миллионов (10 8) раз, то получим примерно 10 –1 м. Это размер, приблизительно равный диаметру футбольного мяча (стандартный диаметр футбольного мяча - 22 см, но в наших масштабах такая разница несущественна; для нас 2,2 × 10 –1 м ≈ 10 –1 м). Теперь уменьшим диаметр футбольного мяча в те же 100 миллионов (10 8) раз, и вот только теперь получим размер наночастицы, равный 1 нм (приблизительно диаметр углеродной молекулы фуллерена C 60 , по своей форме похожего на футбольный мяч - см. рис. 1).

Примечательно, что приставка «нано» использовалась в научной литературе довольно давно, но для обозначения далеко не нанообъектов. В частности для объектов, размер которых в миллиарды раз превышает 1 нм - в терминологии динозавров. Нанотиранозаврами (nanotyrranus ) и нанозаврами (nanosaurus ) называются карликовые динозавры, размеры которых составляют соответственно 5 и 1,3 м. Но они действительно «карлики» по сравнению с другими динозаврами, размеры которых превышают 10 м (до 50 м), а вес может достигать 30–40 т и более. Этот пример подчеркивает, что сама по себе приставка «нано» не несет физического смысла, а лишь указывает на масштаб.

Но теперь с помощью этой приставки обозначают новую эру в развитии технологий, называемых иногда четвертой промышленной революцией, - эру нанотехнологий.

Очень часто считается, что начало нанотехнологической эре положил в 1959 г. Ричард Фейнман в лекции "There"s Plenty of Room at the Bottom " («Там внизу - много места»). Основной постулат этой лекции заключался в том, что с точки зрения фундаментальных законов физики автор не видит никаких препятствий к работе на молекулярном и атомном уровнях, манипулировании отдельными атомами или молекулами. Фейнман говорил, что с помощью определенных устройств можно сделать еще меньшие по размеру устройства, которые в свою очередь способны сделать еще меньшие устройства, и так далее вплоть до атомного уровня, т. е. при наличии соответствующих технологий можно манипулировать отдельными атомами.

Справедливости ради, однако, следует отметить, что Фейнман не первый это придумал. В частности, идея создания последовательно уменьшающихся в размере манипуляторов была высказана еще в 1931 г. писателем Борисом Житковым в его фантастическом рассказе «Микроруки». Не можем удержаться и не привести небольшие цитаты из этого рассказа, чтобы дать читателю самому по достоинству оценить прозрение писателя:

«Я долго ломал голову и вот к чему пришел: я сделаю маленькие руки, точную копию моих - пусть они будут хоть в двадцать, тридцать раз меньше, но на них будут гибкие пальцы, как мои, они будут сжиматься в кулак, разгибаться, становиться в те же положения, что и мои живые руки. И я их сделал...
Но мне вдруг ударила в голову мысль: а ведь я могу сделать микроруки к моим маленьким рукам. Я могу для них сделать такие же перчатки, как я сделал для своих живых рук, такой же системой соединить их с ручками в десять раз меньше моих микрорук, и тогда... у меня будут настоящие микроруки, уже в двести раз они будут мельчить мои движения. Этими руками я ворвусь в такую мелкоту жизни, которую только видели, но где еще никто не распоряжался своими руками. И я взялся за работу...
Я хотел сделать истинные микроруки, такие, которыми я мог бы хватать частицы вещества, из которых создана материя, те невообразимо мелкие частицы, которые видны только в ультрамикроскоп. Я хотел пробраться в ту область, где ум человеческий теряет всякое представление о размерах - кажется, что уж нет никаких размеров, до того всё невообразимо мелко».

Но дело не только в литературных предсказаниях. То, что теперь называют нанообъектами, нанотехнологиями, если угодно, человек давно использовал в своей жизни. Один из наиболее ярких примеров (в прямом и переносном смыслах) - это разноцветные стекла. Например, созданный еще IV веке н. э. кубок Ликурга, хранящийся в Британском музее, при освещении снаружи - зеленый, но если освещать его изнутри - то он пурпурно-красный. Как показали недавние исследования с помощью электронной микроскопии, этот необычный эффект обусловлен наличием в стекле наноразмерных частиц золота и серебра. Поэтому можно смело утверждать, что кубок Ликурга сделан из нанокомпозитного материала.

Как выясняется теперь, в Средние века металлическую нанопыль часто добавляли в стекло для изготовления витражей. Вариации окраски стекол зависят от различий добавляемых частиц - природы используемого металла и размера его частиц. Недавно было установлено, что эти стекла обладают еще и бактерицидными свойствами, т. е. не только дают красивую игру света в помещении, но и дезинфицируют среду.

Если рассматривать историю развития науки в историческом плане, то можно выделить, с одной стороны, общий вектор - проникновение естественных наук «вглубь» материи. Движение по этому вектору определяется развитием средств наблюдения. Сначала люди изучали обычный мир, для наблюдения которого не надо было особых приборов. При наблюдениях на этом уровне заложены основы биологии (классификация мира живого, К. Линней и др.), была создана теория эволюции (Ч. Дарвин, 1859 г.). Когда появился телескоп, люди смогли проводить астрономические наблюдения (Г. Галилей, 1609 г.). Результатом этого явились закон Всемирного тяготения и классическая механика (И. Ньютон, 1642–1727 гг.). Когда появился микроскоп Левенгука (1674 г.), люди проникли в микромир (размерный интервал 1 мм - 0,1 мм). Сначала это было только созерцание мелких, не видимых глазом организмов. Лишь в конце XIX века Л. Пастер первым выяснил природу и функции микроорганизмов. Примерно в это же время (конец XIX - начало XX века) происходила революция в физике. Ученые стали проникать внутрь атома, изучать его строение. Опять-таки это было связано с появлением новых методов и инструментов, в качестве которых стали применять мельчайшие частицы вещества. В 1909 г. используя альфа-частицы (ядра гелия, имеющие размер порядка 10 –13 м) Резерфорду удалось «увидеть» ядро атома золота. Созданная на основе этих опытов планетарная модель атома Бора-Резерфорда дает наглядный образ огромности «свободного» места в атоме, вполне сравнимого с космической пустотой Солнечной системы. Именно пустоты таких порядков имел в виду Фейнман в своей лекции. При помощи тех же α-частиц в 1919 г. Резерфордом была осуществлена первая ядерная реакция по превращению азота в кислород. Так физики вошли в пико- и фемторазмерные интервалы , и понимание строения материи на атомном и субатомном уровнях привело в первой половине прошлого века к созданию квантовой механики.

Мир потерянных величин

Исторически случилось так, что на размерной шкале (рис. 2) были «перекрыты» практически все размерные области исследований, кроме области наноразмеров. Однако мир не без прозорливых людей. Еще в начале XX века В. Оствальд опубликовал книгу «Мир обойденных величин», в которой шла речь о новой в то время области химии - коллоидной химии, которая и имела дело именно с частицами нанометровых размеров (хотя тогда еще этот термин не употреблялся). Уже в этой книге он отмечал, что дробление материи в какой-то момент приводит к новым свойствам, что от размера частицы зависят свойства и всего материала.

В начале ХХ века еще не умели «видеть» частицы такого размера, так как они лежат ниже пределов разрешимости светового микроскопа. Поэтому не случайно одной из начальных вех появления нанотехнологий считается изобретение М. Кноллем и Э. Руска в 1931 г. электронного микроскопа. Только после этого человечество смогло «видеть» объекты субмикронных и нанометровых размеров. И тогда всё становится на свои места - основной критерий, по которому человечество принимает (или не принимает) какие-либо новые факты и явления, выражен в словах Фомы неверующего: «Пока не увижу, не поверю».

Следующий шаг был сделан в 1981 г. - Г. Бинниг и Г. Рорер создали сканирующий туннельный микроскоп, что дало возможность не только получать изображения отдельных атомов, но и манипулировать ими. То есть была создана технология, о которой говорил в своей лекции Р. Фейнман. Вот именно тогда и наступила эра нанотехнологий.

Отметим, что и здесь мы опять имеем дело с одной и той же историей. Опять потому, что для человечества вообще свойственно не обращать внимания на то, что хоть немного, но обгоняет свое время. Вот и на примере нанотехнологий выясняется, что ничего нового не открыли, просто стали лучше понимать то, что происходит вокруг, то, что даже в древности люди уже делали, пусть и неосознанно, вернее, осознанно (знали, что хотели получить), но не понимая физики и химии явления. Другой вопрос, что наличие технологии еще далеко не означает понимания сути процесса. Сталь умели варить давно, но понимание физических и химических основ сталеварения пришло значительно позже. Тут можно вспомнить, что секрет дамасской стали не открыт до сих пор. Здесь уже другая ипостась - знаем, что надо получить, но не знаем, как. Так что взаимоотношения науки и технологии далеко не всегда просты.

Кто же первым занялся наноматериалами в их современном понимании? В 1981 г. американский ученый Г. Глейтер впервые использовал определение «нанокристаллический». Он сформулировал концепцию создания наноматериалов и развил ее в серии работ 1981–1986 гг., ввел термины «нанокристаллические», «наноструктурные», «нанофазные» и «нанокомпозитные» материалы. Главный акцент в этих работах был сделан на решающей роли многочисленных поверхностей раздела в наноматериалах как основе для изменения свойств твердых тел.

Одним из важнейших событий в истории нанотехнологии и развития идеологии наночастиц явилось также открытие в середине 80-х - начале 90-х годов ХХ века наноструктур углерода - фуллеренов и углеродных нанотрубок, а также открытие уже в XXI веке способа получения графена.

Но вернемся к определениям.

Первые определения: всё очень просто

Сначала всё было очень просто. В 2000 г. президент США Б. Клинтон подписал документ «National Nanotechnology Initiative » («Национальная нанотехнологическая инициатива»), в котором приведено следующее определение: к нанотехнологиям относятся создание технологий и исследования на атомном, молекулярном и макромолекулярном уровнях в пределах примерно от 1 до 100 нм для понимания фундаментальных основ явлений и свойств материалов на уровне наноразмеров, а также создание и использование структур, оборудования и систем, обладающих новыми свойствами и функциями, определяемыми их размерами.

В 2003 г. правительство Великобритании обратилось в Royal Society и Royal Academy of Engineering с просьбой высказать свое мнение о необходимости развития нанотехнологий, оценить преимущества и проблемы, которые может вызвать их развитие. Такой доклад под названием «Nanoscience and nanotechnologies: opportunities and uncertainties » появился в июле 2004 г., и в нем, насколько нам известно, впервые были даны отдельно определения нанонауки и нанотехнологий:

Нанонаука - это исследование явлений и объектов на атомарном, молекулярном и макромолекулярном уровнях, характеристики которых существенно отличаются от свойств их макроаналогов.
Нанотехнологии - это конструирование, характеристика, производство и применение структур, приборов и систем, свойства которых определяются их формой и размером на нанометровом уровне.

Таким образом, под термином «нанотехнология» понимается совокупность технологических приемов, позволяющая создавать нанообъекты и/или манипулировать ими. Остается только дать определение нанообъектам. Но вот это, оказывается, не так просто, поэтому бОльшая часть статьи посвящена именно этому определению.

Для начала приведем формальное определение, наиболее широко используемое в настоящее время:

Нанообъектами (наночастицами ) называются объекты (частицы) с характерным размером в 1–100 нанометров хотя бы по одному измерению.

Вроде бы всё хорошо и понятно, неясно только, почему дано столь жесткое определение нижнего и верхнего пределов в 1 и 100 нм? Похоже, что выбрано это волюнтаристски, особенно подозрительно назначение верхнего предела. Почему не 70 или 150 нм? Ведь, учитывая всё многообразие нанообъектов в природе, границы наноучастка размерной шкалы могут и должны быть существенно размыты. И вообще в природе проведение любых точных границ невозможно - одни объекты плавно перетекают в другие, и происходит это в определенном интервале, а не в точке.

Прежде чем говорить о границах, попробуем понять, какой физический смысл содержится в понятии «нанообъект», почему его надо выделять отдельной дефиницией?

Как уже отмечалось выше, только в конце XX века начало появляться (вернее, утверждаться в умах) понимание того, что наноразмерный интервал строения материи всё-таки имеет свои особенности, что на этом уровне вещество обладает иными свойствами, которые не проявляются в макромире. Очень трудно переводить некоторые английские термины на русский язык, но в английском есть термин «bulk material », что приблизительно можно перевести как «большое количество вещества», «объемное вещество», «сплошная среда». Так вот некоторые свойства «bulk materials » при уменьшении размера составляющих его частиц могут начать изменяться при достижении определенного размера. В этом случае говорят, что происходит переход к наносостоянию вещества, наноматериалам.

А происходит это потому, что при уменьшении размера частиц доля атомов, расположенных на их поверхности, и их вклад в свойства объекта становятся существенными и растут с дальнейшим уменьшением размеров (рис. 3).

Но почему увеличение доли поверхностных атомов существенно влияет на свойства частиц?

Так называемые поверхностные явления известны давно - это поверхностное натяжение, капиллярные явления, поверхностная активность, смачивание, адсорбция, адгезия и др. Вся совокупность этих явлений обусловлена тем, что силы взаимодействия между частицами, составляющими тело, не скомпенсированы на его поверхности (рис. 4). Другими словами, атомы на поверхности (кристалла или жидкости - это не важно) находятся в особых условиях. Например, в кристаллах силы, заставляющие их находиться в узлах кристаллической решетки, действуют на них только снизу. Поэтому свойства этих «поверхностных» атомов отличаются от свойств этих же атомов в объеме.

Так как в нанообъектах число поверхностных атомов резко возрастает (рис. 3), то их вклад в свойства нанообъекта становится определяющим и растет с дальнейшим уменьшением размера объекта. Именно это и является одной из причин проявления новых свойств на наноуровне.

Другой причиной обсуждаемого изменения свойств является то, что на этом размерном уровне начинает уже проявляться действие законов квантовой механики, т. е. уровень наноразмеров - это уровень перехода, именно перехода, от царствования классической механики к царствованию механики квантовой. А как хорошо известно, самое непредсказуемое - это именно переходные состояния.

К середине XX века люди научились работать как с массой атомов, так и с одним атомом.

Впоследствии стало очевидно, что «маленькая кучка атомов» - это что-то иное, не совсем похожее ни на массу атомов, ни на отдельный атом.

Впервые, вероятно, ученые и технологи вплотную столкнулись с этой проблемой в физике полупроводников. В своем стремлении к миниатюризации они дошли до таких размеров частиц (несколько десятков нанометров и менее), при которых их оптические и электронные свойства стали резко отличаться от таковых для частиц «обычных» размеров. Именно тогда стало окончательно понятно, что шкала «наноразмеров» - это особая область, отличная от области существования макрочастиц или сплошных сред.

Поэтому в приведенных выше определениях нанонауки и нанотехнологий наиболее существенным является указание на то, что «настоящее нано» начинается с момента появления новых свойств веществ, связанных с переходом к этим масштабам и отличающихся от свойств объемных материалов. То есть существеннейшим и важнейшим качеством наночастиц, основным отличием их от микро- и макрочастиц является появление у них принципиально новых свойств, не проявляющихся при других размерах. Мы уже приводили литературные примеры, используем этот прием еще раз для того, чтобы наглядно показать и подчеркнуть различия между макро-, микро- и нанообъектами.

Вернемся к литературным примерам. Часто в качестве «раннего» нанотехнолога упоминается герой повести Лескова Левша. Однако это неправильно. Основное достижение Левши - это то, что он выковал маленькие гвозди [«я мельче этих подковок работал: я гвоздики выковывал, которыми подковки забиты, там уже никакой мелкоскоп взять не может »]. Но эти гвозди, хоть и очень маленькие, остались гвоздями, не потеряли своей основной функции - удерживать подкову. Так что пример с Левшой - это пример миниатюризации (если угодно, микроминиатюризации), т. е. уменьшения размеров предмета без изменения его функциональных и других свойств.

А вот уже упоминавшийся рассказ Б. Житкова описывает как раз именно изменение свойств:

«Мне нужно было вытянуть тонкую проволоку - то есть той толщины, какая для моих живых рук была бы как волос. Я работал и глядел в микроскоп, как протягивали медь микроруки. Вот тоньше, тоньше - еще осталось протянуть пять раз - и тут проволока рвалась. Даже не рвалась - она рассыпалась, как сделанная из глины. Рассыпалась в мелкий песок. Это знаменитая своей тягучестью красная медь».

Отметим, что в Wikipedia в статье про нанотехнологии как раз увеличение жесткости меди приводится в качестве одного из примеров изменения свойств при уменьшении размеров. (Интересно, откуда узнал про это Б. Житков в 1931 г.?)

Нанобъекты: квантовые плоскости, нити и точки. Наноструктуры углерода

В конце XX века окончательно стало очевидно существование определенной области размеров частиц вещества - область наноразмеров. Физики, уточняя определение нанообъектов, утверждают, что верхний предел наноучастка размерной шкалы совпадает, по всей видимости, с размером проявления так называемых низкоразмерных эффектов или эффекта понижения размерности.

Попытаемся сделать обратный перевод последнего утверждения с языка физиков на общечеловеческий язык.

Мы живем в трехмерном мире. Все окружающие нас реальные предметы имеют те или иные размеры во всех трех измерениях, или, как говорят физики, обладают размерностью 3.

Проведем следующий мысленный эксперимент. Выберем трехмерный, объемный, образец какого-нибудь материала, лучше всего - однородный кристалл. Пусть это будет кубик с длиной ребра в 1 см. Этот образец обладает определенными физическими свойствами, не зависящими от его размеров. Вблизи внешней поверхности нашего образца свойства могут отличаться от таковых в объеме. Однако относительная доля поверхностных атомов мала, и поэтому вкладом поверхностного изменения свойств можно пренебречь (именно это требование означает на языке физиков, что образец объемный ). Теперь разделим кубик пополам - два его характерных размера останутся прежними, а один, пусть это будет высота d , уменьшится в 2 раза. Что произойдет со свойствами образца? Они не изменятся. Повторим этот эксперимент еще раз и измерим интересующее нас свойство. Мы получим тот же результат. Неоднократно повторяя эксперимент, мы наконец дойдем до некоторого критического размера d *, ниже которого измеряемое нами свойство начнет зависеть от размера d . Почему? При d ≤ d * доля вклада поверхностных атомов в свойства становится существенной и будет продолжать расти с дальнейшим уменьшением d.

Физики говорят что при d ≤ d * в нашем образце наблюдается квантово-размерный эффект в одном измерении. Для них наш образец не является больше трехмерным (что для любого обычного человека звучит абсурдно, ведь наше d хоть и мало, но не равно нулю!), его размерность понижена до двух. А сам образец называется квантовой плоскостью, или квантовой ямой, по аналогии с часто употребляемым в физике термином «потенциальная яма».

Если в неком образце d ≤ d * в двух измерениях, то его называют одномерным квантовым объектом, или квантовой нитью, или квантовым проводом. У нуль-мерных объектов, или квантовых точек, d ≤ d * во всех трех измерениях.

Естественно, что критический размер d * не является постоянной величиной для разных материалов и даже для одного материала может существенно варьироваться в зависимости от того, какое из свойств мы измеряли в нашем эксперименте, или, говоря другими словами, какая из критических размерных характеристик физических явлений определяет данное свойство (свободный пробег электронов фононов, длина волны де Бройля, длина диффузии, глубина проникновения внешнего электромагнитного поля или акустических волн и пр.).

Однако оказывается, что при всём многообразии явлений, происходящих в органических и неорганических материалах в живой и неживой природе, величина d * лежит примерно в интервале 1–100 нм. Таким образом, «нанообъект» («наноструктура», «наночастица») - это просто другой вариант термина «квантово-размерная структура». Это объект, у которого d ≤ d * по крайней мере в одном измерении. Это частицы пониженной размерности, частицы с повышенной долей поверхностных атомов. А значит, классифицировать их логичнее всего по степени снижения размерности: 2D - квантовые плоскости, 1D - квантовые нити, 0D - квантовые точки.

Весь спектр сниженных размерностей можно легко объяснить и главное - экспериментально наблюдать на примере углеродных наночастиц.

Открытие наноструктур углерода явилось очень важной вехой в развитии концепции наночастиц.

Углерод - всего лишь одиннадцатый по распространенности в природе элемент, однако благодаря уникальной способности его атомов соединяться друг с другом и образовывать длинные молекулы, включающие в качестве заместителей и другие элементы, возникло громадное множество органических соединений, да и сама Жизнь. Но, даже соединяясь только сам с собой, углерод способен порождать большой набор различных структур с весьма разнообразными свойствами - так называемых аллотропных модификаций. Алмаз, например, является эталоном прозрачности и твердости, диэлектриком и теплоизолятором. Однако графит - идеальный «поглотитель» света, сверхмягкий материал (в определенном направлении), один из лучших проводников тепла и электричества (в плоскости, перпендикулярной вышеназванному направлению). А ведь оба этих материала состоят только из атомов углерода!

Но всё это на макроуровне. А переход на наноуровень открывает новые уникальные свойства углерода. Оказалось, что «любовь» атомов углерода друг к другу настолько велика, что они могут без участия других элементов образовывать целый набор наноструктур, отличающихся друг от друга, в том числе и размерностью. В их число входят фуллерены, графен, нанотрубки, наноконы и т. п. (рис. 5).

Отметим при этом, что наноструктуры углерода можно назвать «истинными» наночастицами, так как в них, как хорошо видно на рис. 5, все составляющие их атомы лежат на поверхности.

Но вернемся к самому графиту. Итак, графит - самая распространенная и термодинамически стабильная модификация элементарного углерода с трехмерной кристаллической структурой, состоящей из параллельных атомных слоев, каждый из которых представляет собой плотную упаковку шестиугольников (рис. 6). В вершинах любого такого шестиугольника расположен атом углерода, а стороны шестиугольников графически отражают прочные ковалентные связи между атомами углерода, длина которых составляет 0,142 нм. А вот расстояние между слоями достаточно велико (0,334 нм), и поэтому связь между слоями достаточно слабая (в этом случае говорят о ван-дер-ваальсовом взаимодействии ).

Такая кристаллическая структура и объясняет особенности физических свойств графита. Во-первых, низкую твердость и способность легко расслаиваться на мельчайшие чешуйки. Так, например, пишут грифели карандашей, графитовые чешуйки которых, отслаиваясь, остаются на бумаге. Во-вторых, уже упоминавшуюся ярко выраженную анизотропию физических свойств графита и прежде всего его электрической проводимости и теплопроводности.

Любой из слоев трехмерной структуры графита можно рассматривать как гигантскую плоскостную структуру, имеющую размерность 2D. Такая двумерная структура, построенная только из атомов углерода, получила название «графен». Получить такую структуру «относительно» легко, во всяком случае, в мысленном эксперименте. Возьмем графитовый карандашный грифель и начнем писать. Высота грифеля d будет уменьшаться. Если хватит терпения, то в какой-то момент величина d сравняется с d *, и мы получим квантовую плоскость (2D).

Долгое время проблема стабильности плоских двумерных структур в свободном состоянии (без подложки) в общем и графена в частности, а также электронные свойства графена были предметом только теоретических исследований. Совсем недавно, в 2004 г., группой физиков во главе с А. Геймом и К. Новосёловым были получены первые образцы графена, что произвело революцию в этой области, так как такие двумерные структуры оказались, в частности, способными проявлять поразительные электронные свойства, качественно отличающиеся от всех прежде наблюдаемых. Поэтому сегодня сотни экспериментальных групп и исследуют электронные свойства графена.

Если свернуть графеновый слой, моноатомный по толщине, в цилиндр таким образом, чтобы гексагональная сетка атомов углерода замкнулась без швов, то мы «сконструируем» одностенную углеродную нанотрубку. Экспериментально можно получать одностенные нанотрубки диаметром от 0,43 до 5 нм. Характерными особенностями геометрии нанотрубок являются рекордные значения удельной поверхности (в среднем ~1600 м 2 /г для одностенных трубок) и отношения длины к диаметру (100 000 и выше). Таким образом, нанотрубки представляют собой 1D нанообъект - квантовые нити.

В экспериментах наблюдались также и многостенные углеродные нанотрубки (рис. 7). Они состоят из коаксиальных цилиндров, вставленных один в другой, стенки которых находятся на расстоянии (около 3,5 Å), близком к межплоскостному расстоянию в графите (0,334 нм). Количество стенок может варьироваться от 2 до 50.

Если же поместить кусок графита в атмосферу инертного газа (гелия или аргона) и затем осветить лучом мощного импульсного лазера или концентрированного солнечного света, то можно испарить материал нашей графитовой мишени (заметим, что для этого температура поверхности мишени должна быть как минимум 2700°C). В таких условиях над поверхностью мишени образуется плазма, состоящая из индивидуальных атомов углерода, которые увлекаются потоком холодного газа, что приводит к охлаждению плазмы и образованию кластеров углерода. Так вот, оказывается, что при определенных условиях кластеризации атомы углерода замыкаются с образованием каркасной сферической молекулы C 60 размерностью 0D (т. е. квантовая точка), уже показанной на рис. 1.

Такое самопроизвольное образование молекулы C 60 в углеродной плазме было обнаружено в совместном эксперименте Г. Крото, Р. Кёрла и Р. Смоли, проведенном в течение десяти дней в сентябре 1985 г. Отошлем любознательного читателя к книге Е. А. Каца «Фуллерены, углеродные нанотрубки и нанокластеры: Родословная форм и идей», подробно описывающей увлекательную историю этого открытия и события, ему предшествующие (с краткими экскурсами в историю науки вплоть до эпохи Возрождения и даже Античности), а также объясняющей мотивацию странного на первый взгляд (и только на первый взгляд) названия новой молекулы - бакминстерфуллерен - в честь архитектора Р. Бакминстера Фуллера (см. также книгу [Пиотровский, Киселев, 2006]).

Впоследствии было обнаружено, что существует целое семейство углеродных молекул - фуллеренов - в форме выпуклых многогранников, состоящих только из шестиугольных и пятиугольных граней (рис. 8).

Именно открытие фуллеренов явилось своеобразным волшебным «золотым ключиком» в новый мир нанометровых структур из чистого углерода, вызвало взрыв работ в этой области. К настоящему времени обнаружено большое количество различных углеродных кластеров с фантастическим (в прямом смысле этого слова!) разнообразием структуры и свойств.

Но вернемся к наноматериалам.

Наноматериалами называются материалы, структурными единицами которых являются нанообъекты (наночастицы). Образно говоря, здание наноматериала сложено из кирпичей-нанообъектов. Поэтому классифицировать наноматериалы продуктивнее всего по размерности как самого образца наноматериала (внешних размеров матрицы), так и по размерности составляющих его нанообъектов. Наиболее подробная классификация такого рода приведена в работе . Представленные в этой работе 36 классов наноструктур описывают всё многообразие наноматериалов, некоторые из которых (как указанные выше фуллерены или углеродный наногорох) уже успешно синтезированы, а некоторые всё еще ждут своей экспериментальной реализации.

Почему всё не так просто

Итак, мы можем строго определить интересующие нас понятия «нанонаука», «нанотехнология» и «наноматериалы» только в том случае, если понимаем, что такое «нанобъект».

«Нанообъект» же, в свою очередь, имеет два определения. Первое, более простое (технологическое): это объекты (частицы) с характерным размером приблизительно в 1–100 нанометров хотя бы по одному измерению. Второе определение, более научное, физическое: объект с пониженной размерностью (у которого d ≤ d * по крайней мере в одном измерении).

Других определений, насколько нам известно, не имеется.

Не может не бросаться в глаза, однако, тот факт, что и научное определение обладает серьезным недостатком. А именно: в нем, в отличие от технологического, определяется только верхний предел наноразмеров. Должен ли существовать нижний предел? По нашему мнению, конечно, должен. Первая причина существования нижнего предела непосредственно вытекает из физической сущности научного определения нанообъекта, так как большинство обсуждавшихся выше эффектов понижения размерности являются эффектами квантового ограничения, или явлениями резонансной природы. Иными словами, они наблюдаются при совпадении характерных длин эффекта и размеров объекта, т. е. не только для d d *, что уже обсуждалось, но в то же время только если размер d превышает некий нижний предел d ** (d ** ≤ d d *). При этом очевидно, что величина d* может варьироваться для разных явлений, но должна превышать размеры атомов.

Проиллюстрируем сказанное на примере соединений углерода. Полициклические ароматические углеводороды (ПАУ) типа нафталина, бензпирена, хризена и т. п. являются формально аналогами графена. Более того, самый большой из известных ПАУ имеет общую формулу C 222 H 44 и содержит 10 бензольных колец по диагонали. Однако они не обладают теми удивительными свойствами, которыми обладает графен, и их нельзя рассматривать как наночастицы. То же самое относится и к наноалмазам: до ~ 4–5 нм это наноалмазы, но близко к этим границам, и даже заходя за них, подходят высшие диамандоиды (аналоги адамантана, имеющие конденсированные алмазные ячейки в качестве основы структуры).

Итак: если в пределе размер объекта по всем трем измерениям будет равен размеру атома, то, например, кристалл, сложенный из таких 0-мерных объектов будет не наноматериалом, а обычным атомарным кристаллом. Это очевидно. Как очевиден и тот факт, что количество атомов в нанообъекте должно всё-таки превосходить единицу. Если у нанобъекта все три значения d меньше, чем d**, он престает им быть. Такой объект надо описывать на языке описания индивидуальных атомов.

А если не все три размера, а только один, например? Остается ли такой объект нанообъектом? Конечно, да. Таким объектом является, например, уже не раз упоминавшийся графен. То, что характерный размер графена в одном измерении равен диаметру атома углерода, не лишает его свойств наноматериала. И свойства эти абсолютно уникальны. Были измерены проводимость, эффект Шубникова - де Гааза, квантовый эффект Холла в графеновых пленках атомарной толщины. Эксперименты подтвердили, что графен - полупроводник с нулевой шириной запрещенной зоны, при этом в точках соприкосновения валентной зоны и зоны проводимости энергетический спектр электронов и дырок линеен как функция волнового вектора. Такого рода спектром обладают частицы с нулевой эффективной массой, в частности фотоны, нейтрино, релятивистские частицы. Отличие фотонов и безмассовых носителей в графене состоит в том, что последние являются фермионами, и они заряжены. В настоящее время аналогов для этих безмассовых заряженных фермионов Дирака среди известных элементарных частиц нет. Сегодня графен представляет огромный интерес как для проверки множества теоретических предположений из областей квантовой электродинамики и теории относительности, так и для создания новых устройств наноэлектроники, в частности баллистического и одноэлектронного транзисторов.

Для нашей дискуссии весьма важно, что наиболее близким к понятию нанообъекта является размерный участок, на котором реализуются так называемые мезоскопические явления. Это минимальный размерный участок, для которого резонно говорить не о свойствах индивидуальных атомов или молекул, а о свойствах материала в целом (например, при определении температуры, плотности или проводимости материала). Мезоскопические размеры как раз попадают в интервал 1–100 нм. (Приставка «мезо-» происходит от греческого слова «средний», промежуточный - между атомарными и макроскопическими размерами.)

Всем известно, что психология занимается поведением индивидуумов, а социология - поведением больших групп людей. Так вот, отношения в группе из 3–4 человек можно по аналогии охарактеризовать как мезоявления. Точно так же, как уже упоминалось выше, маленькая кучка атомов - это что-то не похожее ни на «кучу» атомов, ни на отдельный атом.

Тут следует отметить еще одну важную особенность свойств нанообъектов. Несмотря на то, что в отличие от графена углеродные нанотрубки и фуллерены являются формально 1- и 0-мерными объектами соответственно, по существу это не совсем так. Вернее, так и не так одновременно. Дело в том, что нанотрубка - это тот же графеновый 2D одноатомный слой, свернутый в цилиндр. А фуллерен - это углеродный 2D слой одноатомной толщины, замкнутый по поверхности сферы. То есть свойства нанообъектов существенно зависят не только от их размеров, но и от топологических характеристик - попросту говоря, от их формы.

Итак, правильное научное определение нанообъекта должно быть следующим:

это объект, у которого хотя бы один из размеров ≤ d *, при этом хотя бы один из размеров превышает d**. Иными словами, объект достаточно велик, чтобы обладать макросвойствами вещества, но в то же время характеризуется пониженной размерностью, т. е. хотя бы по одному из измерений достаточно мал, чтобы значения этих свойств сильно отличались от соответствующих свойств макрообъектов из этого же вещества, существенно зависели от размеров и формы объекта. При этом точные значения размеров d * и d** могут варьироваться не только от вещества к веществу, но и для разных свойств одного и того же вещества.

То, что эти соображения отнюдь не являются схоластическими (типа «со скольких песчинок начинается куча?»), а имеют глубокий смысл для понимания единства науки и непрерывности окружающего нас мира, становится очевидным, если мы обратим свой взор на нанообъекты органического происхождения.

Нанообъекты органической природы - супрамолекулярные структуры

Выше мы рассматривали только неорганические относительно однородные материалы, и уже там всё было не так просто. Но на Земле есть колоссальное количество материи, которую не просто трудно, а нельзя назвать однородной. Речь идет о биологических структурах и вообще о Живой материи.

В «Национальной нанотехнологической инициативе» в качестве одной из причин особого интереса к области наноразмеров указывается:

так как системная организация материи на наноуровне является ключевой особенностью биологических систем, нанонаука и технология дадут возможность включать в клетки искусственные компоненты и ансамбли, создавая тем самым новые структурно организованные материалы на основе подражания методам самосборки в природе.

Попробуем теперь разобраться, какой смысл имеет понятие «наноразмер» в приложении к биологии, памятуя о том, что при переходе к этому размерному интервалу должны принципиально или резко изменяться свойства. Но сначала вспомним, что к нанообласти можно подойти двумя путями: «сверху вниз» (дробление) или «снизу вверх» (синтез). Так вот, движение «снизу вверх» для биологии представляет собой не что иное, как образование из отдельных молекул биологически активных комплексов.

Рассмотрим коротко химические связи, которые определяют строение и форму молекулы. Первой и самой сильной является ковалентная связь, характеризующаяся строгой направленностью (только от одного атома к другому) и определенной длиной, которая зависит от типа связи (одинарная, двойная, тройная и т. п.). Именно ковалентные связи между атомами определяют «первичную структуру» любой молекулы, т. е. какие атомы и в каком порядке связаны друг с другом.

Но существуют и другие типы связей, определяющие то, что называется вторичной структурой молекулы, ее форму. Это прежде всего водородная связь - связь между полярным атомом и атомом водорода. Она ближе всего к ковалентной связи, так как также характеризуется определенной длиной и направленностью. Однако эта связь слабая, ее энергия на порядок ниже энергии ковалентной связи. Остальные типы взаимодействий являются ненаправленными и характеризуются не длиной образуемых связей, а скоростью убывания энергии связи с увеличением расстояния между взаимодействующими атомами (дальнодействием). Ионная связь является дальнодействующим взаимодействием, ван-дер-ваальсовы взаимодействия являются короткодействующими. Так, если расстояние между двумя частицами увеличивается в r раз, то в случае ионной связи притяжение снизится до 1/r 2 от начального значения, в случае уже не раз упоминавшегося ван-дер-ваальсового взаимодействия - до 1/r 3 и более (до 1/r 12). Все эти взаимодействия в общем случае можно определить как межмолекулярные взаимодействия.

Рассмотрим теперь такое понятие, как «биологически активная молекула». Следует признать, что молекула вещества сама по себе представляет интерес только для химиков и физиков. Их интересует ее строение («первичная структура»), ее форма («вторичная структура»), такие макроскопические показатели, как, например, агрегатное состояние, растворимость, температуры плавления и кипения и т. п., и микроскопические (электронные эффекты и взаимное влияние атомов в данной молекуле, спектральные свойства как проявление этих взаимодействий). Другими словами, речь идет об изучении свойств, проявляемых в принципе одной молекулой. Напомним, что по определению молекула - это наименьшая частица вещества, несущая его химические свойства.

С точки же зрения биологии «изолированная» молекула (в данном случае не важно, одна это молекула или какое-то количество одинаковых молекул) не способна проявлять никаких биологических свойств. Этот тезис звучит достаточно парадоксально, но попробуем его обосновать.

Рассмотрим это на примере ферментов - белковых молекул, представляющих собой биохимические катализаторы. Например, фермент гемоглобин, обеспечивающий перенос кислорода в ткани, состоит из четырех белковых молекул (субъединиц) и одной так называемой простетической группы - гемма, содержащего атом железа, нековалентно связанного с белковыми субъединицами гемоглобина.

Основной, а точнее определяющий вклад во взаимодействие белковых субъединиц и гемма, взаимодействие, приводящее к образованию и устойчивости надмолекулярного комплекса, который и называется гемоглобином, вносят силы, именуемые иногда гидрофобными взаимодействиями, но представляющие собой силы межмолекулярного взаимодействия. Связи, образуемые этими силами, значительно слабее ковалентных. Но при комплементарном взаимодействии, когда две поверхности очень близко подходят друг к другу, число этих слабых связей велико, и поэтому общая энергия взаимодействия молекул достаточно высока и образующийся комплекс достаточно устойчив. Но пока не образовались эти связи между четырьмя субъединицами, пока не присоединилась (опять-таки за счет нековалентных связей) простетическая группа (гемм), ни при каких условиях отдельные части гемоглобина связывать кислород не могут и тем более не могут никуда его переносить. И, следовательно, данной биологической активностью не обладают. (Эти же самые рассуждения можно распространить и на все ферменты в целом.)

При этом сам процесс катализа подразумевает образование в ходе реакции комплекса из как минимум двух компонентов - самого катализатора и молекулы (молекул), называемых субстратом(ами), претерпевающей(их) какие-то химические превращения под действием катализатора. Другими словами, должен образоваться комплекс как минимум из двух молекул, т. е. супрамолекулярный (надмолекулярный) комплекс.

Идея комплементарного взаимодействия впервые была предложена Э. Фишером для объяснения взаимодействия лекарственных веществ с их мишенью в организме и названа взаимодействием «ключ к замку». Хотя лекарственные (и иные биологические вещества) далеко не во всех случаях представляют собой ферменты, но и они способны вызвать какой-либо биологический эффект только после взаимодействия с соответствующей биологической мишенью. А такое взаимодействие опять-таки есть не что иное, как образование супрамолекулярного комплекса.

Следовательно, проявление «обычными» молекулами принципиально новых свойств (в рассматриваемом случае - биологической активности) связано с образованием ими надмолекулярных (супрамолекулярных) комплексов с другими молекулами за счет сил межмолекулярного взаимодействия. Именно так устроено большинство ферментов и систем в организме (рецепторы, мембраны и т. п.), в том числе такие сложные структуры, которые иногда называются биологическими «машинами» (рибосомы, АТФаза и др.). Причем происходит это именно на уровне нанометровых размеров - от одного до нескольких десятков нанометров.

При дальнейшем усложнении и увеличении размеров (более 100 нм), т. е. при переходе на другой размерный уровень (микроуровень), возникают значительно более сложные системы, способные не только к самостоятельному существованию и взаимодействию (в частности, к обмену энергией) с окружающей их средой, но и к самовоспроизведению. То есть опять происходит изменение свойств всей системы - она становится настолько сложной, что уже способна к самовоспроизведению, возникает то, что мы называем живыми структурами.

Многие мыслители неоднократно пытались дать определение Жизни. Не вдаваясь в философские дискуссии, отметим, что, на наш взгляд, жизнь есть существование самовоспроизводящихся структур, а начинаются живые структуры с отдельной клетки. Жизнь есть микро- и макроскопический феномен, а вот основные процессы, обеспечивающие функционирование живых систем, протекают на уровне наноразмеров.

Функционирование живой клетки как интегрированного саморегулирующегося устройства с ярко выраженной структурной иерархией обеспечивается миниатюризацией на наноразмерном уровне. Очевидно, что миниатюризация на уровне наноразмеров является принципиальным атрибутом биохимии, а следовательно, эволюция жизни состоит из появления и интеграции различных форм наноструктурированных объектов. Именно наноразмерный участок структурной иерархии, ограниченный по размерам как сверху, так и снизу (!), является критичным для появления и способности к существованию клеток. То есть именно уровень наноразмеров представляет собой переход от уровня молекулярного к уровню Живого.

Однако из-за того что миниатюризация на уровне наноразмеров является принципиальным атрибутом биохимии, нельзя всё-таки рассматривать любые биохимические манипуляции как нанотехнологические - нанотехнологии предполагают всё-таки конструирование, а не банальное применение молекул и частиц.

Заключение

В начале статьи мы уже пытались как-то классифицировать объекты различных естественных наук по принципу характерных размеров исследуемых ими объектов. Вернемся к этому снова и, применив эту классификацию, получим, что атомная физика, изучающая взаимодействия внутри атома, - это субангстремные (фемто- и пико-) размеры.

«Обычные» неорганическая и органическая химия - это ангстремные размеры, уровень отдельных молекул или связей внутри кристаллов неорганических веществ. А вот биохимия - это уровень наноразмеров, уровень существования и функционирования супрамолекулярных структур, стабилизированных нековалентными межмолекулярными силами.

Но биохимические структуры еще относительно просты, и функционировать они могут относительно независимо (in vitro , если угодно). Дальнейшее усложнение, образование супрамолекулярными структурами сложных ансамблей - это есть переход к самовоспроизводящимся структурам, переход к Живому. И здесь уже на уровне клеток это микроразмеры, а на уровне организмов - макроразмеры. Это уже биология и физиология.

Наноуровень представляет собой переходную область от уровня молекулярного, образующего базис существования всего живого, состоящего из молекул, к уровню Живого, уровню существования самовоспроизводящихся структур, а наночастицы, представляющие собой супрамолекулярные структуры, стабилизированные силами межмолекулярного взаимодействия, представляют собой переходную форму от отдельных молекул к сложным функциональным системам. Это можно отразить схемой, подчеркивающей, в частности, и непрерывность Природы (рис. 9). В схеме мир наноразмеров расположен между атомно-молекулярным миром и миром Живого, состоящего из тех же атомов и молекул, но организованных в сложные самовоспроизводящиеся структуры, а переход из одного мира в другой определяется не только (и не столько) размерами структур, сколько их сложностью. Природа давно придумала и использует в живых системах супрамолекулярные структуры. Мы же далеко не всегда можем понять, а тем более повторить то, что Природа делает легко и непринужденно. Но нельзя ждать от нее милостей, надо у нее учиться.

Литература:
1) Вуль А.Я., Соколов В.И. Исследования наноугле-рода в России: от фуллеренов к нанотрубкам и нано-алмазам/ Российские нанотехнологии, 2007. Т. 3 (3–4).
2) Кац Е.А. Фуллерены, углеродные нанотрубки и нанокластеры: родословная форм и идей. - М.: ЛКИ, 2008.
3) Оствальд В. Мир обойденных величин. - М.: Изд-во товарищества «Мир», 1923.
4) Пиотровский Л.Б., Киселев О.И. Фуллерены в биологии. - Росток, СПб, 2006.
5) Ткачук В.А. Нанотехнологии и медицина // Российские нанотехнологии, 2009. Т. 4 (7–8).
6) Хобза П., Заградник Р. Межмолекулярные комплексы. - М.: Мир, 1989.
7) Mann S. Life as a nanoscale phenomenon. Angew. Chem. Int. Ed. 2008, 47, 5306–5320.
8) Pokropivny V.V., Skorokhod V.V. New dimensionality classifications of nanostructures // Physica E, 2008, v. 40, p. 2521–2525.

Нано - 10 –9 , пико - 10 –12 , фемто - 10 –15 .

Притом не только увидеть, но и потрогать. «Но он сказал им: если не увижу на руках Его ран от гвоздей, и не вложу перста моего в раны от гвоздей, и не вложу руки моей в ребра Его, не поверю» [Евангелие от Иоанна, глава 20, стих 24].

Например, об атомах говорил еще в 430 г. до н. э. Демокрит. Затем Дальтон в 1805 г. утверждал, что: 1) элементы состоят из атомов, 2) атомы одного элемента идентичны и отличаются от атомов другого элемента и 3) атомы не могут быть разрушены в химической реакции. Но лишь с конца XIX века стали развиваться теории строения атома, что и вызвало революцию в физике.

Понятие «нанотехнология» было введено в обиход в 1974 г. японцем Норио Танигучи. Долгое время термин не получал широкого распространения среди специалистов, работавших в связанных областях, так как Танигучи использовал понятие «нано» только для обозначения точности обработки поверхностей, например, в технологиях, позволяющих контролировать шероховатости поверхности материалов на уровне меньше микрометра и т. п.

Понятия «фуллерены», «углеродные нанотрубки» и «графен» будут подробно обсуждаться во второй части статьи.

Экспериментальной иллюстрацией этого утверждения является недавно опубликованная разработка технологических приемов получения графеновых листов путем «химического разрезания» и «разворачивания» углеродных нанотрубок.

Слово «микроскопические» употреблено здесь лишь потому, что так эти свойства назывались ранее, хотя речь в данном случае идет о свойствах, проявляемых молекулами и атомами, т. е. о пикоразмерном интервале.

Что, в частности, привело к возникновению точки зрения, что жизнь есть феномен нанометровых размеров [Mann , 2008], что, на наш взгляд, не совсем верно.

08 Сентября 2010

М.В. Алфимов, Центр фотохимии Российской академии наук, 119421, Москва, ул. Новаторов, 7а E-mail: [email protected]
Л.М. Гохберг, Государственный университет – Высшая школа экономики,101000, Москва, ул. Мясницкая, 20 E-mail: [email protected]
К.С. Фурсов, Государственный университет – Высшая школа экономики,101000, Москва, ул. Мясницкая, 20 E-mail: [email protected]
Журнал «Российские нанотехнологии» № 7-8 2010 год.

Введение

Интенсивное развитие нанотехнологий, их быстрое проникновение в производство и потребление и связанные с этим риски - социальные, этические, экологические - обусловливают актуальность скорейшего решения задачи формирования системы экономико-статистических измерений масштабов, структуры и динамики данного технологического направления и соответствующей ему сферы деятельности. Отсутствие необходимой для этого методологической базы и практического инструментария ведет к весьма расплывчатым, а часто и противоречивым представлениям о состоянии сферы нанотехнологий, ее экономических и социальных эффектах.

Обретя широкое признание в качестве одного из наиболее перспективных направлений научно-технологического развития , нанотехнологии стали объектом приоритетной поддержки во многих государствах мира. По имеющимся оценкам, едва ли найдется другая область науки, получившая в глобальном масштабе столь значительные государственные инвестиции за столь короткий период времени . Между тем, по замечанию А. Хульман, «вопрос о том, в какой степени «нано-шумиха» опирается на реальные экономические показатели, а в какой отражает лишь благие пожелания» , остается открытым: оценки рынка товаров и у слуг, связанных с нанотехнологиями, в зависимости от используемого в них определения последних и «степени оптимизма» их aвторов варьируются от 150 млрд долл. к 2010 г. до 3.1 трлн долл. к 2015 г. . Несмотря на несколько ажиотажный характер большинства прогнозов, многие эксперты сходятся в том, что нанотехнологии могут трансформироваться в «технологии общего назначения» вслед за информационно-коммуникационными и биотехнологиями. Вместе с тем формирование понятийного аппарата, прежде всего определений и классификаций, здесь существенно отстает от динамики самого рассматриваемого явления. С учетом масштабов инвестиций в эту сферу и неизбежной в такой ситуации склонности к преувеличению научно-технических и экономических эффектов в некоторых аналитических исследованиях и прогнозах, опирающихся на различную терминологию, подобное положение дел не может не вызывать озабоченности, поскольку способно оказывать дезориентирующее воздействие на принятие обоснованных управленческих решений.

Следует подчеркнуть, что разработка определений и классификаций в сфере нанотехнологий представляет собой довольно сложную задачу. В первую очередь, это связано с «универсальным» характером нанотехнологий - слабо структурированной области, отличающейся высокой динамичностью развития и растущим многообразием практических приложений. Нельзя не учитывать также мультидисциплинарный характер этой сферы и ее адаптивность как к новым научно-технологическим достижениям, так и к потребностям экономики и общества.

Проблема единства понятий и стандартов в области нанотехнологий неоднократно обсуждалась в зарубежной и отечественной литературе, в том числе и на страницах настоящего журнала . Этот вопрос имеет ключевое значение для выработки единого подхода к пониманию сущности и особенностей развития нанотехнологий. Общий понятийный аппарат позволит более четко обозначить границы исследуемой области и оценить порождаемые ею научно-технологические и социально-экономические тенденции. В данной статье на основе анализа международного опыта и лучших практик в организации научных исследований, стандартизации и статистического учета предложено базовое определение нанотехнологий и представлен проект классификации направлений нанотехнологий. Принципиальное значение при этом придается гармонизации понятийного аппарата с международными подходами, что будет способствовать усилению интеграции российской науки в мировое научно-технологическое пространство.

Определение нанотехнологий

Как показывает обзор литературы, нанотехнологии рассматриваются сегодня и как область исследований, и как направление технологического развития. С одной стороны, это отражает современные тенденции взаимосвязи науки и технологии, а с другой - порождает серьезную терминологическую путаницу. Противоречия начинаются уже в попытках обозначить область исследований в целом и дать определение понятия «нанотехнологии». Так, некоторые авторы выделяют «нанонауку» (nanoscience), занимающуюся познанием свойств наноразмерных объектов и анализом их влияния на свойства материалов, и «нанотехнологию» (nanotechnology), имеющую своей целью развитие этих свойств для производства структур, устройств и систем с характеристиками, заданными на молекулярном уровне. Иногда такое разделение имеет под собой сугубо методическую основу, когда речь идет об анализе научных публикаций (и тогда говорится о «нанонауке» ) либо патентов (в этом случае используется понятие «нанотехнологии» ). На практике же провести различие между нанонаукой и нанотехнологией оказывается практически невозможным , поэтому во избежание путаницы отдельные исследователи предлагают ограничиться только одним термином – «нанотехнологии», объединив в нем обе составляющие. Принимая такой подход, важно предложить согласованное определение нанотехнологий, которое, в частности, призвано обозначить общие границы рассматриваемой области, исключив из нее лишнее.

Заметим, что, несмотря на наличие различных определений нанотехнологий, единого согласованного варианта, причем такого, который образовывал бы основания для построения соответствующих классификаций, пока не существует.

На международном уровне из всего многообразия подходов, встречающихся в научных публикациях, аналитических обзорах и политических документах разных стран, выделяются пять определений, пользующихся наибольшим влиянием (табл. 1).

Таблица 1. Общие определения нанотехнологий

Организация-автор Определение
VII Рамочная программа ЕС (2007–2013) Получение новых знаний о феноменах, свойства которых зависят от интерфейса и размера; управление свойствами материалов на наноуровне для получения новых возможностей их практического применения; интеграция технологий на наноуровне; способность к самосборке; наномоторы; машины и системы; методы и инструменты для описания и манипулирования на наноуровне; химические технологии нанометровой точности для производства базовых материалов и компонентов; эффект в отношении безопасности человека, здравоохранения и охраны окружающей среды; метрология, мониторинг и считывание, номенклатура и стандарты; исследование новых концепций и подходов для практического применения в различных отраслях, включая интеграцию и конвергенцию с новыми технологиями.
Рабочий план Международной организации по стандартизации (ISO) от 23/04/2007 1) Понимание механизмов управления материей и процессами на наношкале (как правило, но не исключительно, менее 100 нанометров по одному или нескольким измерениям), где феномены, связанные со столь малыми размерами, обычно открывают новые возможности практического применения. 2) Использование свойств материалов, проявляющихся на наношкале и отличных от свойств отдельных атомов, молекул и объемных веществ, для создания улучшенных материалов, устройств и систем, основанных на этих новых свойствах.
Европейское патентное ведомство (EPO) Термин «нанотехнология» покрывает объекты, контролируемый геометрический размер хотя бы одного из функциональных компонентов которых в одном или нескольких измерениях не превышает 100 нанометров, сохраняя присущие им на этом уровне физические, химические, биологические эффекты. Он покрывает также оборудование и методы контролируемого анализа, манипуляции, обработки, производства или измерения с точностью менее 100 нанометров.
США: Национальная нанотехнологическая инициатива (2001– н.в.) Нанотехнология – это понимание и управление материей на уровне примерно от 1 до 100 нанометров, когда уникальные явления создают возможности для необычного применения. Нанотехнология охватывает естественные, технические науки и технологию нанометровой шкалы, включая получение изображений, измерение, моделирование и манипулирование материей на этом уровне.
Япония: Второй общий план по науке и технологиям (2001–2005) Нанотехнология – междисциплинарная область науки и техники, включающая информационные технологии, науки об окружающей среде, о жизни, материалах и др. Она служит для управления и использования атомов и молекул размером порядка нанометра (1/1.000.000.000), что дает возможность обнаруживать новые функции благодаря уникальным свойствам материалов, проявляющимся на наноуровне. В результате появляется возможность создания технологических инноваций в различных областях.

Все эти определения были идентифицированы Рабочей группой по нанотехнологиям (РГН) Организации экономического сотрудничества и развития (ОЭСР) в качестве базы для создания унифицированной методологической рамки, необходимой для организации гармонизированной в международном масштабе системы сбора и анализа статистической информации о сфере нанотехнологий . Отметим, что предлагаемые теми или иными международными либо национальными организациями определения носят характер рабочих, отражая специфику тех конкретных программ и проектов, применительно к которым они и сформулированы, и различаются в зависимости от сферы их применения, решаемых задач и уровня полномочий этих организаций. К примеру, в определении нанотехнологий в VII Рамочной программе ЕС подчеркивается их научно-технологическая составляющая; подходы, принятые Европейским и Японским патентными ведомствами, нацелены на работу в сфере охраны интеллектуальной собственности, а формулировка из Национальной нанотехнологической инициативы США охватывает естественные, технические науки и технологии. Тем не менее не следует забывать, что состав приведенного набора определений продиктован, прежде всего, их политической операциональностью (ориентацией на принятие политических решений) и принадлежностью к странам (регионам) с максимальными объемами государственного финансирования научно-технологической сферы (ЕС, США, Япония). Список дополняют так называемое «рамочное» определение ISO, составляющее основу документов РГН, и определение Европейского патентного ведомства (EPO) - пока еще единственного источника международно-сопоставимой информации о нанотехнологиях.

Указанные определения объединяет ряд общих черт, относительно которых следует сделать несколько дополнительных замечаний.

Во-первых, каждое из приведенных определений обращает внимание на масштаб рассматриваемого явления. Как правило, указывается диапазон от 1 до 100 нм, внутри которого могут быть зафиксированы уникальные молекулярные процессы.

Во-вторых, подчеркивается принципиальная возможность управления процессами, происходящими, как правило, в границах обозначенного диапазона. Это позволяет отличить нанотехнологии от природных явлений подобного рода («случайных» нанотехнологий), а также обеспечить возможность придания создаваемым материалам и устройствам уникальных характеристик и функциональных возможностей, достижение которых в рамках предшествующей технологической волны было невозможно. В свою очередь это означает, что в средне- и долгосрочной перспективе нанотехнологии могут не только содействовать развитию существующих рынков, но и способствовать возникновению новых рынков (продуктов или услуг), способов организации производства, видов экономических и социальных отношений.

В-третьих, характерной особенностью определений является их экономико-статистическая операциональность. Нанотехнологии представлены как явление, поддающееся количественной оценке, – это техники, инструменты, материалы, устройства, системы. Это делает их важным элементом цепочек создания стоимости, однако вопросы оценки вклада нанотехнологий в стоимость конечного продукта и пределов диверсификации существующих секторов производства при их применении требуют дополнительного рассмотрения.

В то же время обращают на себя внимание некоторые различия в указанных определениях. Прежде всего они касаются степени конвергентности и целевого назначения нанотехнологий. Так, в европейском варианте отмечается как интеграция различных технологий в границах наношкалы, так и их конвергенция с другими технологиями; выделяются отдельные сферы их применения. Японская версия подчеркивает инновационную природу нанотехнологии. К тому же европейское и японское определения со всей очевидностью отражают распространенное убеждение , что использование схожих «строительных элементов» (например, атомов и молекул) и инструментов анализа (микроскопы, компьютеры высокой мощности и др.) в различных научных дисциплинах может привести в будущем к синтезу информационных, био- и нанотехнологий.

Интересно также, что среди приведенных определений встречаются не только общие (базовые), но и так называемые «списочные», в том числе принятое в VII Рамочной программе ЕС. Обычно они формируются путем перечисления научно-технологических областей (направлений), которые относятся к соответствующей сфере. Как показывает случай с биотехнологиями, использование общего и списочного определений способствует эффективному решению различных задач в области статистики, анализа, научно-технической и инновационной политики. Так, базовые определения хорошо подходят для научных дискуссий, достижения консенсуса по общим вопросам, принятия рамочных политических решений. Списочные определения позволяют наладить коммуникацию с технологическими и производственными областями, где новые технологии могут иметь прикладное значение (например, для исследования рынков и компаний), а также обеспечить создание более строгой системы отбора и экспертизы проектов. В конечном итоге это позволяет повысить точность и достоверность получаемой информации.

В официальной российской практике вплоть до последнего времени действовали два различных базовых определения нанотехнологий, которые представлены, соответственно, в «Концепции развития в Российской Федерации работ в области нанотехнологий на период до 2010 года» и «Программе развития наноиндустрии в Российской Федерации до 2015 года» (табл. 2).

Таблица 2. Российские определения нанотехнологий

Документ Определение
Концепция развития в Российской Федерации работ в области нанотехнологий на период до 2010 года Нанотехнологии – это совокупность методов и приемов, обеспечивающих возможность контролируемым образом создавать и модифицировать объекты, включающие компоненты с размерами менее 100 нм, имеющие принципиально новые качества и позволяющие осуществлять их интеграцию в полноценно функционирующие системы большего масштаба; в более широком смысле этот термин охватывает также методы диагностики, характерологии и исследований таких объектов.
Программа развития наноиндустрии в Российской Федерации до 2015 года Нанотехнологии – технологии, направленные на создание и эффективное практическое использование нанообъектов и наносистем с заданными свойствами и характеристиками.

Первая из этих двух версий фокусируется на изучении и создании объектов определенного (наноразмерного) масштаба, вторая – предлагает рассматривать процессы создания и использования нанотехнологий. В обоих случаях отсутствуют указания на особенности, связанные с уникальностью явлений и происходящие в пределах наношкалы. Кроме того, определение, представленное в Программе развития наноиндустрии, не несет новой информации о характеризуемом явлении и формулируется исходя из свойств и признаков одного порядка. Это делает его максимально абстрактным и лишает какого бы то ни было уровня операциональности.

С целью преодоления отмеченных выше проблем и выработки такого определения нанотехнологий, которое позволило бы отразить их специфический характер и могло бы быть использовано в сфере статистического наблюдения, а также научно-технологической и инновационной политики, нами была предпринята попытка синтеза эффективных элементов различных существующих подходов. Результатом соответствующих методических усилий стала новая версия базового определения нанотехнологий, которая прошла обсуждение в целом ряде представительных аудиторий, включая специализированные экспертные совещания и фокус-группы, рабочую группу Научно-координационного совета ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2007–2012 годы» по направлению «Индустрия наносистем и материалов», редколлегию журнала «Российские нанотехнологии», первый и второй Международные форумы по нанотехнологиям и т.п. Финальный вариант предлагаемого определения выглядит следующим образом…

Под нанотехнологиями предлагается понимать совокупность приемов и методов, применяемых при изучении, проектировании и производстве наноструктур, устройств и систем, включающих целенаправленный контроль и модификацию формы, размера, взаимодействия и интеграции составляющих их наномасштабных элементов (около 1–100 нм), наличие которых приводит к улучшению либо к появлению дополнительных эксплуатационных и/или потребительских характеристик и свойств получаемых продуктов.

Данное определение учитывает комплексный научно-технологический характер рассматриваемого явления, указывает на специфическую размерность и управляемость основных процессов, подчеркивает их определяющее влияние на свойства создаваемых продуктов и отношение к рыночной новизне. Оно может быть использовано для целей проведения научно-технической экспертизы, формулирования критериев отбора и оценки отдельных проектов, связанных с нанотехнологиями, организации статистического наблюдения в этой сфере.

Предложенное определение было рассмотрено правлением Государственной корпорации «Роснанотех» в сентябре 2009 г. и принято в качестве рабочего.

Как уже было отмечено выше, междисциплинарный характер нанотехнологий обусловливает целесообразность дополнения базового их определения списочным, которое охватывало бы научно-технологические направления, объединенные общим понятием «нанотехнологии». В ходе работы были выделены семь таких крупных направлений, которые составляют списочное определение и образуют основу проекта классификации направлений нанотехнологий.

Классификация направлений нанотехнологий

Как и в случае с определениями, классификации направлений нанотехнологий в настоящее время находятся в процессе формирования. Прежде всего, это связано с отсутствием международных терминологических стандартов в сфере нанотехнологий. Большинство материалов Рабочей группы ISO по стандартизации наноразмерных объектов и процессов носят предварительный характер, а российские стандарты, согласно проекту Программы стандартизации в наноиндустрии, предложенному ГК «Роснанотех», должны быть разработаны в период с 2010 по 2014 гг., в зависимости от направления.

К настоящему моменту опубликованы проекты трех основных стандартов: терминология и определения нанообъектов в части наночастиц, нановолокон и нанопластин (ISO/TS 27687:2008), принципы безопасности и защиты здоровья при использовании нанотехнологий в профессиональной деятельности (ISO/TR 12885:2008), определения углеродных нанообъектов (ISO/TS 80004-3:2010). Практически завершена работа над проектом методологии классификации и категоризации наноматериалов (ISO/TR 11360: 2010).

Как было отмечено выше, формированию классификационных группировок предшествует выработка общего (базового) определения нанотехнологий. Затем предстоит идентифицировать ключевые области анализа, которые должны быть описаны с помощью ограниченного набора основных определений, и структурировать их с выделением самостоятельных подгрупп, описывающих выбранную область. Подобного рода подходы к группировке направлений нанотехнологий уже представлены в нормативных документах международных организаций, а также в материалах национальных органов научно-технической политики и статистических служб (табл. 3).

Таблица 3. Примеры группировок основных направлений нанотехнологий

Статистическая служба Канады EPO ISO NRNC Статистическая служба Австралии ФЦП «Развитие инфраструктуры наноиндустрии в Российской Федерации на 2008–2010 годы»
Нанофотоника Нанобиотехнологии Нанобиотехнологии Электроника Нанотехнологии для окружающей среды Наноэлектроника
Наноэлектроника Нанотехнологии для обработки, хранения и передачи информации Наноэлектроника Оптоэлектроника Молекулярная и органическая электроника Наноинженерия
Нанобиотехнологии Нанотехнологии для материалов и науки о земле Наномедицина Медицина и биотехнологии Нанобиотехнологии Функциональные наноматериалы и высокочистые вещества
Наномедицина Нанотехнологии для распознавания, взаимодействия и манипулирования Нанометрология Измерение и производство Наноэлектромеханические системы Функциональные наноматериалы для энергетики
Наноматериалы Нанооптика Нанооптика Охрана окружающей среды и энергетика Наноэлектроника Функциональные наноматериалы для космической техники
Квантовые вычисления Наномагнетизм Нанофотоника Наноматериалы Выращивание, самосборка и производство наноструктур Нанобиотехнологии
Самосборка Нанотоксикология Производство нанопродукции Конструкционные наноматериалы
Инструменты Наноматериалы Композитные наноматериалы
Прочее Наномедицина Нанотехнологии для систем безопасности
Нанометрология
Нанофотоника
Нанодиагностика
Нанотоксикология, здоровье и безопасность
Прочее

Жирным шрифтом выделены направления, названия которых совпадают во всех рассматриваемых примерах, курсивом – направления, близкие по содержанию.

Работа ISO по формированию терминологии и стандартов в сфере нанотехнологий сосредоточена на определении базовых понятий, установлении критериев различения технологических и производственных нанопроцессов, выявлении подходов и требований к измерению, построению классификации наноматериалов, устройств и других «нанотехнологических» приложений. (См. материалы выступления К. Уиллиса на секции «Форсайт, дорожные карты и индикаторы в области нанотехнологий и наноиндустрии» Первого международного форума по нанотехнологиям (2008 г.) Обзор материалов секции представлен в , рабочий план ISO в .)

Статистические службы Канады и Австралии решают задачи сбора данных о состоянии сферы науки и технологий в своих странах, включая развитие системы индикаторов для охвата соответствующих возникающих областей знания. Наконец, патентные службы с помощью классификационных группировок осуществляют регистрацию новых и маркировку уже зарегистрированных объектов интеллектуальной собственности, имеющих отношение к нанотехнологиям. Каждая из перечисленных задач требует специальных усилий по кодификации и классификации часто очень разных процессов и объектов, связанных с нанотехнологической волной.

Независимо от целей деятельности организаций, работающих в области стандартизации, классификации и статистики, объектом их внимания являются направления применения либо использования нанотехнологий, среди которых можно выделить ряд общих позиций. Так, ISO предусматривает на верхнем уровне семь направлений, тогда как в классификациях статистических служб Канады и Австралии их, соответственно, девять и четырнадцать. Варианты, предложенные EPO и Центром исследований нанотехнологий Японии (NRNC), – причем последний стал базовым для отбора патентных классов, связанных с нанотехнологиями, в Международной патентной классификации, - включают по шесть направлений. В России ключевым документом, охватывающим собирательную группировку тематических направлений деятельности в сфере нанотехнологий, является ФЦП «Развитие инфраструктуры наноиндустрии в Российской Федерации на 2008–2010 годы». Она предусматривает девять позиций, пять из которых можно объединить в категорию наноматериалов, представленную в том или ином виде в каждом из рассматриваемых примеров. Кажущееся исключение составляет вариант ISO, однако при более детальном знакомстве с рабочими документами организации выясняется, что наноматериалы выделены в них в качестве самостоятельного подраздела, который является сквозным для всей классификации. К числу обязательных для всех рассматриваемых подходов направлений относятся также наноэлектроника, нанофотоника (в ряде случаев она связана с нанооптикой), нанобиотехнологии и наномедицина. Отдельно рассматриваются технологические процессы и инструменты, ориентированные на создание, измерение, стандартизацию и производство в сфере нанотехнологий. В некоторых случаях в качестве самостоятельных групп представлены нанотехнологии выращивания и самосборки наноматериалов и наноструктур, методы диагностики и манипулирования нанообъектами, обеспечения безопасности здоровья и окружающей среды.

Для построения проекта российской классификации направлений нанотехнологий (КНН) нами была предпринята попытка обобщить указанные подходы и сформировать систему, открытую для дальнейшего расширения и детализации. Назначением такой классификации является, прежде всего, решение задач в области учета, анализа и стандартизации научной, научно-технической, инновационной и производственной деятельности в сфере нанотехнологий. Классификация может быть также использована для отбора и экспертизы проектов, оценки деятельности в области защиты прав интеллектуальной собственности, проведения статистических исследований, унификации научно-технической или иной информации в этой области. Все это должно обеспечить структурированное описание нанотехнологий как научно-технологической и экономической сферы, способствовать выработке приоритетов, формированию и реализации политики, основанной на фактах.

В результате работы были выделены семь основных направлений нанотехнологий: наноматериалы, наноэлектроника, нанофотоника, нанобиотехнологии, наномедицина, наноинструменты (нанодиагностика), технологии и специальное оборудование для создания и производства наноматериалов и наноустройств. Для каждого из выделенных направлений были сформулированы соответствующие определения и предложено первичное наполнение (как правило, от трех до пяти групп технологий). Для уточнения наименований классификационных позиций и определений широко использовались материалы административных источников, базы данных научных публикаций и патентов и т.п. Комбинация материалов позволила получить разнообразную информацию о возможных подходах к выявлению направлений применения нанотехнологий и предложить проект их классификации. Кроме того, для оценки полноты и адекватности разработанного перечня направлений, уточнения их наименований, определений и последовательности, проверки корректности формулировок была сформирована группа, включавшая более пятидесяти экспертов из различных областей науки и производства. Проводились и дополнительные обсуждения с участниками рабочей группы Научно-координационного совета ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2007–2012 годы» по направлению «Индустрия наносистем и материалов», ведущими специалистами РАН, Российского фонда фундаментальных исследований, Московского государственного университета имени М.В. Ломоносова, Российского научного центра «Курчатовский институт», членами редколлегии журнала «Российские нанотехнологии» и др. Формирование проекта классификации осуществлялось в тесном сотрудничестве с Росстатом и Департаментом научно-технической экспертизы ГК «Роснанотех». В процессе работы и по ее итогам прошли обсуждения в Минобрнауки России.

Таблица 4. Общая структура классификации направлений нанотехнологий (КНН)

Проект классификации направлений имеет двухуровневую иерархическую структуру с использованием последовательного метода кодирования (табл. 4).
Используемый при этом буквенно-цифровой код имеет следующую формулу:
Т + XX + XX,
где: Т – индекс латинского алфавита, указывающий на принадлежность кода к классификации КНН; X – символ, обозначающий разряды цифровой части кода.

На первом уровне классификационного деления (Т.ХХ) представлены основные научно-технологические направления, на втором (Т.ХХ.ХХ) – группы технологий.

В справочных целях в КНН также приводятся дополнительные группировки. Они представлены на более низких уровнях для уточнения состава групп технологий и увязки с продуктами (услугами), производимыми на их основе. Их нумерация ведется сплошным списком.

Т.01. Наноматериалы (в том числе наноструктуры) – научно-исследовательское направление, связанное с изучением и разработкой объемных материалов пленок и волокон, макроскопические свойства которых определяются химическим составом, строением, размерами и/или взаимным расположением наноразмерных структур.

Объемные наноструктурированные материалы могут быть упорядочены в рамках направления по типу (наночастицы, нанопленки, нанопокрытия, гранулированные наноразмерные материалы и др.) и по составу (металлические, полупроводниковые, органические, углеродные, керамические и др.). Сюда входят также наноструктуры и материалы, выделяемые по общефункциональному признаку, например детекторные и сенсорные наноматериалы.

В данное направление не включаются наноматериалы, имеющие узкое функциональное назначение. Так, наноматериалы, полученные с использованием биотехнологий, относятся к направлению нанобиотехнологий, а полупроводниковые наногетероструктуры (квантовые точки) – к направлению наноэлектроники.

Т.02. Наноэлектроника – область электроники, связанная с разработкой архитектур и технологий производства функциональных устройств электроники с топологическими размерами, не превышающими 100 нм (в том числе интегральных схем), и приборов на основе таких устройств, а также с изучением физических основ функционирования указанных устройств и приборов.

Данное направление охватывает физические принципы и объекты наноэлектроники, базовые элементы вычислительных систем, объекты для квантовых вычислений и телекоммуникаций, а также устройства сверхплотной записи информации, наноэлектронные источники и детекторы. В его состав не входят наночастицы и наноструктурированные материалы общего или многоцелевого назначения. В частности, металлические наноструктурированные материалы относятся к направлению наноматериалов.

Т.03. Нанофотоника – область фотоники, связанная с разработкой архитектур и технологий производства наноструктурированных устройств генерации, усиления, модуляции, передачи и детектирования электромагнитного излучения и приборов на основе таких устройств, а также с изучением физических явлений, определяющих функционирование наноструктурированных устройств и протекающих при взаимодействии фотонов с наноразмерными объектами.

К этому направлению относятся физические основы генерации и поглощения излучения в различных диапазонах, полупроводниковые источники и детекторы электромагнитного излучения, наноструктурированные оптические волокна и устройства на их основе, светодиоды, твердотельные и органические лазеры, элементы фотоники и коротковолновой нелинейной оптики.

Т.04. Нанобиотехнологии – целенаправленное использование биологических макромолекул и органелл для конструирования наноматериалов и наноустройств.

Нанобиотехнологии охватывают изучение воздействия наноструктур и материалов на биологические процессы и объекты с целью контроля и управления их биологическими или биохимическими свойствами, а также создание с их помощью новых объектов и устройств с заданными биологическими или биохимическими свойствами.

Нанобиотехнологии представляют собой узкую синтетическую область, объединяющую биоэлектромеханические машины, нанобиоматериалы и наноматериалы, полученные с использованием биотехнологий. Данное направление включает еще и такие области, как нанобиоэлектроника и нанобиофотоника.

Т.05. Наномедицина – практическое применение нанотехнологий в медицинских целях, включая научные исследования и разработки в области диагностики, контроля, адресной доставки лекарств, а также действия по восстановлению и реконструкции биологических систем человеческого организма с использованием наноструктур и наноустройств.

К этому направлению относятся медицинские методы диагностики (включая методы интроскопических исследований/визуализации и молекулярно-биологические методы исследований с применением наноматериалов и наноструктур), нанотехнологии терапевтического и хирургического назначения (методы клеточной и генной терапии с использованием наноматериалов, применение лазеров в микро- и нанохирургии, медицинские нанороботы и др.), тканевая инженерия и регенеративная медицина, нанотехнологии в фармакологии, фармацевтике и токсикологии.

Т.06. Методы и инструменты исследования и сертификации наноматериалов и наноустройств – устройства и приборы, предназначенные для манипулирования наноразмерными объектами, измерения, контроля свойств и стандартизации производимых и используемых наноматериалов и наноустройств.

Это направление, иногда именуемое как «наноинструменты», охватывает инфраструктуру для сферы нанотехнологий в части аналитического, измерительного и иного оборудования; методы диагностики, исследования и сертифицирования свойств наноструктур и наноматериалов, в том числе контроль и тестирование их биосовместимости и безопасности. Отдельную группу в рамках данного направления образуют компьютерное моделирование и прогнозирование свойств наноматериалов.

Т.07. Технологии и специальное оборудование для опытного и промышленного производства наноматериалов и наноустройств – область техники, связанная с разработкой технологий и специального оборудования для производства наноматериалов и наноустройств.

Данное направление включает методы производства наноструктур и материалов (в том числе методы нанесения и формирования наноструктур и наноматериалов) и приборостроение для наноиндустрии. Сюда не включается оборудование, являющееся частью исследовательской инфраструктуры, а также произведенные наноматериалы и наноструктуры, являющиеся одним из продуктов производства.

Т.09. Прочие направления охватывают научно-технологические направления и процессы, связанные с нанотехнологиями и не включенные в другие группировки. В их числе – общие вопросы безопасности наноматериалов и наноустройств (при этом методы контроля и тестирования безопасности наноматериалов отнесены к направлению Т.06), наноэлектромеханические системы, трибология и износостойкость наноструктурированных материалов и др.

В заключение следует подчеркнуть, что предложенные общее определение нанотехнологий и проект классификации направлений нанотехнологий призваны дать ответ на ключевые вызовы, обозначив границы и внутреннюю структуру этой слабо структурированной междисциплинарной области, обладающей высокой динамикой развития и неочевидными социально-экономическими последствиями. Определение фокусируется на отличительных особенностях нанотехнологий как научно-исследовательской, технологической и производственной сферы. Классификация, описывающая семь основных направлений нанотехнологий, сформирована на базе опыта ведущих международных организаций в области стандартизации и статистики и может служить инструментом для описания сферы нанотехнологий, формирования государственных информационных ресурсов и получения достоверной статистической информации о состоянии и развитии научных исследований и разработок в сфере нанотехнологий.

Литература
1. Игами М., Оказаки Т. Современное состояние сферы нанотехнологий: анализ патентов // Форсайт. 2008. № 3 (7). С. 32–43.
2. PCAST. The national nanotechnology initiative at five years: Assessment and recommendations of the National Nanotechnology Advisory Board. PCAST. 2005.
3. Roco M.C. National nanotechnology initiative: Past, present and future / Handbook on nanoscience, engineering and technology. Ed. Goddard, W.A et al. CRC, Taylor and Francis, Boca Raton and London, 2007. P. 3.1–3.26.
4. Хульман А. Экономическое развитие нанотехнологий: обзор индикаторов // Форсайт. 2009. № 1 (9). С. 31–32.
5. Kamei S. Promoting Japanese style nanotechnology enterprises. Mitsubishi Research Institute, 2002.
6. Lux Research. The Nanotech Report. Lux Research Inc. 2006.
7. Lipsey R., Carlaw K., Bekar C. Economic Transformations: General Purpose Technologies and Long-Term Economic Growth. Oxford University Press, 2005. P. 87, 110, 131, 212–218.
8. Youtie J., Iacopetta M., Graham S. Assessing the nature of nanotechnology: can we uncover an emerging general purpose technology? // Journal of Technology Transfer. 2008. Vol. 33. P. 315–329.
9. Тодуа П.А. Метрология в нанотехнологии // Российские нанотехнологии. 2007. Т. 2, № 1–2. P. 61–69.
10. RAS/ RAE. Nanoscience and nanotechnologies: opportunities and uncertainties. The Royal Society and The Royal Academy of Engineering. 2004.
11. Ратнер М., Ратнер Д. Нанотехнология: простое объяснение очередной гениальной идеи. / Пер. с англ. – М.: Вильямс, 2004. С. 20–22.
12. Игами М. Библиометрические индикаторы: исследования в области нанонауки // Форсайт. 2008. № 2 (6). С. 36–45.
13. Kearnes M. Chaos and Control: Nanotechnology and the Politics of Emergence // Paragraph. 2006. № 29. P. 57–80.
14. Huang C., Notten A., Rasters N. Nanoscience and technology publications and patents: A review of social sciences and strategies. Working Paper Series 2008-058. MERIT, 2008.
15. Miyazaki K., Islam N. Nanotechnology systems of innovation - An analysis of industry and academia r esearch activities // Technovation. 2007. № 27. P. 661–675.
16. OECD. Working Party on Nanotechnology. Nanotechnology at a glance: Part I «Market for ecasts, R&D, patents and innovations» . Project A «Indicators and statistics». OECD. Paris. 2009.
17. Форсайт, дорожные карты и индикаторы в области наноиндустрии // Форсайт. 2009. № 1(9). С. 69–77.
18. ISO. Business plan ISO/TC 229. Nanotechnologies. Draft. 23.04.2007.