Группа планеты марс. Что общего у Марса и Земли? Откуда красный цвет

Краткая справка

Четвертая от Солнца планета, названная в честь бога войны Марса. Марс находится в 1,5 раза дальше от Солнца, чем Земля. Один оборот вокруг Солнца Марс совершает за 687 земных суток. Среднегодовая температура планеты –60°С, а максимальная температура не превышает нескольких градусов выше нуля. Марс имеет два естественных спутника - Фобос и Деймос.


Когда наблюдать Марс?

Наилучшее время для наблюдений Марса - это его противостояния, когда планета оказывается на минимальном расстоянии от Земли. Противостояния Марса повторяются с интервалом в 2 года и 50 дней. В эти дни видимый угловой размер планеты составляет 13""–14"", а звездная величина - примерно –1,3. Ближайшие противостояния Марса произойдут 22 мая 2016 года и 26 июля 2018-го.

Однако настоящий праздник для наблюдателя наступает раз в 15–17 лет, во время так называемого великого противостояния, когда видимый размер планеты достигает 25"". К сожалению, следующего великого противостояния Марса придется ждать достаточно долго, так как произойдет оно только в 2018 году.

Сравнительный размер Марса в период великого противостояния, противостояния и наименьшего видимого размера (соединения с Солнцем).

Марс имеет более вытянутую орбиту, чем Земля. Как видно на рисунке ниже, великие противостояния приходятся на то время, когда Марс проходит свой перигелий, а самые неблагоприятные с точки зрения наблюдений - когда планета находится возле афелия.

Смена сезонов на Марсе

Как и на Земле, на Марсе происходит смена сезонов, и благодаря схожему с нашей планетой наклону экватора к орбите сезоны на Марсе меняются почти так же, как на Земле.


Как и на Земле, на Марсе с наступлением лета в северном полушарии наступает зима в южном, и наоборот. Лето северного полушария продолжительное и холодное, а зима короткая и теплая. В южном полушарии наоборот: лето короткое и теплое, а зима долгая и морозная. Лето в южном полушарии совпадает с прохождением планеты через перигелий, а в северном - через афелий.

Необходимое оборудование

При благоприятных условиях крошечный диск Марса можно заметить уже в 60-миллиметровый телескоп, однако говорить о каких-либо деталях на поверхности планеты при наблюдении в такой инструмент не приходится. Пожалуй, минимальным телескопом, который понадобится для наблюдения Марса, можно считать 150-мм рефлектор или 100-мм рефрактор, а наиболее оптимальным с точки зрения цены, веса, габарита и возможностей - 250–300-миллиметровый рефлектор системы Ньютона.


Большие любительские телескопы (от 350 мм) сильно подвержены влиянию атмосферных потоков и имеют немалое время термостабилизации, поэтому, как правило, их не рекомендуют для планетных наблюдений. Тем не менее, не стоит сбрасывать со счетов и эти гиганты. В редкие моменты, когда удается поймать спокойную атмосферу, хорошо остывший телескоп способен показать поразительное количество деталей на поверхности Красной планеты. Плюс ко всему большие телескопы более явно показывают оттенки цветов на поверхности планеты.

Крайне желательно, чтобы ваш телескоп был снабжен устойчивой монтировкой с часовым механизмом, способным длительное время удерживать планету в поле зрения окуляра.


При наблюдении Марса трудно переоценить важность применения цветных фильтров , которые помогают более детально рассмотреть элементы поверхности, а также увидеть атмосферные явления, которые могут остаться незамеченными без фильтра.

Если вы решили серьезно заняться наблюдениями Марса, то ваша коллекция должна включать следующие цветные фильтры:

Красный - заметно улучшает контраст между темными областями (морями) и светлыми (сушей). Лучше всего эффект от фильтра заметен при спокойной атмосфере и небольшом увеличении.

Желтый и оранжевый - одни из самых полезных, если не самые полезные фильтры для наблюдений Марса. Подчеркивают красные области планеты и выделяют мелкие детали в них. Хорошо работают на темных зонах, а также делают изображение более устойчивым.

Зеленый - применяется при наблюдениях темных зон вокруг полярных шапок, хорошо выделяет пылевые бури, имеющие желтый оттенок. Также фильтр будет полезен при выделении белых зон на красной поверхности.


Синий - подчеркивает участки поверхности, имеющие фиолетовый оттенок. Весьма полезен для обнаружения водяных облаков в верхних слоях атмосферы.


Фиолетовый - выделяет облака и туманы, образующиеся при таянии полярных шапок.


Наблюдения Марса

Что можно увидеть на Марсе в телескоп

Марс - очень интересная, но в то же время сложная для наблюдений планета. Как правило, большую часть времени он представляет собой небольшую «горошину» без каких-либо явных деталей на поверхности. Безусловно, начинающий наблюдатель, направив на Марс свой небольшой телескоп, остается разочарованным, так как ему не удается увидеть легендарные полярные шапки и материки.

Несколько лучше обстоят дела во время противостояний (особенно великих), когда хороший 100-мм рефрактор позволяет проследить за таянием полярных шапок, а также разглядеть на поверхности планеты темные очертания материков. В 150 миллиметров становятся заметны серо-зеленые области на диске Марса, которые еще в прошлом веке астрономы принимали за растительность. Теперь же мы знаем, что это всего-навсего скалы и пыль, таким причудливым образом отражающие свет.


Но всё же стоит помнить, что наблюдения Марса по-настоящему интересны только в средние и большие любительские телескопы, которые при благоприятных условиях позволяют разглядеть все основные детали поверхности планеты, а также наблюдать удивительные изменения в его внешнем облике, вызванные сменами сезонов и погоды.

Общие советы по наблюдению Марса

Как правило, рекомендуемый период для наблюдения Марса начинается за 40 дней до противостояния и заканчивается 40 днями после. Такая рекомендация не лишена смысла. Именно в эти дни угловой размер планеты максимальный. Однако владельцы телескопов с объективом от 250 мм и выше могут вполне успешно начинать наблюдения за 3–4 месяца до противостояния и ещё 3–4 месяца после его окончания. Таким образом, общая продолжительность наблюдения планеты составит более 6 месяцев. За этот срок можно проследить за весьма любопытными изменениями - таянием полярных шапок и метеорологическими явлениями.

Различать детали на диске планеты существенно помогает систематическое зарисовывание ее вида в телескоп. Это объясняется более детальным и вдумчивым рассматриванием планеты, поскольку выполнение эскиза подразумевает максимально точную передачу видимого в окуляре. Но даже схематические наброски полезны. Они тоже стимулируют наблюдателя и помогают позже, уже в комфортных домашних условиях идентифицировать увиденное.


Как только вы начнете наблюдать Марс регулярно, вы поймете, что детали его поверхности едва уловимы, и поэтому особенно важно очень точно сфокусировать телескоп. С Марсом эта, казалось бы, простая задача превращается в настоящее испытание. Запомните простое правило - лучше всего фокусировать телескоп по полярной шапке как наиболее контрастному объекту.

Не рассчитывайте немедленно увидеть Марс во всех деталях. Приступая к наблюдениям, расслабьтесь, дышите равномерно. Дайте своему зрению несколько минут на распознавание увиденного. Первое, что бросится вам в глаза - полярная шапка. Она достаточно легко угадывается, так как контрастирует с окружающим фоном - бело-голубая на относительно равномерном оранжевом диске. Через некоторое время начнут проступать моря, как тусклые серо-зеленые пятна. Старайтесь не пропускать наблюдения и при каждом удобном случае смотрите на Марс. С опытом вы откроете для себя много удивительного на поверхности Красной планеты.

Распознать все основные образования, доступные любительским телескопам, поможет специально подготовленная карта Марса.



Обратите внимание, что для полного оборота вокруг своей оси Марсу требуется на 37 минут больше, чем Земле. Поэтому если вы вновь взглянете на планету в то же самое время спустя сутки, то увиденные вами вчера особенности поверхности появятся на 37 минут позже, чем накануне. Ежедневные наблюдения Марса в фиксированное время позволяют в течение 5–6 недель проследить за полным осевым вращением планеты.

Что наблюдать на Марсе

Полярные шапки

Самые заметные детали марсианской поверхности - это полярные шапки. Их наблюдение по силам каждому астроному-любителю.

Вместе со сменой сезонов происходят изменения и во внешнем виде полярных шапок. Так, с наступлением весенне-летнего периода в соответствующем полушарии происходит таяние шапки. Ее границы медленно отступают к полюсу. Задача наблюдателя - проследить за этим процессом.

Южная полярная шапка довольно велика и видна в скромные любительские телескопы во время противостояний, когда Марс находится в перигелии. За теплое время года южная шапка существенно меняет форму и размер. В период марсианской весны можно заметить, как шапка раскалывается надвое. Это вызвано более медленным таянием снегов на вершине гор Митчелла.

У южной границы шапки нередко можно заметить трещины и прогалины.


Рисунки английского астронома Патрика Мура демонстрируют сезонное уменьшение северной полярной шапки Марса. Слева направо, сверху вниз: 19 ноября 1960 г., 25 декабря 1960 г., 11 января 1961 г., 6 февраля 1961 г.

Северная полярная шапка не подвергается столь резким сезонным изменениям, как южная. Даже в период лета она не исчезает полностью. Предсказать поведение северной шапки заранее невозможно, и это делает ее наблюдения интригующими.

При приближении осени в северном полушарии часто наблюдается появление тумана, который зарождается над полярным районом. Интересно, что с появлением тумана северная шапка зачастую прекращает свое таяние на некоторое время и начинает увеличиваться в размере. Внезапное появление тумана наблюдается и в конце весны.

Марсианские моря и сезонные изменения

Изменения во внешнем виде, связанные со сменой сезонов на Марсе, претерпевают не только полярные шапки, но и темные участки поверхности, которые традиционно называются морями. Как правило, изменения проявляются в потемнении участков поверхности. Начальная фаза этого явления приходится на середину марсианской весны, а длится оно почти до полного исчезновения полярной шапки. Потемнение распространяется от полярной области до экватора и более заметно в периоды тех противостояний, которые приходятся на прохождение планетой перигелия.

Серо-зеленые моря не только темнеют в период весны-лета, но и увеличиваются или уменьшаются в размерах, а также меняют свою форму. Конечно, чтобы зафиксировать такие изменения, вы должны хорошенько выучить марсианскую топографию.

Наиболее подвержены сезонным изменениям следующие участки Марса: Пролив Пандоры (Pandorae Fretum), Большой Сирт (Syrtis Major), Озеро Солнца (Solis Lacus), Жемчужный Залив (Margaritifer Sinus).

Атмосферные явления

С сезонными изменениями на Марсе предположительно связано появление сине-белых и белых облаков , а также белых туманов. Они появляются марсианской весной и исчезают осенью. Вероятно, непосредственное влияние на образование облаков оказывает таяние полярных шапок.

Чтобы отличить облака и туман от других деталей поверхности, нужно отлично разбираться в картографии Марса. Поэтому такого рода наблюдения рекомендуется проводить, имея солидный опыт в созерцании Красной планеты и знание ее внешнего вида. Облака можно зафиксировать по изменению очертаний морей (когда облака проходят над ними) и как светлые пятна над материками.

Существенную помощь в выделении облаков и туманов могут оказать цветные фильтры, которые подчеркнут их форму и увеличат контраст. Для выделения облаков рекомендуется иметь следующие фильтры: №58 (зеленый), №80А, №38 и №38А (голубой).

Облака и туманы могут продержаться над марсианской поверхностью в течение нескольких часов и даже целого дня.

Желтые облака и пылевые бури - еще один вид атмосферных явлений, наблюдение которых возможно с помощью любительских телескопов. Как правило, желтые облака и пылевые бури появляются на Марсе во время прохождения перигелия, когда в южном полушарии происходит летнее солнцестояние.

Их появление вызвано нагревом поверхности Марса солнечными лучами, что приводит к образованию сильных ветров в его атмосфере. Желтые облака и пылевые бури могут зарождаться внезапно и быстро распространяться. Нередки случаи, когда пылевые бури распространяются по всему полушарию и скрывают под собой очертания материков и морей.

Наблюдение Фобоса и Деймоса

Немногие любители астрономии могут похвастаться, что визуально наблюдали спутники Марса. В отличие от четырех самых ярких лун Юпитера, Фобос и Деймос - едва уловимые призраки. Однако воспользовавшись нехитрыми приемами, можно попробовать рассмотреть спутники Марса в скромные любительские телескопы.

Во-первых, наблюдения Фобоса и Деймоса следует проводить в периоды, близкие к противостоянию Марса, и особенно великого. Это логично: чем ближе Марс к Земле, тем ближе и его спутники, а значит, они ярче и их проще разглядеть. В такие дни Фобос и Деймос имеют блеск около 11-й и 12-й звездной величины соответственно. Считается, что объекты с такой яркостью можно без труда увидеть в 4–5-дюймовый телескоп. Однако не всё так просто. Разглядеть две маленькие «звездочки» мешает яркий свет планеты. Кроме того, более яркий Фобос разглядеть труднее, поскольку его орбита располагается ближе к Марсу, чем у Деймоса.


Опытный наблюдатель галактик и двойных звезд знает, что разглядеть тусклый объект, расположенный неподалеку от яркой звезды, гораздо проще, если вывести яркую помеху за пределы поля зрения. Таким же образом следует поступить и при поиске Фобоса и Деймоса.

Для этого воспользуйтесь окуляром с узким полем зрения. Лучше всего для этой цели подойдет ортоскопический окуляр. Затем заранее определите время, когда спутники будут на максимальном удалении от планеты (в восточной или западной элонгации). Такую информацию можно получить с помощью программ, например Guide 9.0 и SkyTools 3.

В нужный час направьте телескоп на Марс и аккуратно выведите его из поля зрения, так чтобы его яркий свет не мешал наблюдению интересующего нас спутника. После того как вам удастся разглядеть Фобос и/или Деймос, попробуйте вернуть планету в поле зрения. Не исключено, что теперь вы сможете увидеть планету и ее спутники без дополнительных ухищрений.

Дополнительная информация

Роман является основателем и шеф-редактором сайта ,
где он пишет о практической любительской астрономии, дает советы новичкам
на и ведет .
Так же, Роман основал компанию R-Sky по производству оборудования необходимого для каждого любителя астрономии.

2 пользователям понравилось это

Состав атмосферы 95,72 % Угл. газ
0,01 % Окись азота

Марс - четвёртая по удалённости от Солнца и седьмая по размерам планета Солнечной системы . Эта планета названа в честь Марса - древнеримского бога войны, соответствующего древнегреческому Аресу. Иногда Марс называют «Красная планета» из-за красноватого оттенка поверхности, придаваемого ей оксидом железа(III) .

Основные сведения

Из-за низкого давления вода не может существовать в жидком состоянии на поверхности Марса, но вполне вероятно, что в прошлом условия были иными, и поэтому наличие примитивной жизни на планете исключать нельзя. 31 июля 2008 года вода в состоянии льда была обнаружена на Марсе космическим аппаратом НАСА «Феникс » (англ. «Phoenix» ) .

В настоящее время (февраль 2009 г.) орбитальная исследовательская группировка на орбите Марса насчитывает три функционирующих космических аппарата : «Mars Odyssey », «Mars Express » и «Mars Reconnaissance Orbiter », и это больше, чем около любой другой планеты, кроме Земли. Поверхность Марса в настоящий момент исследуют два марсохода : Spirit и Opportunity . На поверхности Марса находятся также несколько неактивных посадочных модулей и марсоходов, завершивших свои миссии. Геологические данные, собранные всеми этими миссиями, позволяют предположить, что немалую часть поверхности Марса ранее покрывала вода. Наблюдения в течение последнего десятилетия позволили обнаружить в некоторых местах на поверхности Марса слабую гейзерную активность . По наблюдениям с космического аппарата НАСА «Mars Global Surveyor » , некоторые части южной полярной шапки Марса постепенно отступают .

У Марса есть два естественных спутника, Фобос и Деймос (в переводе с древнегреческого - «страх» и «ужас» - имена двух сыновей Ареса, сопровождавших его в бою), которые относительно малы и имеют неправильную форму. Они могут быть захваченными гравитационным полем Марса астероидами, подобными астероиду 5261 Эврика из Троянской группы .

Марс можно увидеть с Земли невооружённым глазом. Его видимая звёздная величина достигает −2,91 m (при максимальном сближении с Землёй), уступая по яркости лишь Юпитеру , Венере , Луне и Солнцу .

Орбитальные характеристики

Минимальное расстояние от Марса до Земли составляет 55,75 млн. км, максимальное - около 401 млн. км. Среднее расстояние от Марса до Солнца составляет 228 млн . км (1,52 а. е.), период обращения вокруг Солнца равен 687 земным суткам . Орбита Марса имеет довольно заметный эксцентриситет (0,0934), поэтому расстояние до Солнца меняется от 206,6 до 249,2 млн. км. Наклонение орбиты Марса равно 1,85°.

Атмосфера состоит на 95 % из углекислого газа; также в ней содержится 2,7 % азота , 1,6 % аргона , 0,13 % кислорода , 0,1 % водяного пара, 0,07 % угарного газа . Марсианская ионосфера простирается в пределах от 110 до 130 км над поверхностью планеты.

По результатам наблюдений с Земли и данных космического аппарата «Марс Экспресс» в атмосфере Марса обнаружен метан . В условиях Марса этот газ довольно быстро разлагается, поэтому должен существовать постоянный источник его пополнения. Таким источником может быть либо геологическая активность (но действующие вулканы на Марсе не обнаружены), либо жизнедеятельность бактерий .

Климат, как и на Земле, носит сезонный характер. В холодное время года даже вне полярных шапок на поверхности может образовываться светлый иней. Аппарат Phoenix зафиксировал снегопад, однако снежинки испарялись, не достигая поверхности .

По данным исследователей из Центра имени Карла Сагана, в настоящее время на Марсе идёт процесс потепления. Другие специалисты считают, что такие выводы делать пока рано .

Поверхность

Описание основных регионов

Топографическая карта Марса

Две трети поверхности Марса занимают светлые области, получившие название материков, около трети - тёмные участки, называемые морями. Моря сосредоточены в основном в южном полушарии планеты, между 10 и 40° широты . В северном полушарии только два крупных моря - Ацидалийское и Большой Сырт.

Характер тёмных участков до сих пор остаётся предметом споров. Они сохраняются, несмотря на то, что на Марсе бушуют пылевые бури . Это в своё время служило доводом в пользу того, что тёмные участки покрыты растительностью. Сейчас полагают, что это просто участки, с которых, в силу их рельефа, легко выдувается пыль. Крупномасштабные снимки показывают, что на самом деле тёмные участки состоят из групп тёмных полос и пятен, связанных с кратерами, холмами и другими препятствиями на пути ветров. Сезонные и долговременные изменения их размера и формы связаны, по-видимому, с изменением соотношения участков поверхности, покрытых светлым и тёмным веществом.

Полушария Марса довольно сильно различаются по характеру поверхности. В южном полушарии поверхность находится на 1-2 км над средним уровнем и густо усеяна кратерами . Эта часть Марса напоминает лунные материки. На севере поверхность в основном находится ниже среднего уровня, здесь мало кратеров, и основную часть занимают относительно гладкие равнины, вероятно, образовавшиеся в результате затопления лавой и эрозии . Такое различие полушарий остаётся предметом дискуссий. Граница между полушариями следует примерно по большому кругу, наклонённому на 30° к экватору. Граница широкая и неправильная и образует склон в направлении на север. Вдоль неё встречаются самые эродированные участки марсианской поверхности.

Выдвинуто две альтернативных гипотезы, объясняющих асимметрию полушарий. Согласно одной из них, на раннем геологическом этапе литосферные плиты «съехались» (возможно случайно) в одно полушарие (подобно континенту Пангея на Земле) и затем «застыли» в этом положении. Другая гипотеза предполагает столкновение Марса с космическим телом размером с Плутон .

Большое количество кратеров в южном полушарии предполагает, что поверхность здесь древняя - 3-4 млрд . лет. Можно выделить несколько типов кратеров: большие кратеры с плоским дном, более мелкие и молодые чашеобразные кратеры, похожие на лунные, кратеры, окружённые валом, и возвышенные кратеры. Последние два типа уникальны для Марса - кратеры с валом образовались там, где по поверхности текли жидкие выбросы, а возвышенные кратеры образовались там, где покрывало выбросов кратера защитило поверхность от ветровой эрозии. Самой крупной деталью ударного происхождения является бассейн Эллада (примерно 2100 км в поперечнике).

В области хаотического ландшафта вблизи границы полушарий поверхность испытала разломы и сжатия больших участков, за которыми иногда следовала эрозия (вследствие оползней или катастрофического высвобождения подземных вод), а также затопление жидкой лавой. Хаотические ландшафты часто находятся у истока больших каналов, прорезанных водой. Наиболее приемлемой гипотезой их совместного образования является внезапное таяние подповерхностного льда.

В северном полушарии помимо обширных вулканических равнин находятся две области крупных вулканов - Тарсис и Элизий. Тарсис - обширная вулканическая равнина протяжённостью 2000 км, достигающая высоты 10 км над средним уровнем. На ней находятся три крупных щитовых вулкана - Арсия , Павонис (Павлин) и Аскреус . На краю Тарсиса находится высочайшая на Марсе и в Солнечной системе гора Олимп . Олимп достигает 27 км высоты, и охватывает площадь 550 км диаметром, окружённую обрывами, местами достигающими 7 км высоты. Объём Олимпа в 10 раз превышает объём крупнейшего вулкана Земли Мауна-Кеа . Здесь же расположено несколько менее крупных вулканов. Элизий - возвышенность до шести километров над средним уровнем, с тремя вулканами - Геката, Элизий и Альбор.

Русла «рек» и другие особенности

В месте посадки аппарата в грунте имеется также значительное количество водяного льда .

Геология и внутреннее строение

В отличие от Земли, на Марсе нет движения литосферных плит . В результате вулканы могут существовать гораздо более длительное время и достигать гигантских размеров.

Фобос (сверху) и Деймос (снизу)

Современные модели внутреннего строения Марса предполагают, что Марс состоит из коры со средней толщиной 50 км (и максимальной до 130 км), силикатной мантии толщиной 1800 км и ядра радиусом 1480 км. Плотность в центре планеты должна достигать 8,5 /см ³. Ядро частично жидкое и состоит в основном из железа с примесью 14-17 % (по массе) серы, причём содержание лёгких элементов вдвое выше, чем в ядре Земли.

Спутники Марса

Естественными спутниками Марса являются Фобос и Деймос . Оба они открыты американским астрономом Асафом Холлом в 1877 году . Фобос и Деймос имеют неправильную форму и очень маленькие размеры. По одной из гипотез, они могут представлять собой захваченные гравитационным полем Марса астероиды наподобие 5261 Эврика из Троянской группы астероидов .

Астрономия на Марсе

Данный раздел является переводом англоязычной статьи Википедии

После посадок автоматических аппаратов на поверхность Марса появилась возможность вести астрономические наблюдения непосредственно с поверхности планеты. Вследствие астрономического положения Марса в Солнечной системе , характеристик атмосферы , периода обращения Марса и его спутников , картина ночного неба Марса (и астрономических явлений, наблюдаемых с планеты), отличается от земной и во многом представляется необычной и интересной.

Полдень на Марсе. Снимок аппарата Pathfinder

Закат на Марсе. Снимок аппарата Pathfinder

Цвет неба на Марсе Земля и Луна Спутники - Фобос и Деймос

На поверхности планеты работают два марсохода :

Планируемые миссии

В культуре

Книги
  • А. Богданов «Красная звезда »
  • А.Казанцев «Фаэты »
  • А.Шалимов «Цена бессмертия»
  • В.Михайлов «Особая необходимость»
  • В.Шитик «Последняя орбита»
  • Б.Ляпунов «Мы - на Марсе»
  • Г.Мартынов «Звёздоплаватели» трилогия
  • Г.Уэллс «Война миров », одноимённый кинофильм в двух экранизациях
  • Симмонс, Дэн «Гиперион », тетралогия
  • Станислав Лем «Ананке»
Фильмы
  • «Путешествие на Марс» США, 1903 г.
  • «Путешествие на Марс» США, 1910 г.
  • «Небесный корабль» Дания, 1917 г.
  • «Путешествие на Марс» Дания, 1920 г.
  • «Путешествие на Марс» Италия, 1920 г.
  • «Корабль, отправленный к Марсу» США, 1921 г.
  • «Аэлита » режиссёр Яков Протазанов, СССР, 1924 г.
  • «Путешествие на Марс» США, 1924 г.
  • «До Марса» США, 1930 г.
  • «Флэш Гордон: Марс атакует Землю» США, 1938 г.
  • «Путешествие Скрэппи на Марс» США, 1938 г.
  • «Ракета X-M» США, 1950 г.
  • «Полёт на Марс» США, 1951 г.
  • «Небо зовёт» режиссёры А. Козырь и М. Карюков, СССР, 1959 г.
  • «Марс» документальный, режиссёр Павел Клушанцев, СССР, 1968 г.
  • «Первые на Марсе. Неспетая песня Сергея Королёва» документальный, 2007 г.
  • «Марсианская одиссея»
Другое
  • В вымышленной вселенной Warhammer 40,000 Марс - мир-столица организации Адептус Механикус , поддерживающей научную и техническую мысль Империума Человечества .
  • В видеоигре DOOM 3 местом действия является «Красная планета».
  • В видеоигре Red Faction 1,3 местом действия также является «Красная планета».
  • Во вселенной Mass Effect на южном полюсе Марса была найдена база данных давно исчезнувших инопланетян, расшифровка которой позволила людям выйти в Галактику.

Марс – одновременно 4-я планета по удаленности от Солнца и 7-я по размерам во всей Солнечной системе. Масса равна 10,7% массы Земли, линейный средний диаметр – 0,53 д. Земли, а объем – 0,15 объема нашей планеты. Свое название получила в честь древнеримского бога Марса. Из-за красного оттенка поверхности (оксид железа) планеты ее иногда называют «красной планетой». Относится к земной группе с разреженной атмосферой. Из поверхностного рельефа особенными являются вулканы, пустыни, долины, ледниковые полярные шапки и похожие на лунные ударные кратеры.

Марс окружен двумя естественными спутниками – Деймосом и Фобосом, они обладают небольшими размерами и имеют неправильную форму.

На планете есть самая высокая гора – потухший вулкан Олимп, самый крупный каньон – долина Маринер. А в 2008 году были опубликованы доказательства наличия самого большого ударного кратера. Его длина составляет 10,6 тыс. км, а ширина превышает размеры предыдущего найденного кратера в 4 раза – 8,5 тыс. км.

Аналогично Земле Марс также вращается и обладает сменой времен года, но климат планеты значительно суше и холоднее. До полета «Маринер-4» (автоматическая межпланетная станция) в 1965 году большая часть исследователей считала, что на поверхности Марса есть вода в жидком виде. Данная мысль основывалась на наблюдениях за периодическими изменениями в темных и светлых участках, в особенности касательно полярных широт, которые имели прямое сходство с континентами и морями. Длинные темные линии обусловливались некоторыми учеными как ирригационные каналы для воды. Немного позже выявили прямые доказательства того, что это оптическая иллюзия.

Вода в жидком виде отсутствует на 70% поверхности планеты из-за низкого давления. Аппарат НАСА «Феникс» нашел воду в состоянии льда в грунте Марса. А собранные геологические данные другими марсоходами позволяют выдвинуть теорию о наличии воды в прошлом планеты. Наблюдения последних годов дали ясно понять, что в некоторых местах есть гейзерная активность.

Начиная с февраля 2009 года на орбите Марса находится 3 функционально-активных космических аппарата: «Марс-экспресс», «Марс Одиссей» и «Mars Reconnaissance Orbiter». А на поверхности планеты находятся два марсохода: «Curiosity» и «Opportunity», активно исследующих геологические особенности. В неактивном стоянии находится несколько марсоходов и посадочных модулей.

Планета отлично видна невооруженным глазом и обладает видимой звездной величиной в 2,91. По яркости Марс уступает Юпитеру и Венере. Довольно интересной особенностью считается противостояние Марса, которое можно видеть каждые два года (последний раз был в 2014 году с 9 по 14 апреля). Один раз в 15 лет оранжевая планета становится самым ярким объектом в звездном ночном небе.

Орбитальные характеристики

Максимальное расстояние между нашей планетой и Марсом – 401 млн км, а минимальное – 55,76 млн км. Среднее расстояние к Солнцу – 228 млн км, а период выражения вокруг него равен 687 суткам Земли. Орбита планеты характеризуется заметным эксцентриситетом, поэтому длина до Солнца постоянно меняется от 206,6 до 249,2 миллиона километров. Наклон орбиты равен 1,85°.

Самое близкое расстояние от Марса до нашей планеты происходит в период противостояния, а именно когда планета расположена на небе в противоположном направлении по отношению к Солнцу.

По линейному размеру Марс в 2 раза меньше, чем Земля. Экваториальный радиус составляет 3396,9 км. А площадь поверхности равна площади суши нашей планеты. Хоть период вращения у Марса и больше, чем у Земли, полярный радиус на 20 км меньше экваториального. По этому поводу выдвинута теория об изменении скорости вращения планеты со временем. Период вращения составляет 24 ч. 37 мин. 22,7 сек. Средние солнечные сутки (солы) составляют 24 ч. 39 мин. 35,24 сек., что на 2,7% длиннее, чем на Земле. Марсианский год – 668,6 суток.

Красная планета вращается вокруг собственной оси под углом 25,19°. Благодаря чему обеспечивается смена времен года. Вытянутость орбиты привела к немалым различиям в их продолжительности. Северное лето на Марсе очень долгое и холодное, а южное – жаркое и короткое.

Климат и атмосфера

Температура не постоянна и обладает большой градацией. На полюсе зимой -153°С, а на экваторе в полдень +20°С. Средняя температура -50°С. Атмосфера на планете очень разрежена поскольку состоит из углекислого газа. При этом давление в 160 раз меньше земного – 6,1 мбар. А из-за большого перепада высот сильно меняется. Примерная толщина – 110 км.

Атмосфера, по данным НАСА, распределена следующим образом: углекислый газ – 95,32%; аргон – 1,6%; азот – 2,7%; аргон – 1,6%; угарный газ – 0,08%; аргон – 1,6%; остальная часть относится к другим газам.

Просвечивая атмосферу на радиоволнах 8 и 32 см АМС «Марс-4», ученые выявили ночную ионосферу с максимумом ионизации на высоте выше 110 км. При этом концентрация электронов 4,6-103 электрон/см3, а вторичный максимум повторялся на высоте 185 км. На среднем радиусе атмосферное давление составляет 636 Па. Плотность у поверхности составляет примерно 0,020 кг/м3, а общая масса ~2,5 1016 кг.

По сравнению с Землей масса атмосферы Марса сильно поднялась в течение года из-за замораживания и таяния полярных шапок (в них присутствует углекислый газ). В зимний период на полярной шапке намораживается 20-30% всей атмосферы.

В районе посадки зонда «Марс-6», Эритрейское море, было зафиксировано давление 6,1 мбар. Именно от этого уровня решено было считать высоту и глубину на планете. Согласно данным этого аппарата, тропопауза расположена примерно на 30-километровой высоте. Очень глубокая область Эллада обладает атмосферным давлением примерно в 12,4 мбар, что превышает в три раза точку воды (около 6,1 мбар), из-за чего при очень высокой температуре вода была бы в жидком состоянии. Но подобное давление приведет к закипанию и превращению воды в пар. На верхушке Олимпа, самый большой вулкан – 27 км, давление достигает отметки от 0,5 до 1 мбар.

Еще до высадки первого посадочного модуля давление измеряли благодаря радиосигналам с АМС «Маринер 4-й, 6-й, 7-й и 9-й серии». При заходе за марсианский диск и при выходе из него давление составляло примерно 6,5 мбар, что в 160 раз меньше, чем на Земле. В расположенных ниже областях показатель менялся до 12 мбар.

Климат сезонный. Угол наклона планеты к плоскости орбиты практически такой же, как и у нас – 25,1919°. На климат также влияют два фактора: больший эксцентриситет орбиты и расстояние до Солнца. Марс проходит перигелий во время середины лета в Южном полушарии и зимы в Северном. Афелий – наоборот. Поэтому климат Северного полушария сильно отличается от Южного. На Севере более мягкая зима и относительно холодное лето, а на Юге зима очень холодная, а лето жаркое. Даже вне полярных шапок в холодный период на поверхности может появляться светлый иней. «Феникс» зафиксировал снегопад, но падающие снежинки, не достигая поверхности, испарялись.

Согласно данным зонда «Марс-6», температура тропосферы в среднем достигает отметки 228 К. Последние исследования из ЦиКС показали, что на Марсе наступил процесс потепления. По некоторым размышлениям ученых выходит, что ранее климат планеты был более влажным и теплым, что сопутствовало наличию дождей и жидкой воды. В подтверждение этой гипотезы выступил результат анализа метеорита ALH 84001, продемонстрировавший температуру Марса 4 млрд года назад – 18°С.

Главная особенность циркуляции атмосферы Марса заключается в фазовых переходах углекислого газа полярных шапок, которые приводят к сильным меридиональным потокам. Моделирование общей циркуляции указывает на значительный годовой ход давления с двумя минимумами незадолго до равноденствий, что подтверждается наблюдениями «Викингом». Анализ данных выявил полугодовой и годовой циклы.

Пылевые вихри и бури

Из-за весеннего таяния полярных шапок повышается давление атмосферы, перемещаются большие массы газа в противоположное полушарие. При этом скорость дующих ветров равна 10-40 м/с. А иногда этот показатель вырастает до 100 м/с. С поверхности поднимается много пыли, провоцируя, таким образом, появление пылевых бурь. Сильные бури полностью скрывают поверхность Марса. Они также оказывают сильное воздействие на распределение атмосферной температуры планеты.

22 сентября 1971 года в светлой области южного полушария началась огромная пылевая буря. Через неделю она охватила примерно 200° по долготе. А на следующий день полностью накрыла южную полярную шапку. Она бушевала до декабря. Советские «Марс-2» и «Марс-3», прибывшие на планету в этот период, пытались заснять ее поверхность, однако из-за пыли сделать это было невозможно. В 70-х годах «Викингом» и «Спиритом» было зафиксировано множество пылевых вихрей. Они очень похожи на земные вихри, но обладают значительно высшим показателем высоты (в 50 раз).

Поверхность

Так называемые материки занимают две трети поверхности планеты, являют собой светлые области. Треть принадлежит темным участкам, именуемым морями. В основном они находятся в южном полушарии, между 10° и 40° широтами. Северное полушарие имеет только два крупных моря – Большой Сирт и Анцидалийское.

Если насчет светлых областей все относительно понятно, то темные до сих пор являются загадкой. На Марсе постоянно происходят пылевые бури, но на темные участки они никакого влияния не оказывают. Ранее считалось, что эта область покрыта растительностью. На данный момент поддерживается теория, что из-за особенности рельефа пыль отсюда легко выдувается сильными ветрами. На крупномасштабных изображениях показано, что в действительности темные области состоят из множества групп темных пятен и полос, имеющих прямое отношение к кратерам, холмам и другим ветровым препятствиям. Скорее всего, долговременные и сезонные изменения связаны с постоянной разницей соотношения покрытых темным и светлым веществом участков поверхности. Полушария планеты имеют сильные отличия по характеру поверхности. Южное полушарие обладает поверхностью на 1-2 км над средним уровнем. Оно очень сильно усеяно кратерами, тем самым напоминая поверхность лунных материков. Северная часть расположена ниже среднего уровня и характеризуется малым количеством кратеров. Большую часть территории занимают гладкие равнины. Подобное различие до сих пор не имеет точного определения. Их граница обусловлена по большому кругу с экваториальным наклоном в 30°. Вдоль нее находятся самые эродированные участки поверхности Марса.

На данный момент установлены две возможные гипотезы возникновения подобной асимметрии. Первая касается раннего геологического этапа, на котором литосферные плиты просто «съехались» в одно полушарие и «застыли». Вторая гипотеза относится к столкновению Марса с другим космическим телом, размер которого равен диаметру планеты Плутон.

Количество кратеров на юге предполагает большую древность поверхности – 3-4 млрд лет. По типу выделяются несколько кратеров: с плоским дном большие кратеры, молодые небольшие чашеобразные кратеры, окруженные валом (чем схожи на лунные) и возвышенные. Два последних типа кратеров довольно-таки уникальны для Марса. С валом образовывались в тех местах, где текли жидкие выбросы, в местах, где покрывало выбросов защищало поверхность от эрозии, образовались возвышенные кратеры. Самым крупным ударным кратером считается равнина Эланда, в поперечине 2100 км.

В тех местах, где присутствует хаотичность ландшафта, поверхность испытала сжатия больших участков и разломы, а иногда и затопление жидкой лавой. В основном такие ландшафты расположены возле истоков прорезанных водой больших каналов. Одна из самых популярных теорий их образования является быстрое таяние подповерхностного льда.

Северное полушарие, помимо больших вулканических равнин, обладает двумя областями крупных вулканов – Элизий и Фарсида. Первая является шестикилометровой возвышенностью над средним уровнем с комплектом из трех вулканов: гора Элизий, купола Гекаты и Альбор. Вторая – это обширная вулканическая равнина (2000 км), достигающая отметки в 10 км над средним уровнем.

Полярные шапки и лед

Изменчивость внешнего вида Марса довольно высока и зависит от времени года. Первое, что меняется – это полярные шапки. Постоянно уменьшаясь и разрастаясь, они создают сезонные атмосферные явления на поверхности планеты. В максимуме расстояние может достигать 50° широты с диаметром в 1000 км. Весной полярная шапка одного из полушарий отступает, тем самым заставляя детали поверхности темнеть.

Южная и Северная полярные шапки состоят из углекислого газа и водяного льда. Спутник «Марс Экспресс» передал данные, согласно которым толщина шапок может достигать отметки в 3,7 км. «Марс Одиссей» на южной полярной шапке обнаружил действующие гейзеры.

На планете находится множество геологических образований, которые сильно напоминают водную эрозию, а именно высохшие русла рек. Одна из гипотез гласит, что эти русла сформировались в результате катастрофических кратковременных событий и не относятся к доказательствам существования речной системы. Но, согласно последним данным, реки текли на протяжении геологически значимых частей времени. Непосредственно найдены инвертированные русла. Помимо этого, присутствуют свидетельства передвижения русел в дельте реки при долгом поднятии поверхности.

В кратере Эберсвальде, юго-западное полушарие, находится самая длинная дельта реки – 115 км. Марсоходы НАСА «Оппортьюнити» и «Спирит» выявили наличие воды в прошлом, а аппарат «Феникс» нашел залежи льда в грунте. Помимо этого, обнаружены темные полосы, свидетельствующие о появлении соленой воды в жидком виде на поверхности. Их появление характеризуется в послелетний период. А к зиме все исчезает. Специалисты НАСА 28 сентября 2012 года заявили о следах пересохшего водного потока. Данное заявление было объявлено после получения фотографий с марсохода «Кьюриосити».

Грунт

Посадочные аппараты определили неодинаковый элементный состав марсианской почвы. Основа – кремнезем, содержащий примеси гидратов оксидов железа, из-за чего у Марса красноватый оттенок. Также обнаружены примеси серы, кальция, натрия, алюминия и магния. Согласно данным зонда «Феникс», соотношение рН марсианской почвы близко к земному, что теоретически позволило бы выращивать растения.

В прошлом на Марсе происходили движения литосферных плит, что подтверждается некоторыми особенностями магнитного поля и расположением вулканов. На данный момент большинство наблюдателей уверены, что такое движение отсутствует из-за большого размера и длительного существования вулканов. Возможно, на Марсе присутствует слабая тектоническая активность, в результате приводящая к появлению пологих каньонов.

Состав грунта

Жизнь на Марсе

Научные гипотезы о жизни на Марсе существуют давно. В атмосфере был найден метан благодаря наблюдениям аппарата «Марс Экспресс». Марсоход «Curiosity» обнаружил всплеск метана в атмосфере планеты и зафиксировал органические молекулы из скалы Камберленд. Условия Марса таковы, что подобный газ быстро разлагается, что свидетельствует о наличии постоянного источника. Их может быть несколько – геологическая активность или жизнедеятельность бактерий. Первый случай маловероятен из-за отсутствия действующих вулканов, а вот второй более интересен. Анализ некоторых метеоритов марсианского происхождения показал образования, похожие на простейшие бактерии. Один из этих метеоритов (ALH 84001) нашли в Антарктиде в 1984 году.

В декабре 2012 года марсоход «Curiosity» передал данные о наличии органических веществ и перхлоратов. Также были выявлены водяные пары. Интересный факт заключается в том, что марсоход опустился на дно высохшего озера.

Определенные анализы и исследования подтверждают, что ранее Марс был лучше приспособлен для жизни. Программа «Викинг» в 70-х годах проводила ряд экспериментов, направленных на обнаружение микроорганизмов. Результат был положительным. До сих пор ведутся ярые споры на этот счет.

Марс - четвёртая по удалённости от Солнца и седьмая (предпоследняя) по размерам планета Солнечной системы; масса планеты составляет 10,7 % массы Земли. Названа в честь Марса - древнеримского бога войны, соответствующего древнегреческому Аресу. Иногда Марс называют «красной планетой» из-за красноватого оттенка поверхности, придаваемого ей оксидом железа.

Марс - планета земной группы с разреженной атмосферой (давление у поверхности в 160 раз меньше земного). Особенностями поверхностного рельефа Марса можно считать ударные кратеры наподобие лунных, а также вулканы, долины, пустыни и полярные ледниковые шапки наподобие земных.

У Марса есть два естественных спутника - Фобос и Деймос (в переводе с древнегреческого - «страх» и «ужас» - имена двух сыновей Ареса, сопровождавших его в бою), которые относительно малы (Фобос - 26x21 км, Деймос - 13 км в поперечнике) и имеют неправильную форму.

Великие противостояния Марса, 1830-2035 гг.

Год Дата Расстояние, а. е.
1830 19 сентября 0,388
1845 18 августа 0,373
1860 17 июля 0,393
1877 5 сентября 0,377
1892 4 августа 0,378
1909 24 сентября 0,392
1924 23 августа 0,373
1939 23 июля 0,390
1956 10 сентября 0,379
1971 10 августа 0,378
1988 22 сентября 0,394
2003 28 августа 0,373
2018 27 июля 0,386
2035 15 сентября 0,382

Марс - четвёртая по удалённости от Солнца (после Меркурия, Венеры и Земли) и седьмая по размерам (превосходит по массе и диаметру только Меркурий) планета Солнечной системы. Масса Марса составляет 10,7 % массы Земли (6,423·1023 кг против 5,9736·1024 кг для Земли), объём - 0,15 объёма Земли, а средний линейный диаметр - 0,53 диаметра Земли (6800 км).

Рельеф Марса обладает многими уникальными чертами. Марсианский потухший вулкан гора Олимп - самая высокая гора в Солнечной системе, а долины Маринер - самый крупный каньон. Помимо этого, в июне 2008 года три статьи, опубликованные в журнале «Nature», представили доказательства существования в северном полушарии Марса самого крупного известного ударного кратера в Солнечной системе. Его длина - 10 600 км, а ширина - 8500 км, что примерно в четыре раза больше, чем крупнейший ударный кратер, до того также обнаруженный на Марсе, вблизи его южного полюса.

В дополнение к схожести поверхностного рельефа, Марс имеет период вращения и смену времён года аналогичные земным, но его климат значительно холоднее и суше земного.

Вплоть до первого пролёта у Марса космического аппарата «Маринер-4» в 1965 году многие исследователи полагали, что на его поверхности есть вода в жидком состоянии. Это мнение было основано на наблюдениях за периодическими изменениями в светлых и тёмных участках, особенно в полярных широтах, которые были похожи на континенты и моря. Тёмные борозды на поверхности Марса интерпретировались некоторыми наблюдателями как ирригационные каналы для жидкой воды. Позднее было доказано, что эти борозды были оптической иллюзией.

Из-за низкого давления вода не может существовать в жидком состоянии на поверхности Марса, но вполне вероятно, что в прошлом условия были иными, и поэтому наличие примитивной жизни на планете исключать нельзя. 31 июля 2008 года вода в состоянии льда была обнаружена на Марсе космическим аппаратом НАСА «Феникс» (англ. «Phoenix»).

В феврале 2009 орбитальная исследовательская группировка на орбите Марса насчитывала три функционирующих космических аппарата: «Марс Одиссей», «Марс-экспресс» и «Марсианский разведывательный спутник», это больше, чем около любой другой планеты, помимо Земли.

Поверхность Марса в настоящий момент исследовали два марсохода: «Спирит» и «Оппортьюнити». На поверхности Марса находятся также несколько неактивных посадочных модулей и марсоходов, завершивших исследования.

Собранные ими геологические данные позволяют предположить, что большую часть поверхности Марса ранее покрывала вода. Наблюдения в течение последнего десятилетия позволили обнаружить в некоторых местах на поверхности Марса слабую гейзерную активность. По наблюдениям с космического аппарата «Марс Глобал Сервейор», некоторые части южной полярной шапки Марса постепенно отступают.

Марс можно увидеть с Земли невооружённым глазом. Его видимая звёздная величина достигает 2,91m (при максимальном сближении с Землёй), уступая по яркости лишь Юпитеру (и то далеко не всегда во время великого противостояния) и Венере (но лишь утром или вечером). Как правило, во время великого противостояния, оранжевый Марс является ярчайшим объектом земного ночного неба, но это происходит лишь один раз в 15-17 лет в течение одной - двух недель.

Орбитальные характеристики

Минимальное расстояние от Марса до Земли составляет 55,76 млн км (когда Земля находится точно между Солнцем и Марсом), максимальное - около 401 млн км (когда Солнце находится точно между Землёй и Марсом).

Среднее расстояние от Марса до Солнца составляет 228 млн км (1,52 а. е.), период обращения вокруг Солнца равен 687 земным суткам. Орбита Марса имеет довольно заметный эксцентриситет (0,0934), поэтому расстояние до Солнца меняется от 206,6 до 249,2 млн км. Наклонение орбиты Марса равно 1,85°.

Марс ближе всего к Земле во время противостояния, когда планета находится в направлении, противоположном Солнцу. Противостояния повторяются каждые 26 месяцев в разных точках орбиты Марса и Земли. Но раз в 15-17 лет противостояния приходятся на то время, когда Марс находится вблизи своего перигелия; в этих так называемых великих противостояниях (последнее было в августе 2003 года) расстояние до планеты минимально, и Марс достигает наибольшего углового размера 25,1" и яркости 2,88m.

Физические характеристики

Сравнение размеров Земли (средний радиус 6371 км) и Марса (средний радиус 3386,2 км)

По линейному размеру Марс почти вдвое меньше Земли - его экваториальный радиус равен 3396,9 км (53,2 % земного). Площадь поверхности Марса примерно равна площади суши на Земле.

Полярный радиус Марса примерно на 20 км меньше экваториального, хотя период вращения у планеты больший, чем у Земли, что даёт повод предположить изменение скорости вращения Марса со временем.

Масса планеты - 6,418·1023 кг (11 % массы Земли). Ускорение свободного падения на экваторе равно 3,711 м/с (0,378 земного); первая космическая скорость составляет 3,6 км/с и вторая - 5,027 км/с.

Период вращения планеты - 24 часа 37 минут 22,7 секунд. Таким образом, марсианский год состоит из 668,6 марсианских солнечных суток (называемых солами).

Марс вращается вокруг своей оси, наклонённой к перпендикуляру плоскости орбиты под углом 24°56?. Наклон оси вращения Марса обеспечивает смену времён года. При этом вытянутость орбиты приводит к большим различиям в их продолжительности - так, северная весна и лето, вместе взятые, длятся 371 сол, то есть заметно больше половины марсианского года. В то же время, они приходятся на участок орбиты Марса, удалённый от Солнца. Поэтому на Марсе северное лето долгое и прохладное, а южное - короткое и жаркое.

Атмосфера и климат

Атмосфера Марса, фото орбитера «Викинг», 1976 г. Слева виден «кратер-смайлик» Галле

Температура на планете колеблется от -153 на полюсе зимой и до более +20 °C на экваторе в полдень. Средняя температура составляет -50°C.

Атмосфера Марса, состоящая, в основном, из углекислого газа, очень разрежена. Давление у поверхности Марса в 160 раз меньше земного - 6,1 мбар на среднем уровне поверхности. Из-за большого перепада высот на Марсе давление у поверхности сильно изменяется. Примерная толщина атмосферы - 110 км.

По данным НАСА (2004), атмосфера Марса состоит на 95,32 % из углекислого газа; также в ней содержится 2,7 % азота, 1,6 % аргона, 0,13 % кислорода, 210 ppm водяного пара, 0,08 % угарного газа, оксид азота (NO) - 100 ppm, неон (Ne) - 2,5 ppm, полутяжёлая вода водород-дейтерий-кислород (HDO) 0,85 ppm, криптон (Kr) 0,3 ppm, ксенон (Xe) - 0,08 ppm.

По данным спускаемого аппарата АМС «Викинг» (1976), в марсианской атмосфере было определено около 1-2 % аргона, 2-3 % азота, а 95 % - углекислый газ. Согласно данным АМС «Марс-2» и «Марс-3», нижняя граница ионосферы находится на высоте 80 км, максимум электронной концентрации 1,7·105 электрон/см3 расположен на высоте 138 км, другие два максимума находятся на высотах 85 и 107 км.

Радиопросвечивание атмосферы на радиоволнах 8 и 32 см АМС «Марс-4» 10 февраля 1974 г. показало наличие ночной ионосферы Марса с главным максимумом ионизации на высоте 110 км и концентрацией электронов 4,6·103 электрон/см3, а также вторичными максимумами на высоте 65 и 185 км.

Атмосферное давление

По данным НАСА на 2004 год, давление атмосферы на среднем радиусе составляет 6,36 мб. Плотность у поверхности ~0,020 кг/м3, общая масса атмосферы ~2,5·1016 кг.
Изменение атмосферного давления на Марсе в зависимости от времени суток, зафиксированное посадочным модулем Mars Pathfinder в 1997 году.

В отличие от Земли, масса марсианской атмосферы сильно изменяется в течение года в связи с таянием и намерзанием полярных шапок, содержащих углекислый газ. Во время зимы 20-30 процентов всей атмосферы намораживается на полярной шапке, состоящей из углекислоты. Сезонные перепады давления, по разным источникам, составляют следующие значения:

По данным НАСА (2004): от 4.0 до 8.7 мбар на среднем радиусе;
По данным Encarta (2000): от 6 до 10 мбар;
По данным Zubrin и Wagner (1996): от 7 до 10 мбар;
По данным посадочного аппарата Викинг-1: от 6,9 до 9 мбар;
По данным посадочного аппарата Mars Pathfinder: от 6,7 мбар.

Ударная впадина Эллада (Hellas Impact Basin) - самое глубокое место, где можно обнаружить самое высокое атмосферное давление на Марсе

В месте посадки зонда АМС Марс-6 в районе Эритрейского моря было зафиксировано давление у поверхности 6,1 миллибара, что на тот момент считалось средним давлением на планете, и от этого уровня было условлено отсчитывать высоты и глубины на Марсе. По данным этого аппарата, полученным во время спуска, тропопауза находится на высоте примерно 30 км, где давление составляет 5·10-7 г/см3 (как на Земле на высоте 57 км).

Область Эллада (Марс) настолько глубока, что атмосферное давление достигает примерно 12,4 миллибара, что выше тройной точки воды (~6,1 мб) и ниже точки кипения. При достаточно высокой температуре вода могла бы существовать там в жидком состоянии; при таком давлении, однако, вода закипает и превращается в пар уже при +10 °C.

На вершине высочайшего 27-километрового вулкана Олимп давление может составлять от 0,5 до 1 мбар (Zurek 1992).

До высадки на поверхность Марса посадочных модулей давление было измерено за счет ослабления радиосигналов с АМС Маринер-4, Маринер-6 и Маринер-7 при их захождении за марсианский диск - 6,5 ± 2,0 мб на среднем уровне поверхности, что в 160 раз меньше земного; такой же результат показали спектральные наблюдения АМС Марс-3. При этом в расположенных ниже среднего уровня областях (например, в марсианской Амазонии) давление, согласно этим измерениям, достигает 12 мб.

Начиная с 1930-х гг. советские астрономы пытались определять давление атмосферы методами фотографической фотометрии - по распределению яркости вдоль диаметра диска в разных диапазонах световых волн. Французские ученые Б.Лио и О.Дольфюс производили с этой целью наблюдения поляризации рассеянного атмосферой Марса света. Сводку оптических наблюдений опубликовал американский астроном Ж.-де Вокулер в 1951 году, и по ним получалось давление 85 мб, завышенное почти в 15 раз из-за помех со стороны атмосферной пыли.

Климат

Микроскопическое фото конкреции гематита размером 1,3 см, снятое марсоходом «Оппортьюнити» 2 марта 2004 г., показывает присутствие в прошлом жидкой воды

Климат, как и на Земле, носит сезонный характер. В холодное время года даже вне полярных шапок на поверхности может образовываться светлый иней. Аппарат «Феникс» зафиксировал снегопад, однако снежинки испарялись, не достигая поверхности.

По сведениям НАСА (2004 г.), средняя температура составляет ~210 K (-63 °C). По данным посадочных аппаратов Викинг, суточный температурный диапазон составляет от 184 K до 242 K (от -89 до -31 °C) (Викинг-1), а скорость ветра: 2-7 м/с (лето), 5-10 м/с (осень), 17-30 м/с (пылевой шторм).

По данным посадочного зонда Марс-6, средняя температура тропосферы Марса составляет 228 K, в тропосфере температура убывает в среднем на 2,5 градуса на километр, а находящаяся выше тропопаузы (30 км) стратосфера имеет почти постоянную температуру 144 K.

По данным исследователей из Центра имени Карла Сагана, в последние десятилетия на Марсе идёт процесс потепления. Другие специалисты считают, что такие выводы делать пока рано.

Существуют сведения, что в прошлом атмосфера могла быть более плотной, а климат - тёплым и влажным, и на поверхности Марса существовала жидкая вода и шли дожди. Доказательством этой гипотезы является анализ метеорита ALH 84001, показавший, что около 4 миллиардов лет назад температура Марса составляла 18 ± 4 °C.

Пылевые вихри

Пыльные вихри, сфотографированные марсоходом «Оппортьюнити» 15 мая 2005 г. Цифры в левом нижнем углу отображают время в секундах с момента первого кадра

Начиная с 1970-х гг. в рамках программы «Викинг», а также марсоходом «Оппортьюнити» и другими аппаратами были зафиксированы многочисленные пыльные вихри. Это воздушные завихрения, возникающие у поверхности планеты и поднимающие в воздух большое количество песка и пыли. Вихри часто наблюдаются и на Земле (в англоязычных странах их называют пыльными демонами - dust devil), однако на Марсе они могут достигать гораздо больших размеров: в 10 раз выше и в 50 раз шире земных. В марте 2005 года вихрь очистил солнечные батареи у марсохода «Спирит».

Поверхность

Две трети поверхности Марса занимают светлые области, получившие название материков, около трети - тёмные участки, называемые морями. Моря сосредоточены, в основном, в южном полушарии планеты, между 10 и 40° широты. В северном полушарии есть только два крупных моря - Ацидалийское и Большой Сырт.

Характер тёмных участков до сих пор остаётся предметом споров. Они сохраняются, несмотря на то, что на Марсе бушуют пылевые бури. В своё время, это служило доводом в пользу предположения, что тёмные участки покрыты растительностью. Сейчас полагают, что это просто участки, с которых, в силу их рельефа, легко выдувается пыль. Крупномасштабные снимки показывают, что на самом деле, тёмные участки состоят из групп тёмных полос и пятен, связанных с кратерами, холмами и другими препятствиями на пути ветров. Сезонные и долговременные изменения их размера и формы связаны, по-видимому, с изменением соотношения участков поверхности, покрытых светлым и тёмным веществом.

Полушария Марса довольно сильно различаются по характеру поверхности. В южном полушарии поверхность находится на 1-2 км над средним уровнем и густо усеяна кратерами. Эта часть Марса напоминает лунные материки. На севере большая часть поверхности находится ниже среднего уровня, здесь мало кратеров, и основную часть занимают относительно гладкие равнины, вероятно, образовавшиеся в результате затопления лавой и эрозии. Такое различие полушарий остаётся предметом дискуссий. Граница между полушариями следует примерно по большому кругу, наклонённому на 30° к экватору. Граница широкая и неправильная и образует склон в направлении на север. Вдоль неё встречаются самые эродированные участки марсианской поверхности.

Выдвинуто две альтернативных гипотезы, объясняющих асимметрию полушарий. Согласно одной из них, на раннем геологическом этапе литосферные плиты «съехались» (возможно, случайно) в одно полушарие, подобно континенту Пангея на Земле, а затем «застыли» в этом положении. Другая гипотеза предполагает столкновение Марса с космическим телом размером с Плутон.
Топографическая карта Марса, по данным Mars Global Surveyor, 1999 г.

Большое количество кратеров в южном полушарии предполагает, что поверхность здесь древняя - 3-4 млрд лет. Выделяют несколько типов кратеров: большие кратеры с плоским дном, более мелкие и молодые чашеобразные кратеры, похожие на лунные, кратеры, окружённые валом, и возвышенные кратеры. Последние два типа уникальны для Марса - кратеры с валом образовались там, где по поверхности текли жидкие выбросы, а возвышенные кратеры образовались там, где покрывало выбросов кратера защитило поверхность от ветровой эрозии. Самой крупной деталью ударного происхождения является равнина Эллада (примерно 2100 км в поперечнике).

В области хаотического ландшафта вблизи границы полушарий поверхность испытала разломы и сжатия больших участков, за которыми иногда следовала эрозия (вследствие оползней или катастрофического высвобождения подземных вод), а также затопление жидкой лавой. Хаотические ландшафты часто находятся у истока больших каналов, прорезанных водой. Наиболее приемлемой гипотезой их совместного образования является внезапное таяние подповерхностного льда.

Долины Маринер на Марсе

В северном полушарии, помимо обширных вулканических равнин, находятся две области крупных вулканов - Фарсида и Элизий. Фарсида - обширная вулканическая равнина протяжённостью 2000 км, достигающая высоты 10 км над средним уровнем. На ней находятся три крупных щитовых вулкана - гора Арсия, гора Павлина и гора Аскрийская. На краю Фарсиды находится высочайшая на Марсе и в Солнечной системе гора Олимп. Олимп достигает 27 км высоты по отношению к его основанию и 25 км по отношению к среднему уровню поверхности Марса, и охватывает площадь 550 км диаметром, окружённую обрывами, местами достигающими 7 км высоты. Объём Олимпа в 10 раз превышает объём крупнейшего вулкана Земли Мауна-Кеа. Здесь же расположено несколько менее крупных вулканов. Элизий - возвышенность до шести километров над средним уровнем, с тремя вулканами - купол Гекаты, гора Элизий и купол Альбор.

По другим данным (Faure и Mensing, 2007), высота Олимпа составляет 21287 метров над нулевым уровнем и 18 километров над окружающей местностью, а диаметр основания - примерно 600 км. Основание охватывает площадь 282600 км2. Кальдера (углубление в центре вулкана) имеет ширину 70 км и глубину 3 км.

Возвышенность Фарсида также пересечена множеством тектонических разломов, часто очень сложных и протяжённых. Крупнейший из них - долины Маринер - тянется в широтном направлении почти на 4000 км (четверть окружности планеты), достигая ширины 600 и глубины 7-10 км; по размерам этот разлом сравним с Восточноафриканским рифтом на Земле. На его крутых склонах происходят крупнейшие в Солнечной системе оползни. Долины Маринер являются самым большим известным каньоном в Солнечной системе. Каньон, который был открыт космическим аппаратом «Маринер-9» в 1971 году, мог бы занять всю территорию США, от океана до океана.

Панорама кратера Виктория, снятая марсоходом «Оппортьюнити». Она была заснята за три недели, в период с 16 октября по 6 ноября, 2006.

Панорама поверхности Марса в районе Husband Hill, снятая марсоходом «Спирит 23-28 ноября 2005».

Лёд и полярные шапки

Северная полярная шапка в летний период, фото Марс Глобал Сервейор. Длинный широкий разлом, рассекающий шапку слева - Северный разлом

Внешний вид Марса сильно изменяется в зависимости от времени года. Прежде всего, бросаются в глаза изменения полярных шапок. Они разрастаются и уменьшаются, создавая сезонные явления в атмосфере и на поверхности Марса. Южная полярная шапка может достигать широты 50°, северная - также 50°. Диаметр постоянной части северной полярной шапки составляет 1000 км. По мере того, как весной полярная шапка в одном из полушарий отступает, детали поверхности планеты начинают темнеть.

Полярные шапки состоят из двух составляющих: сезонной - углекислого газа и вековой - водяного льда. По данным со спутника Марс Экспресс толщина шапок может составлять от 1 м до 3,7 км. Аппарат «Марс Одиссей» обнаружил на южной полярной шапке Марса действующие гейзеры. Как считают специалисты НАСА, струи углекислого газа с весенним потеплением вырываются вверх на большую высоту, унося с собой пыль и песок.

Фотографии Марса, на которых видна пыльная буря. Июнь - сентябрь 2001 г.

Весеннее таяние полярных шапок приводит к резкому повышению давления атмосферы и перемещению больших масс газа в противоположное полушарие. Скорость дующих при этом ветров составляет 10-40 м/с, иногда до 100 м/с. Ветер поднимает с поверхности большое количество пыли, что приводит к пылевым бурям. Сильные пылевые бури практически полностью скрывают поверхность планеты. Пылевые бури оказывают заметное воздействие на распределение температуры в атмосфере Марса.

В 1784 г. астроном У. Гершель обратил внимание на сезонные изменения размера полярных шапок, по аналогии с таянием и намерзанием льдов в земных полярных областях. В 1860-е гг. французский астроном Э.Лиэ наблюдал волну потемнения вокруг тающей весенней полярной шапки, что тогда было истолковано гипотезой о растекании талых вод и росте растительности. Спектрометрические измерения, которые были проведены в начале XX в. в обсерватории Ловелла во Флагстаффе В. Слайфером, однако, не показали наличия линии хлорофилла - зелёного пигмента земных растений.

По фотографиям Маринера-7 удалось определить, что полярные шапки имеют толщину в несколько метров, а измеренная температура 115 K (-158 °C) подтвердила возможность того, что она состоит из замерзшей углекислоты - «сухого льда».

Возвышенность, которая получила название гор Митчелла, расположенная близ южного полюса Марса, при таянии полярной шапки выглядит как белый островок, поскольку в горах ледники тают позднее, в том числе, и на Земле.

Данные аппарата «Марсианский разведывательный спутник» позволили обнаружить под каменистыми осыпями у подножия гор значительный слой льда. Ледник толщиной в сотни метров занимает площадь в тысячи квадратных километров, и его дальнейшее изучение способно дать информацию об истории марсианского климата.

Русла «рек» и другие особенности

На Марсе имеется множество геологических образований, напоминающих водную эрозию, в частности, высохшие русла рек. Согласно одной из гипотез, эти русла могли сформироваться в результате кратковременных катастрофических событий и не являются доказательством длительного существования речной системы. Однако последние данные свидетельствуют о том, что реки текли в течение геологически значимых промежутков времени. В частности, обнаружены инвертированные русла (то есть русла, приподнятые над окружающей местностью). На Земле подобные образования формируются благодаря длительному накоплению плотных донных отложений с последующим высыханием и выветриванием окружающих пород. Кроме того, есть свидетельства смещения русел в дельте реки при постепенном поднятии поверхности.

В юго-западном полушарии, в кратере Эберсвальде обнаружена дельта реки площадью около 115 км2. Намывшая дельту река имела в длину более 60 км.

Данные марсоходов НАСА «Спирит» и «Оппортьюнити» свидетельствуют также о наличии воды в прошлом (найдены минералы, которые могли образоваться только в результате длительного воздействия воды). Аппарат «Феникс» обнаружил залежи льда непосредственно в грунте.

Кроме того, обнаружены тёмные полосы на склонах холмов, свидетельствующие о появлении жидкой солёной воды на поверхности в наше время. Они появляются вскоре после наступления летнего периода и исчезают к зиме, «обтекают» различные препятствия, сливаются и расходятся. «Сложно представить, что подобные структуры могли сформироваться не из потоков жидкости, а из чего-то иного», - заявил сотрудник НАСА Ричард Зурек.

На вулканической возвышенности Фарсида обнаружено несколько необычных глубоких колодцев. Судя по снимку аппарата «Марсианский разведывательный спутник», сделанному в 2007 году, один из них имеет диаметр 150 метров, а освещённая часть стенки уходит в глубину не менее, чем на 178 метров. Высказана гипотеза о вулканическом происхождении этих образований.

Грунт

Элементный состав поверхностного слоя марсианской почвы по данным посадочных аппаратов неодинаков в разных местах. Основная составляющая почвы - кремнезём (20-25 %), содержащий примесь гидратов оксидов железа (до 15 %), придающих почве красноватый цвет. Имеются значительные примеси соединений серы, кальция, алюминия, магния, натрия (единицы процентов для каждого).

Согласно данным зонда НАСА «Феникс» (посадка на Марс 25 мая 2008 года), соотношение pH и некоторые другие параметры марсианских почв близки к земным, и на них теоретически можно было бы выращивать растения. «Фактически, мы обнаружили, что почва на Марсе отвечает требованиям, а также содержит необходимые элементы для возникновения и поддержания жизни как в прошлом, так и в настоящем и будущем», сообщил ведущий исследователь-химик проекта Сэм Кунейвс. Также по его словам, данный щелочной тип грунта многие могут встретить на «своём заднем дворе», и он вполне пригоден для выращивания спаржи.

В месте посадки аппарата в грунте имеется также значительное количество водяного льда. Орбитальный зонд «Марс Одиссей» также обнаружил, что под поверхностью красной планеты есть залежи водяного льда. Позже это предположение было подтверждено и другими аппаратами, но окончательно вопрос о наличии воды на Марсе был решен в 2008 году, когда зонд «Феникс», севший вблизи северного полюса планеты, получил воду из марсианского грунта.

Геология и внутреннее строение

В прошлом на Марсе, как и на Земле происходило движение литосферных плит. Это подтверждается особенностями магнитного поля Марса, местами расположения некоторых вулканов, например, в провинции Фарсида, а также формой долины Маринер. Современное положение дел, когда вулканы могут существовать гораздо более длительное время, чем на Земле и достигать гигантских размеров говорит о том, что сейчас данное движение скорее отсутствует. В пользу этого говорит тот факт, что щитовые вулканы растут в результате повторных извержений из одного и того же жерла в течение длительного времени. На Земле из-за движения литосферных плит вулканические точки постоянно меняли своё положение, что ограничивало рост щитовых вулканов, и возможно не позволяло достичь им высоты, как на Марсе. С другой стороны, разница в максимальной высоте вулканов может объясняться тем, что из-за меньшей силы тяжести на Марсе возможно построение более высоких структур, которые не обрушились бы под собственным весом.

Сравнение строения Марса и других планет земной группы

Современные модели внутреннего строения Марса предполагают, что Марс состоит из коры со средней толщиной 50 км (и максимальной до 130 км), силикатной мантии толщиной 1800 км и ядра радиусом 1480 км. Плотность в центре планеты должна достигать 8,5 г/см2. Ядро частично жидкое и состоит в основном из железа с примесью 14-17 % (по массе) серы, причём содержание лёгких элементов вдвое выше, чем в ядре Земли. Согласно современным оценкам формирование ядра совпало с периодом раннего вулканизма и продолжалось около миллиарда лет. Примерно то же время заняло частичное плавление мантийных силикатов. Из-за меньшей силы тяжести на Марсе диапазон давлений в мантии Марса гораздо меньше, чем на Земле, а значит в ней меньше фазовых переходов. Предполагается, фазовый переход оливина в шпинелевую модификацию начинается на довольно больших глубинах - 800 км (400 км на Земле). Характер рельефа и другие признаки позволяют предположить наличие астеносферы, состоящей из зон частично расплавленного вещества. Для некоторых районов Марса составлена подробная геологическая карта.

Согласно наблюдениям с орбиты и анализу коллекции марсианских метеоритов поверхность Марса состоит главным образом из базальта. Есть некоторые основания предполагать, что на части марсианской поверхности материал является более кварцесодержащим, чем обычный базальт и может быть подобен андезитным камням на Земле. Однако эти же наблюдения можно толковать в пользу наличия кварцевого стекла. Значительная часть более глубокого слоя состоит из зернистой пыли оксида железа.

Магнитное поле Марса

У Марса было зафиксировано слабое магнитное поле.

Согласно показаниям магнетометров станций Марс-2 и Марс-3, напряжённость магнитного поля на экваторе составляет около 60 гамм, на полюсе 120 гамм, что в 500 раз слабее земного. По данным АМС Марс-5, напряжённость магнитного поля на экваторе составляла 64 гаммы, а магнитный момент - 2,4·1022 эрстед·см2.

Магнитное поле Марса крайне неустойчиво, в различных точках планеты его напряжённость может отличаться от 1,5 до 2 раз, а магнитные полюса не совпадают с физическими. Это говорит о том, что железное ядро Марса находится в сравнительной неподвижности по отношению к его коре, то есть механизм планетарного динамо, ответственный за магнитное поле Земли, на Марсе не работает. Хотя на Марсе не имеется устойчивого всепланетного магнитного поля, наблюдения показали, что части планетной коры намагничены и что наблюдалась смена магнитных полюсов этих частей в прошлом. Намагниченность данных частей оказалась похожей на полосовые магнитные аномалии в мировом океане.

По одной теории, опубликованной в 1999 году и перепроверенной в 2005 году (с помощью беспилотной станции Марс Глобал Сервейор), эти полосы демонстрируют тектонику плит 4 миллиарда лет назад до того, как динамо-машина планеты прекратила выполнять свою функцию, что послужило причиной резкого ослабления магнитного поля. Причины такого резкого ослабления неясны. Существует предположение, что функционирование динамо-машины 4 млдр. лет назад объясняется наличием астероида, который вращался на расстоянии 50-75 тысяч километров вокруг Марса и вызывал нестабильность в его ядре. Затем астероид снизился до предела Роша и разрушился. Тем не менее, это объяснение само содержит неясные моменты, и оспаривается в научном сообществе.

Геологическая история

Глобальная мозаика из 102 изображений орбитера Викинг-1 от 22 февраля 1980.

Возможно, в далёком прошлом в результате столкновения с крупным небесным телом произошла остановка вращения ядра, а также потеря основного объёма атмосферы. Считается, что потеря магнитного поля произошла около 4 млрд лет назад. Вследствие слабости магнитного поля солнечный ветер практически беспрепятственно проникает в атмосферу Марса, и многие из фотохимических реакций под действием солнечной радиации, которые на Земле происходят в ионосфере и выше, на Марсе могут наблюдаться практически у самой его поверхности.

Геологическая история Марса заключает в себя три нижеследующие эпохи:

Ноачианская эпоха (названа в честь «Ноачиской земли», района Марса): формирование наиболее старой сохранившейся до наших дней поверхности Марса. Продолжалась в период 4,5 млрд - 3,5 млрд лет назад. В эту эпоху поверхность была изрубцована многочисленными ударными кратерами. Плато провинции Фарсида было вероятно сформировано в этот период с интенсивным обтеканием водой позднее.

Гесперийская эра: от 3,5 млрд лет назад до 2,9 - 3,3 млрд лет назад. Эта эпоха отмечена образованием огромных лавовых полей.

Амазонийская эра (названа в честь «Амазонской равнины» на Марсе): 2,9-3,3 млрд лет назад до наших дней. Районы, образовавшиеся в эту эпоху, имеют очень мало метеоритных кратеров, но во всём остальном они полностью различаются. Гора Олимп сформирована в этот период. В это время в других частях Марса разливались лавовые потоки.

Спутники Марса

Естественными спутниками Марса являются Фобос и Деймос. Оба они открыты американским астрономом Асафом Холлом в 1877 году. Фобос и Деймос имеют неправильную форму и очень маленькие размеры. По одной из гипотез, они могут представлять собой захваченные гравитационным полем Марса астероиды наподобие (5261) Эврика из Троянской группы астероидов. Спутники названы в честь персонажей, сопровождающих бога Ареса (то есть Марса), - Фобоса и Деймоса, олицетворяющих страх и ужас, которые помогали богу войны в битвах.

Оба спутника вращаются вокруг своих осей с тем же периодом, что и вокруг Марса, поэтому всегда повёрнуты к планете одной и той же стороной. Приливное воздействие Марса постепенно замедляет движение Фобоса, и в конце концов приведёт к падению спутника на Марс (при сохранении текущей тенденции), или к его распаду. Напротив, Деймос удаляется от Марса.

Оба спутника имеют форму, приближающуюся к трёхосному эллипсоиду, Фобос (26,6x22,2x18,6 км) несколько крупнее Деймоса (15x12,2x10,4 км). Поверхность Деймоса выглядит гораздо более гладкой за счёт того, что большинство кратеров покрыто тонкозернистым веществом. Очевидно, на Фобосе, более близком к планете и более массивном, вещество, выброшенное при ударах метеоритов, либо наносило повторные удары по поверхности, либо падало на Марс, в то время как на Деймосе оно долгое время оставалось на орбите вокруг спутника, постепенно осаждаясь и скрывая неровности рельефа.

Жизнь на Марсе

Популярная идея, что Марс населён разумными марсианами, широко распространилась в конце XIX века.

Наблюдения Скиапарелли так называемых каналов, в сочетании с книгой Персиваля Лоуэлла по той же теме сделали популярной идею о планете, климат которой становился всё суше, холоднее, которая умирала и в которой существовала древняя цивилизация, производящая ирригационные работы.

Другие многочисленные наблюдения и объявления известных лиц породили вокруг этой темы так называемую «Марсианскую лихорадку» («Mars Fever»). В 1899 году, во время изучения атмосферных помех в радиосигнале, используя приёмники в Колорадской обсерватории, изобретатель Никола Тесла наблюдал повторяющийся сигнал. Затем он высказал догадку, что это может быть радиосигнал с других планет, например, Марса. В интервью 1901 года Тесла сказал, что ему пришла в голову мысль о том, что помехи могут быть вызваны искусственно. Хотя он не смог расшифровать их значение, для него было невозможным то, что они возникли совершенно случайно. По его мнению, это было приветствие одной планеты другой.

Теория Теслы вызвала горячую поддержку известного британского учёного-физика Уильяма Томсона (лорда Кельвина), который, посетив США в 1902 году, сказал, что по его мнению Тесла поймал сигнал марсиан, посланный в США. Однако затем Кельвин стал решительно отрицать это заявление перед тем, как покинул Америку: «На самом деле я сказал, что жители Марса, если они существуют, несомненно могут видеть Нью-Йорк, в частности свет от электричества».

На сегодняшний день условием для развития и поддержания жизни на планете считается наличие жидкой воды на её поверхности. Также существует требование, чтобы орбита планеты находилась в так называемой обитаемой зоне, которая для Солнечной системы начинается за Венерой и кончается большой полуосью орбиты Марса. Во время перигелия Марс находится внутри этой зоны, однако тонкая атмосфера, с низким давлением препятствует появлению жидкой воды на значительной территории на длительный период. Недавние свидетельства говорят о том, что любая вода на поверхности Марса является слишком солёной и кислотной для поддержания постоянной земноподобной жизни.

Отсутствие магнитосферы и крайне тонкая атмосфера Марса также являются проблемой для поддержания жизни. На поверхности планеты идёт очень слабое перемещение тепловых потоков, она плохо изолирована от бомбардировки частицами солнечного ветра, кроме того, при нагревании вода мгновенно испаряется, минуя жидкое состояние из-за низкого давления. Марс также находится на пороге т. н. «геологической смерти». Окончание вулканической активности по всей видимости остановило круговорот минералов и химических элементов между поверхностью и внутренней частью планеты.

Свидетельства говорят о том, что планета ранее была значительно более предрасположена к наличию жизни, чем теперь. Однако на сегодняшний день остатков организмов на ней не обнаружено. Согласно программе «Викинг», осуществлённой в середине 1970-х годов, была проведена серия экспериментов для обнаружения микроорганизмов в марсианской почве. Она дала положительные результаты, например, временное увеличение выделения CO2 при помещении частиц почвы в воду и питательную среду. Однако затем данное свидетельство жизни на Марсе было оспорено некоторыми учёными[кем?]. Это привело к их продолжительным спорам с учёным из NASA Гильбертом Левиным, который утверждал, что «Викинг» обнаружил жизнь. После переоценки данных «Викинга» в свете современных научных знаний об экстремофилах было установлено, что проведённые эксперименты были недостаточно совершенны для обнаружения этих форм жизни. Более того, эти тесты могли даже убить организмы, даже если они содержались в пробах. Тесты, проведённые в рамках программы «Феникс», показали, что почва имеет очень щелочной pH фактор и содержит магний, натрий, калий и хлорид. Питательных веществ в почве достаточно для поддержания жизни, однако жизненные формы должны иметь защиту от интенсивного ультрафиолетового света.

Интересно, что в некоторых метеоритах марсианского происхождения обнаружены образования, по форме напоминающие простейших бактерий, хотя и уступают мельчайшим земным организмам по размерам. Одним из таких метеоритов является ALH 84001, найденный в Антарктиде в 1984 году.

По результатам наблюдений с Земли и данных космического аппарата «Марс Экспресс» в атмосфере Марса обнаружен метан. В условиях Марса этот газ довольно быстро разлагается, поэтому должен существовать постоянный источник его пополнения. Таким источником может быть либо геологическая активность (но действующие вулканы на Марсе не обнаружены), либо жизнедеятельность бактерий.

Астрономические наблюдения с поверхности Марса

После посадок автоматических аппаратов на поверхность Марса появилась возможность вести астрономические наблюдения непосредственно с поверхности планеты. Вследствие астрономического положения Марса в Солнечной системе, характеристик атмосферы, периода обращения Марса и его спутников картина ночного неба Марса (и астрономических явлений, наблюдаемых с планеты) отличается от земной и во многом представляется необычной и интересной.

Цвет неба на Марсе

Во время восхода и захода Солнца марсианское небо в зените имеет красновато-розовый цвет, а в непосредственной близости к диску Солнца - от голубого до фиолетового, что совершенно противоположно картине земных зорь.

В полдень небо Марса жёлто-оранжевое. Причина таких отличий от цветовой гаммы земного неба - свойства тонкой, разрежённой, содержащей взвешенную пыль атмосферы Марса. На Марсе Рэлеевское рассеяние лучей (которое на Земле и является причиной голубого цвета неба) играет незначительную роль, эффект его слаб. Предположительно, жёлто-оранжевая окраска неба также вызывается присутствием 1 % магнетита в частицах пыли, постоянно взвешенной в марсианской атмосфере и поднимаемой сезонными пылевыми бурями. Сумерки начинаются задолго до восхода Солнца и длятся долго после его захода. Иногда цвет марсианского неба приобретает фиолетовый оттенок в результате рассеяния света на микрочастицах водяного льда в облаках (последнее - довольно редкое явление).

Солнце и планеты

Угловой размер Солнца, наблюдаемый с Марса, меньше видимого с Земли и составляет 2/3 от последнего. Меркурий с Марса будет практически недоступен для наблюдений невооружённым глазом из-за чрезвычайной близости к Солнцу. Самой яркой планетой на небе Марса является Венера, на втором месте - Юпитер (его четыре крупнейших спутника можно наблюдать без телескопа), на третьем - Земля.

Земля по отношению к Марсу является внутренней планетой, так же как Венера для Земли. Соответственно, с Марса Земля наблюдается как утренняя или вечерняя звезда, восходящая перед рассветом или видимая на вечернем небе после захода Солнца.

Максимальная элонгация Земли на небе Марса составит 38 градусов. Для невооружённого глаза Земля будет видна как яркая (максимальная видимая звёздная величина около -2,5) зеленоватая звезда, рядом с которой будет легко различима желтоватая и более тусклая (около 0,9) звёздочка Луны. В телескоп оба объекта покажут одинаковые фазы. Обращение Луны вокруг Земли будет наблюдаться с Марса следующим образом: на максимальном угловом удалении Луны от Земли невооружённый глаз легко разделит Луну и Землю: через неделю «звёздочки» Луны и Земли сольются в неразделимую глазом единую звезду, ещё через неделю Луна будет снова видна на максимальном расстоянии, но уже с другой стороны от Земли. Периодически наблюдатель на Марсе сможет видеть проход (транзит) Луны по диску Земли либо, наоборот, покрытие Луны диском Земли. Максимальное видимое удаление Луны от Земли (и их видимая яркость) при наблюдении с Марса будет значительно изменяться в зависимости от взаимного положения Земли и Марса, и, соответственно, расстояния между планетами. В эпохи противостояний оно составит около 17 минут дуги, на максимальном удалении Земли и Марса - 3,5 минуты дуги. Земля, как и другие планеты, будет наблюдаться в полосе созвездий Зодиака. Астроном на Марсе также сможет наблюдать прохождение Земли по диску Солнца, ближайшее произойдёт 10 ноября 2084 года.

Спутники - Фобос и Деймос


Прохождение Фобоса по диску Солнца. Снимки «Оппортьюнити»

Фобос при наблюдении с поверхности Марса имеет видимый диаметр около 1/3 от диска Луны на земном небе и видимую звёздную величину порядка -9 (приблизительно как Луна в фазе первой четверти). Фобос восходит на западе и садится на востоке, чтобы снова взойти через 11 часов, таким образом, дважды в сутки пересекая небо Марса. Движение этой быстрой луны по небу будет легко заметно в течение ночи, так же, как и смена фаз. Невооружённый глаз различит крупнейшую деталь рельефа Фобоса - кратер Стикни. Деймос восходит на востоке и заходит на западе, выглядит как яркая звезда без заметного видимого диска, звёздной величиной около -5 (чуть ярче Венеры на земном небе), медленно пересекающая небо в течение 2,7 марсианских суток. Оба спутника могут наблюдаться на ночном небе одновременно, в этом случае Фобос будет двигаться навстречу Деймосу.

Яркость и Фобоса, и Деймоса достаточна для того, чтобы предметы на поверхности Марса ночью отбрасывали чёткие тени. Оба спутника имеют относительно малый наклон орбиты к экватору Марса, что исключает их наблюдение в высоких северных и южных широтах планеты: так, Фобос никогда не восходит над горизонтом севернее 70,4° с. ш. или южнее 70,4° ю. ш.; для Деймоса эти значения составляют 82,7° с. ш. и 82,7° ю. ш. На Марсе может наблюдаться затмение Фобоса и Деймоса при их входе в тень Марса, а также затмение Солнца, которое бывает только кольцеобразным из-за малого углового размера Фобоса по сравнению с диском Солнца.

Небесная сфера

Северный полюс на Марсе, вследствие наклона оси планеты, находится в созвездии Лебедя (экваториальные координаты: прямое восхождение 21h 10m 42s, склонение +52° 53.0? и не отмечен яркой звездой: ближайшая к полюсу - тусклая звезда шестой величины BD +52 2880 (другие её обозначения - HR 8106, HD 201834, SAO 33185). Южный полюс мира (координаты 9h 10m 42s и -52° 53,0) находится в паре градусов от звезды Каппа Парусов (видимая звёздная величина 2,5) - её, в принципе, можно считать Южной Полярной звездой Марса.

Зодиакальные созвездия марсианской эклиптики аналогичны наблюдаемым с Земли, с одним отличием: при наблюдении годичного движения Солнца среди созвездий оно (как и другие планеты, включая Землю), выйдя из восточной части созвездия Рыб, будет проходить в течение 6 дней через северную часть созвездия Кита перед тем, как снова вступить в западную часть Рыб.

История изучения Марса

Исследование Марса началось давно, ещё 3,5 тысячи лет назад, в Древнем Египте. Первые подробные отчеты о положении Марса были составлены вавилонскими астрономами, которые разработали ряд математических методов для предсказания положения планеты. Пользуясь данными египтян и вавилонян, древнегреческие (эллинистические) философы и астрономы разработали подробную геоцентрическую модель для объяснения движения планет. Спустя несколько веков индийскими и исламскими астрономами был оценен размер Марса и расстояние до него от Земли. В XVI веке Николай Коперник предложил гелиоцентрическую модель для описания Солнечной системы с круговыми планетарными орбитам. Его результаты были пересмотрены Иоганном Кеплером, который ввел более точную эллиптическую орбиту Марса, совпадающую с наблюдаемой.

В 1659 году Франческо Фонтана, рассматривая Марс в телескоп, сделал первый рисунок планеты. Он изобразил чёрное пятно в центре чётко очерченной сферы.

В 1660 году к чёрному пятну прибавились две полярные шапки, добавленные Жаном Домиником Кассини.

В 1888 году Джованни Скиапарелли, учившийся в России, дал первые имена отдельным деталям поверхности: моря Афродиты, Эритрейское, Адриатическое, Киммерийское; озёра Солнца, Лунное и Феникс.

Расцвет телескопических наблюдений Марса пришёлся на конец XIX - середину XX века. Во многом он обусловлен общественным интересом и известными научными спорами вокруг наблюдавшихся марсианских каналов. Среди астрономов докосмической эры, проводивших телескопические наблюдения Марса в этот период, наиболее известны Скиапарелли, Персиваль Ловелл, Слайфер, Антониади, Барнард, Жарри-Делож, Л. Эдди, Тихов, Вокулёр. Именно ими были заложены основы ареографии и составлены первые подробные карты поверхности Марса - хотя они и оказались практически полностью неверными после полётов к Марсу автоматических зондов.

Колонизация Марса

Предполагаемый вид Марса после терраформирования

Относительно близкие к земным природные условия несколько облегчают выполнение этой задачи. В частности, на Земле есть места, в которых природные условия похожи на марсианские. Крайне низкие температуры в Арктике и Антарктиде сравнимы даже с самыми низкими температурами на Марсе, а на экваторе Марса в летние месяцы бывает так же тепло (+20 °C), как и на Земле. Также на Земле есть пустыни, схожие по виду с марсианским ландшафтом.

Но между Землёй и Марсом есть существенные различия. В частности, магнитное поле Марса слабее земного примерно в 800 раз. Вместе с разрежённой (в сотни раз в сравнении с Землёй) атмосферой это увеличивает количество достигающего его поверхности ионизирующего излучения. Измерения, проведённые американским беспилотным аппаратом The Mars Odyssey, показали, что радиационный фон на орбите Марса в 2,2 раза превышает радиационный фон на Международной космической станции. Средняя доза составила примерно 220 миллирада в день (2,2 миллигрея в день или 0,8 грея в год). Объём облучения, полученного в результате пребывания в таком фоне на протяжении трёх лет, приближается к установленным пределам безопасности для космонавтов. На поверхности Марса радиационный фон несколько ниже и доза составляет 0,2-0,3 Гр в год, значительно изменяясь в зависимости от местности, высоты и локальных магнитных полей.

Химический состав распространённых на Марсе минералов разнообразнее, чем у других небесных тел поблизости от Земли. По мнению корпорации 4Frontiers, их достаточно для снабжения не только самого Марса, но и Луны, Земли и астероидного пояса.

Время полёта с Земли до Марса (при нынешних технологиях) составляет 259 суток по полуэллипсу и 70 - по параболе. Для общения с потенциальными колониями может использоваться радиосвязь, которая имеет задержку 3-4 мин в каждом направлении во время максимального сближения планет (которое повторяется каждые 780 дней) и около 20 мин. при максимальном удалении планет; см. Конфигурация (астрономия).

К настоящему времени никаких практических шагов для колонизации Марса не предпринято, однако идёт разработка колонизации, например, проект Столетний космический корабль, разработка жилого модуля для пребывания на планете Deep Space Habitat.

КРАСНАЯ ПЛАНЕТА МАРС

Марс - первая после Земли планета Солнечной системы, к которой с некоторых пор люди стали проявлять особый интерес, вызванный надеждой на то, что там существует развитая внеземная жизнь.

Планета названа Марсом в честь древнеримского бога войны (то же самое, что Арес в древнегреческой мифологии) за свой кроваво-красный цвет, обусловленный наличием в составе почвы Марса окиси железа.

Основные характеристики

Марс - четвёртая по удалённости от Солнца и седьмая по размерам планета Солнечной системы. Его можно увидеть с Земли невооружённым глазом. Он уступает по яркости лишь Венере, Луне и Солнцу.

Марс почти вдвое меньше Земли по размерам - его экваториальный радиус равен 3 396,9 километров (53,2 % земного). Площадь поверхности Марса примерно равна площади суши на Земле.

Среднее расстояние от Марса до Солнца составляет 228 миллионов километров, период обращения вокруг Солнца составляет 687 земных суток.

Минимальное расстояние от Марса до Земли составляет 55,75 миллионов километров, максимальное - около 401 миллионов километров.

Марс ближе всего к Земле во время противостояния, когда планета находится в направлении, противоположном Солнцу. Расстояния между Землей и Марсом в моменты противостояний изменяются от 55 до 102 миллионов километров. Великим противостояние называется тогда, когда расстояние между двумя планетами становится меньше 60 миллионов километров. Великие противостояния Земли и Марса повторяются каждые 15-17 лет (последнее было в августе 2003 года). А обычные - каждые 26 месяцев в разных точках орбиты Марса и Земли.

Марс имеет период вращения и смену времён года аналогичные земным, но его климат значительно холоднее и суше земного.

Период вращения планеты - 24 часа 37 минут 22,7 секунды.

На Марсе, как и на Земле, есть два полюса, Северный и Южный. Марс вращается достаточно быстро, поэтому он имеет немного приплюснутую форму со стороны обоих полюсов. При этом полярный радиус планеты примерно на 21 километр меньше экваториального.

Марсианский год состоит из 668,6 марсианских солнечных суток, называемых солами.

Масса планеты Марс - 6,418×1023 килограммов (11 % массы Земли).

У Марса есть два естественных спутника - Фобос и Деймос, и три искусственных спутника.

К февралю 2009 года на орбите Марса насчитывается три функционирующих космических аппарата: «Mars Odyssey», «Mars Express» и «Mars Reconnaissance Orbiter», а это больше, чем у любой другой планеты, кроме Земли.

На поверхности Марса находятся несколько неактивных посадочных модулей и марсоходов, завершивших свои миссии.

Климат Марса

Климат на Марсе, как и на Земле, носит сезонный характер. Смена времен года на Марсе происходит примерно так же, как и на Земле, но климат там холоднее и суше, чем у нас. В холодное время года даже вне полярных шапок на поверхности может образовываться светлый иней. Снимок инея был однажды получен летательным аппаратом «Викинг-2» .

Марсоходу «Феникс» в какой-то момент удалось зафиксировать на Марсе падающий снег во время «марсианской зимы». Снегопад на Марсе был зафиксирован с помощью лазера, которым оборудован марсоход. Зафиксировать снег марсоходу удалось с помощью специального лазера, которым он был оборудован. Снег падал с высоты около 4000 метров, однако до поверхности планеты он не долетал, растворяясь в воздухе.

Смену времён года на Марсе обеспечивает наклон его оси вращения . При этом вытянутость орбиты приводит к большим различиям продолжительности сезонов. В отличии от земных, которые имеют одинаковую продолжительность в 3 месяца. На Марсе есть северные весна и лето, которые приходятся на участок орбиты, удаленный от Солнца. Эти сезоны вместе продолжаются 371 сол, то есть заметно больше половины марсианского года. Поэтому на Марсе северное лето долгое и прохладное, а южное - короткое и жаркое.

Для Марса характерен резкий перепад температур. Температура на экваторе планеты колеблется от +30°C в полдень до −80°С в полночь. Вблизи полюсов температура иногда падает до −143°С, при такой температуре конденсируется углекислый газ. Марс - весьма холодный мир, однако климат там ненамного суровее, чем в Антарктиде.

В настоящее время на Марсе нет жидкой воды. Однако, скорее всего, белые полярные шапки, обнаруженные в 1704 году, состоят из водяного льда с примесью твердой углекислоты. Зимой они простираются на треть (южная полярная шапка - на половину) расстояния до экватора. Весной этот лед частично тает, а от полюсов к экватору распространяется волна потемнения, которую раньше принимали за марсианские растения.

Внешний вид Марса сильно изменяется в зависимости от времени года. Прежде всего, бросаются в глаза изменения полярных шапок. Они разрастаются и уменьшаются, создавая сезонные явления в атмосфере и на поверхности Марса. Полярные шапки состоят из двух составляющих: сезонной - углекислого газа и вековой - водяного льда. Толщина шапок может составлять от 1 метра до 3,7 километров.

Раньше многие исследователи всерьёз полагали, что на поверхности Марса и сейчас есть вода в жидком состоянии. Это мнение было основано на наблюдениях за периодическими изменениями в светлых и тёмных участках, особенно в полярных широтах, которые были похожи на континенты и моря.

Тёмные борозды на поверхности Марса объяснялись некоторыми наблюдателями как каналы для жидкой воды.


Позднее было доказано, что эти борозды на самом деле не существовали, а были всего лишь оптической иллюзией.

Исследования, проведенные космическим аппаратом «Маринер-4» в 1965 году, показали, что жидкой воды на Марсе в настоящее время нет.

Из-за низкого давления вода не может существовать в жидком состоянии на поверхности Марса. При таком небольшом давлении, которое действует в настоящее время на планете, она закипает при очень низких температурах, но вполне вероятно, что в прошлом условия были иными, и поэтому наличие примитивной жизни на планете исключать нельзя.

31 июля 2008 года вода в состоянии льда была обнаружена на Марсе в месте посадки космического аппарата НАСА «Феникс». Аппарат обнаружил залежи льда непосредственно в грунте.

Данные марсоходов НАСА «Спирит» и «Оппортьюнити» также свидетельствуют о наличии воды в прошлом (найдены минералы, которые могли образоваться только в результате длительного воздействия воды).

Ледник толщиной в сотни метров занимает площадь в тысячи квадратных километров, и его дальнейшее изучение способно дать информацию об истории марсианского климата.

По современным представлениям, общий объем заключенного в полярной шапке северного полушария льда - примерно 1,5 миллионов километров, следовательно, в талом виде этот лед никак не мог образовывать гигантский океан, который, по мнению многих исследователей, некогда покрывал, чуть ли не все северное полушарие Марса. Таким образом, остается загадочным, куда подевалась вода, которая некогда изобиловала на ныне засушливой планете.

Предположительно в прошлом климат Марса мог быть более тёплым и влажным, а на поверхности присутствовала жидкая вода, и даже шли дожди.

Магнитное поле и атмосфера Марса

У Марса есть магнитное поле, но оно слабое и крайне неустойчивое. В различных точках планеты оно может отличаться от 1,5 до 2 раз. При этом магнитные полюса планеты не совпадают с физическими. Это говорит о том, что железное ядро Марса более-менее неподвижно относительно его коры, то есть механизм, ответственный за магнитное поле Земли, на Марсе не работает.

Современные модели внутреннего строения Марса предполагают, что Марс состоит из коры со средней толщиной 50 километров (и максимальной толщиной до 130 километров), силикатной мантии (мантии, обогащенной железом) толщиной 1800 километров и ядра радиусом 1480 километров.

По расчетам, ядро Марса имеет массу до 9 % массы планеты. Оно состоит из железа и его сплавов, при этом ядро пребывает в жидком состоянии.

Возможно, в далёком прошлом в результате столкновения с крупным небесным телом произошла остановка вращения ядра, а также потеря основного объёма атмосферы. Считается, что потеря магнитного поля произошла около 4 миллиардов лет назад.

Поскольку магнитное поле Марса такое слабое, то солнечный ветер свободно проникает в его атмосферу. Из-за этого многие реакции под влиянием солнечной радиации на Марсе происходят практически у самой его поверхности. На Земле сильное магнитное поле не пропускает солнечную радиацию, поэтому все эти реакции происходят в ионосфере и выше.

Марсианская ионосфера простирается над поверхностью планеты от 110 до 130 километров.

Атмосфера Марса состоит на 95 % из углекислого газа. Также в атмосфере содержится 2,5-2,7 % азота, 1,5-2 % аргона, 0,13 % кислорода, 0,1 % водяного пара, 0,07 % угарного газа.

Кроме того, атмосфера Марса очень разрежена. Давление у поверхности Марса в 160 раз меньше земного на среднем уровне поверхности. Из-за большого перепада высот на Марсе, давление у поверхности сильно изменяется.

В отличие от земной, масса марсианской атмосферы сильно изменяется в течение года в связи с таянием и намерзанием полярных шапок, содержащих углекислый газ.

Существуют свидетельства того, что в прошлом атмосфера могла быть более плотной.

Топография Марса

Исследования показали, что две трети поверхности Марса занимают светлые области, получившие название материков, а оставшуюся треть - тёмные участки, называемые морями. Характер тёмных участков до сих пор остаётся предметом споров. Но на самом деле, воды в марсианских морях обнаружено не было.

Моря сосредоточены в основном в южном полушарии планеты. В северном полушарии только два крупных моря - Ацидалийское и Большой Сырт.

Крупномасштабные снимки показывают, что на самом деле тёмные участки состоят из групп тёмных полос и пятен, связанных с кратерами, холмами и другими препятствиями на пути ветров. Сезонные и долговременные изменения их размера и формы связаны, по-видимому, с изменением соотношения участков поверхности, покрытых светлым и тёмным веществом.

Полушария Марса довольно сильно различаются по характеру поверхности. Поверхность Марса имеет красноватый цвет из-за больших примесей окислов железа.

Повсюду на поверхности Марса лежат каменные глыбы - куски вулканических пород, отколовшиеся во время марсотрясений или падения метеоритов.

Время от времени попадаются кратеры - остатки метеоритных ударов.

В некоторых местах поверхность покрыта многослойными породами, похожими на земные осадочные породы, оставшиеся после отступления моря.

В южном полушарии поверхность находится на 1-2 километра над средним уровнем и густо усеяна кратерами. Эта часть Марса напоминает лунные материки.

Большое количество кратеров в южном полушарии может свидетельствовать о том, что поверхность здесь древняя - 3-4 миллиарда лет .

Марсоходы, исследующие планету, оставляли свои следы на нетронутой поверхности.

На севере поверхность в основном находится ниже среднего уровня, здесь мало кратеров, и основную часть занимают относительно гладкие равнины, вероятно, образовавшиеся в результате затопления лавой и эрозии почвы.

В северном полушарии находятся две области крупных вулканов - Тарсис и Элизий.

Тарсис - обширная вулканическая равнина протяжённостью 2000 километров, достигающая высоты 10 километров над средним уровнем. На ней находятся три крупных вулкана.

На краю Тарсиса находится высочайшая на Марсе и на планетах в Солнечной системе гора - марсианский потухший вулкан Олимп.

Олимп достигает 27 километров высоты и 550 километров в диаметре. Обрывы, которые окружают вулкан, местами достигают 7 километров высоты.

В настоящее время все марсианские вулканы не действуют. Следы вулканического пепла, обнаруженные на склонах других гор, позволяют предположить, что раньше Марс был вулканически активным.

Типичный пейзаж Марса - марсианская пустыня.

На Марсе сфотографированы песчаные дюны, гигантские каньоны и разломы, а также метеоритные кратеры. Наиболее грандиозная система каньонов - Долина Маринера - тянется почти на 4500 километров (четверть окружности планеты), достигая ширины 600 километров в ширину и 7-10 километров в глубину.

Почва Марса

Состав поверхностного слоя марсианской почвы по данным посадочных аппаратов разный в разных местах.

Почва в основном состоит из кремнезёма (20-25 %), содержащего примесь гидратов оксида железа (до 15 %), придающих почве красноватый цвет. В почве имеются значительные примеси соединений серы, кальция, алюминия, магния, натрия. Соотношение кислотности и некоторых других параметров марсианских почв близки земным и на них теоретически можно было бы выращивать растения.

Из сообщений ведущего исследователя-химика Сэма Кунейвса:

«Фактически, мы обнаружили, что почва на Марсе отвечает требованиям, а также содержит необходимые элементы для возникновения и поддержания жизни, как в прошлом, так и в настоящем, и будущем ….. Такой грунт вполне пригоден для выращивания различных растений, например спаржи. Здесь нет ничего, что делало бы жизнь невозможной. Даже, наоборот, с каждым новым исследованием мы находим дополнительные подтверждения в пользу возможности её существования».

Интересные явления на Марсе

Аппарат Mars Odyssey обнаружил на южной полярной шапке Марса действующие гейзеры. Струи углекислого газа с весенним потеплением вырываются вверх на большую высоту, унося с собой пыль и песок. Весеннее таяние полярных шапок приводит к резкому повышению давления атмосферы и перемещению больших масс газа в противоположное полушарие.

Скорость дующих при этом ветров составляет 10-40 м/с, иногда до 100 м/с. Ветер поднимает с поверхности большое количество пыли, что приводит к пылевым бурям. Сильные пылевые бури практически полностью скрывают поверхность планеты. Пылевые бури оказывают заметное воздействие на распределение температуры в атмосфере Марса.

После посадок автоматических аппаратов на поверхность Марса появилась возможность вести астрономические наблюдения непосредственно с поверхности планеты.

Картина ночного неба Марса (и астрономических явлений, наблюдаемых с планеты), отличается от земной и во многом представляется необычной и интересной.

Например, в полдень небо Марса жёлто-оранжевое. Причина таких отличий от цветовой гаммы земного неба - свойства тонкой, разрежённой, содержащей взвешенную пыль атмосферы Марса.

Предположительно, жёлто-оранжевая окраска неба вызывается присутствием 1 % магнетита в частицах пыли, постоянно взвешенной в марсианской атмосфере и поднимаемой сезонными пылевыми бурями. Продолжительность бурь может достигать 50-100 суток.

Вечерняя заря на Марсе окрашивает небо в огненно-красный или насыщенный оранжевый цвет.