Какие числа называются отрицательными и положительными числами. Знак в вычислительной технике


Сейчас мы разберем положительные и отрицательные числа . Сначала дадим определения, введем обозначения, после чего приведем примеры положительных и отрицательных чисел. Также остановимся на смысловой нагрузке, которую несут в себе положительные и отрицательные числа.

Навигация по странице.

Положительные и отрицательные числа – определения и примеры

Дать определение положительных и отрицательных чисел нам поможет . Для удобства будем считать, что она расположена горизонтально и направлена слева направо.

Определение.

Числа, которые соответствуют точкам координатной прямой, лежащим правее начала отсчета, называют положительными .

Определение.

Числа, которые соответствуют точкам координатной прямой, лежащим левее начала отсчета называю отрицательными .

Число нуль, соответствующее началу отсчета, не является ни положительным, ни отрицательным числом.

Из определения отрицательных и положительных чисел следует, что множество всех отрицательных чисел представляет собой множество чисел, противоположных всем положительным числам (при необходимости смотрите статью противоположные числа). Следовательно, отрицательные числа всегда записываются со знаком минус.

Теперь, зная определения положительных и отрицательных чисел, мы с легкостью можем привести примеры положительных и отрицательных чисел . Примерами положительных чисел являются натуральные числа 5 , 792 и 101 330 , да и вообще любое натуральное число является положительным. Примерами положительных рациональных чисел являются числа , 4,67 и 0,(12)=0,121212... , а отрицательных – числа , −11 , −51,51 и −3,(3) . В качестве примеров положительных иррациональных чисел можно привести число пи, число e , и бесконечную непериодическую десятичную дробь 809,030030003… , а примерами отрицательных иррациональных чисел являются числа минус пи, минус e и число, равное . Следует отметить, что в последнем примере отнюдь не очевидно, что значение выражения является отрицательным числом. Чтобы это узнать наверняка, нужно получить значение этого выражения в виде десятичной дроби, а как это делается, мы расскажем в статье сравнение действительных чисел .

Иногда перед положительными числами записывается знак плюс, также как перед отрицательными числами записывается знак минус. В этих случаях следует знать, что +5=5 , и т.п. То есть, +5 и 5 и т.п. – это одно и то же число, но по-разному обозначенное. Более того, можно встретить определение положительных и отрицательных чисел, на основании знака плюс или минус.

Определение.

Числа со знаком плюс называют положительными , а со знаком минус – отрицательными .

Существует еще одно определение положительных и отрицательных чисел, основанное на сравнении чисел. Чтобы дать это определение, достаточно лишь вспомнить, что точка на координатной прямой, соответствующая большему числу, лежит правее точки, соответствующей меньшему числу.

Определение.

Положительные числа – это числа, которые больше нуля, а отрицательные числа – это числа, меньшие нуля.

Таким образом, нуль как бы отделяет положительные числа от отрицательных.

Конечно же, следует еще остановиться на правилах чтения положительных и отрицательных чисел. Если число записано со знаком + или −, то произносят название знака, после чего произносят число. Например, +8 читается как плюс восемь, а - как минус одна целая две пятых. Названия знаков + и − не склоняются по падежам. Примером правильного произношения является фраза «a равно минус трем» (не минусу трем).

Интерпретация положительных и отрицательных чисел

Мы уже достаточно долго описываем положительные и отрицательные числа. Однако неплохо было бы знать, какой смысл они несут в себе? Давайте разберемся с этим вопросом.

Положительные числа можно интерпретировать как приход, как прибавку, как увеличение какой-либо величины и тому подобное. Отрицательные числа, в свою очередь, означают строго противоположное – расход, недостаток, долг, уменьшение какой-либо величины и т.п. Разберемся с этим на примерах.

Можно сказать, что мы обладаем 3 предметами. Здесь положительное число 3 указывает количество находящихся у нас предметов. А как можно интерпретировать отрицательное число −3 ? Например, число −3 может означать, что мы должны кому-нибудь отдать 3 предмета, которых у нас даже нет в наличии. Аналогично можно сказать, что в кассе нам выдали 3,45 тысяч рублей. То есть, число 3,45 связано с нашим приходом. В свою очередь отрицательное число −3,45 будет указывать на уменьшение денег в кассе, выдавшей эти деньги нам. То есть, −3,45 – это расход. Еще пример: повышение температуры на 17,3 градуса можно описать положительным числом +17,3 , а понижение температуры на 2,4 можно описать с помощью отрицательного числа, как изменение температуры на −2,4 градуса.

Положительные и отрицательные числа часто используются для описания значений каких-либо величин в различных измерительных приборах. Самым доступным примером является прибор для измерения температур – термометр - со шкалой, на которой записаны и положительные и отрицательные числа. Часто отрицательные числа изображают синим цветом (он символизирует снег, лед, а при температуре ниже нуля градусов Цельсия начинает замерзать вода), а положительные числа записывают красным цветом (цвет огня, солнца, при температуре выше нуля градусов начинает таять лед). Запись положительных и отрицательных чисел красным и синим цветом используют и в других случаях, когда нужно особо выделить знак чисел.

Список литературы.

  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.

Мы знаем, что если сложить два или несколько натуральных чисел, то в результате получим натуральное число. Если перемножать натуральные числа между собой, то в результате всегда получаются натуральные числа. А какие числа будут в результате, если из одного натурального числа вычесть другое натуральное число? Если из большего натурального числа вычесть меньшее, то результат тоже будет натуральным числом. А какое число будет, если из меньшего числа вычесть большее? Например, если из 5 вычесть 7. Результат такого действия уже не будет натуральным числом, а будет числом меньше нуля, которое мы напишем как натуральное, но со знаком «минус», так называемым, отрицательным натуральным числом. На этом уроке мы познакомимся с отрицательными числами. Поэтому мы расширяем множество натуральных чисел, добавляя к нему «0» и целые отрицательные числа. Новое расширенное множество будет состоять из чисел:

…-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6…

Эти числа называются целыми. Следовательно, результат нашего примера 5 -7 = -2 будет целым числом.

Определение. Целые числа – это натуральные, отрицательные натуральные и число «0».

Изображение этого множества мы видим на градуснике для измерения температуры на улице.

Температура может быть с «минусом», т.е. отрицательной, может быть с «плюсом» т.е. положительной. Температура 0 градусов не положительная не отрицательная, число 0 – граница, которая отделяет положительные числа от отрицательных.

Изобразим целые числа на числовой оси.

Рисунок оси

Мы видим, что на числовой оси существует бесконечное множество чисел. Положительные и отрицательные числа разделены между собой нулем. Отрицательные целые числа, например -1, читаются как «минус единица» или «отрицательная единица».

Положительные целые числа, например «+3» читается как положительная 3 или просто «три», то есть у положительных (натуральных) чисел знак «+» не пишется и слово «положительное» не произносится.

Примеры: отметь на числовой оси +5, +6, -7, -3, -1, 0 и т.д.

При движении вправо по числовой оси числа увеличиваются, а при движении влево - уменьшаются. Если мы хотим увеличить число на 2, мы движемся вправо по координатной оси на 2 единицы. Пример: 0+2=2; 2+2=4; 4+2=6 и т. д. И наоборот, если мы хотим уменьшить число на 3 мы будем двигаться влево на 3 единицы. Например: 6-3=3; 3-3=0; 0-3=-3; и т.д.

1. Попробуй увеличить число (-4) за 3 шага, увеличивая каждый раз на 2 единицы.

Двигаясь по числовой оси, как показано на рисунке, мы получим в результате 2.

2. Уменьши число 6 за шесть шагов, уменьшая его за каждый шаг на 2 единицы.

3. Увеличь число (-1) за три шага, увеличивая его на 4 единицы на каждом шаге.

С помощью координатной прямой легко сравнивать целые числа: из двух чисел больше то, которое на координатной прямой расположено правее, а меньше то, что стоит левее.

4. Сравни числа, поставив знак > или < , для удобства сравнения изобрази их на координатной прямой:

3 и 2; 0 и -5; -34 и -67; -72 и 0 и т.д.

5. Вспомни, как мы отмечали на координатном луче точки с натуральными координатами. Точки принято называть заглавными латинскими буквами. Нарисуй координатную прямую, и взяв удобный единичный отрезок, изобрази точки с координатами:

А) А(10),В(20),С(30),М(-10),N(-20)
Б) С(100),В(200),К(300),F(-100)
В) U(1000),Е(2000),R(-3000)

6. Запиши все целые числа, расположенные между -8 и 5, между -15 и -7, между -1 и 1.

Сравнивая числа, мы должны уметь ответить на сколько единиц одно число больше или меньше другого.

Нарисуем координатную прямую. Изобразим на ней точки с координатами от -5 до 5. Число 3 на две единицы меньше 5, на единицу меньше 4, на 3 единица больше нуля. Число -1 на единицу меньше нуля, на 2 единицы больше -3.

7. Ответь, на сколько единиц:

3 меньше 4; -2 меньше 3; -5 меньше -4; 2 больше -1; 0 больше -5; 4 больше -1

8. Нарисуй координатную прямую. Выпиши 7 чисел, каждое из которых на 2 единицы меньше предыдущего, начиная с 6. Какое у этого ряда последнее число? Сколько может быть всего таких чисел, если количество выписываемых чисел не ограничивать?

9. Выпиши 10 чисел, каждое из которых на 3 единицы больше предыдущего начиная с (-6). Сколько таких чисел может существовать, если ряд не ограничивать десятью?

Противоположные числа.

На числовой оси для каждого положительного числа (или натурального) существует отрицательное число, расположенное слева от нуля на таком же расстоянии. Например: 3 и -3; 7 и -7; 11 и -11.

Говорят, что число -3 является противоположным числу 3, и наоборот, -3 противоположно 3.

Определение: Два числа, которые отличаются друг от друга только знаком называются противоположными.

Мы знаем, что если умножить число на +1, то число не изменится. А если число умножить на (-1), что будет? У такого числа поменяется знак. Например, если 7 умножить на (-1) или отрицательную единицу, то результат будет (-7), число становится отрицательным. Если (-10) умножить на (-1), то получим (+10), т. е. получаем уже положительное число. Таким образом, мы видим, что противоположные числа получаются простым умножением исходного числа на (-1). Мы видим на числовой оси, что у каждого числа существует только одно противоположное число. Например, у (4) противоположное будет (-4), у числа (-10) – противоположное будет (+10). Попробуем найти противоположное число у нуля. Его нет. Т.е. 0 – противоположен самому себе.

А теперь посмотрим на числовой оси, что получится, если сложить 2 противоположных числа. Мы получаем, что сумма противоположных чисел равна 0.

1. Игра: пусть игровое поле разделено пополам на два поля: левое и правое. Между ними проходит разделительная черта. На поле находятся числа. Переход через черту означает умножение на (-1), иначе при переходе через разделительную черту число становится противоположным.

Пусть в левом поле находится число (5). В какое число превратится (5), если пятерка перейдет разделительную полосу 1 раз? 2 раза? 3 раза?

2. Заполни следующую таблицу:

3. Из множества пар выбери пары противоположных. Сколько таких пар ты получил?

9 ; -100; 1009; -63; -7; -9; 3; -33; 25; -1009; -2; 1; 0; 100; 27; 345; -56; -345; 33; 7.

Сложение и вычитание целых чисел.

Сложение (или знак «+») означает движение вправо на числовой оси.

  1. 1+3 = 4
  1. -1 + 4 = 3
  2. -3 + 2 = -1

Вычитание(или знак»-«) означает движение влево на числовой оси

  1. 3 – 2 = 1
  2. 2 – 4 = -2
  3. 3 – 6 = -3
  4. -3 + 5 = 2
  5. -2 – 5 = -7
  6. -1 + 6 = 5
  7. 1 – 4 = -3

Реши следующие примеры с помощью числовой оси:

  1. -3+1=
  2. 2)-4-1=
  3. -5-1=
  4. -2-7=
  5. -1+3=
  6. -1-4=
  7. -6+7=

В Древнем Китае при составлении уравнений коэффициенты уменьшаемых и вычитаемых записывались цифрами разного цвета. Прибыль –обозначали красной краской, а убытки – синей. Пример, продали 3 быка и купили 2 лошади. Рассмотрим другой пример: хозяйка принесла на рынок картошку и продала ее за 300 рублей, эти деньги мы прибавим к имуществу хозяйки и напишем их как +300(красное), а затем она потратила 100 рублей (эти деньги мы запишем как(-100)(синие). Таким образом, получилось, что хозяйка вернулась с рынка с прибылью в 200рублей(или +200). Иначе, числа, записанные красной краской всегда складывали, а записанные синей краской вычитали. По аналогии, будем синей краской обозначать отрицательные числа.

Таким образом, мы можем все положительные числа считать выигрышем, а отрицательные проигрышем или долгом или потерей.

Пример: -4 + 9 = +5 результат (+5) можно рассматривать как выигрыш в какой-либо игре; после того, как сначала было проиграно 4 очка, а затем выиграно 9 очков, то в результате останется выигрыш в 5 очков. Реши следующие задачи:

11. В игре в лото Петя сначала выиграл 6 очков, затем проиграл 3 очка, затем опять выиграл 2 очка, затем проиграл 5 очков. Каков результат игры у Пети?

12 (*). Мама пожила конфеты в вазочку. Маша съела 4 конфеты, Миша съел 5 конфет, Оля съела 3 конфеты. Мама положила еще в вазочку 10 конфет, и в вазочке стало 12конфет. Сколько конфет было сначала в вазочке?

13. В доме одна лестница ведет из подвала на второй этаж. Лестница состоит из двух пролетов по 15 ступенек каждый (один из подвала на первый этаж, а второй с первого этажа на второй). Петя был на первом этаже. Сначала он поднялся по лестнице на 7ступенек вверх, а затем спустился на 13 ступенек вниз. Где оказался Петя?

14. Кузнечик прыгает вдоль числовой оси. Один прыжок кузнечика составляет 3 деления на оси. Кузнечик сначала делает 3 прыжка вправо, а затем 5 прыжков влево. Где окажется кузнечик после этих прыжков, если первоначально он находился в 1)«+1»;2) «-6»;3) «0»;4) «+5»;5) «-2»;6) «+3»;7) «-1».

До сих пор мы привыкли к тому, что рассматриваемые числа отвечали на вопрос «сколько». Но отрицательные числа не могут быть ответом на вопрос «сколько». В житейском смысле отрицательные числа связаны с долгом, проигрышем, с такими действиями, как недолил, недопрыгнул, недовесил и т.д. Во всех этих случаях мы просто вычитаем долг, проигрыш, недовес. Например,

  1. На вопрос « Сколько будет «тысяча без 100»?», мы из 1000 должны вычесть 100 и получим 900.
  2. Выражение «3 часа без четверти» – означает, что мы должны вычесть 15 мин из 3 часов. Получим, таким образом, 2часа 45 мин.

А теперь реши следующие задачи:

15. Саша покупал 200гр. масла, но недобросовестный продавец недовесил 5 гр. Какую массу масла купил Саша?

16.На беговой дистанции в 5 км. Володя сошел с дистанции, не добежав до финиша 200м. Какое расстояние Володя пробежал?

17. Заполняя трехлитровую банку соком мама не долила 100мл сока. Сколько сока получилось в банке?

18. Кино должно начаться без двадцати минут восемь. сколько минут Во сколько часов и во сколько минут должно начаться кино?

19.У Тани было 200руб. и она должна Пете 50 руб. После того, как она отдала долг, сколько денег осталось у Тани?

20. Петя с Ваней пошли в магазин. Петя захотел купить книгу за 5 рублей. Но у него оказалось только 3 рубля, и он занял у Вани 2 рубля и купил книгу. Сколько денег оказалось после покупки у Пети?

3 - 5= -2 (из того, что у него было до покупки вычтем стоимость покупки, получим -2 рубля, то есть два рубля долга).

21. Днем температура воздуха была 3°тепла или +3°, а ночью 4° мороза или -4°. На сколько градусов понизилась температура? И на сколько градусов ночная температура меньше, чем дневная?

22. Таня договорилась встретиться с Володей без четверти семь. Во сколько часов и во сколько минут они договорились встретиться?

23. Тима с приятелем пошел в магазин покупать книгу, которая стоила 97 рублей. Но когда они пришли в магазин, то выяснилось, что книга подорожала, и стала стоить 105 рублей. Тима занял приятеля недостающую сумму, и все-таки купил книгу. Сколько денег Тима стал должен приятелю?

Вельмякина Кристина и Николаева Евгения

Данная исслеловательская работа направлена на изучение применения положительных и отрицательных чисел в жизни человека.

Скачать:

Предварительный просмотр:

МБОУ «Гимназия №1» Ковылкинского муниципального района

Применение положительных и отрицательных чисел в жизни человека

Исследовательская работа

Выполнили:

ученицы 6В класса

Вельмякина Кристина и Николаева Евгения

Руководитель: учитель математики и информатики

Соколова Наталья Сергеевна

Ковылкино 2015

Введение 2

1.История возникновения положительных и отрицательных чисел 4

2.Применение положительных и отрицательных чисел 6

Заключение 13

Список используемой литературы 14

Введение

Введение положительных и отрицательных чисел было связано с необходимостью развития математики как науки, дающей общие способы решения арифметических задач, независимо от конкретного содержания и исходных числовых данных.

Изучив положительные и отрицательные числа на уроках математики, мы решили узнать, а где еще кроме математики используются данные числа. И оказалось, что положительные и отрицательные числа имеют довольно широкое применение.

Данная исследовательская работа направлена на изучение применения положительных и отрицательных чисел в жизни человека.

Актуальность данной темы заключается в изучении применения положительных и отрицательных чисел.

Цель работы: Изучить применение положительных и отрицательных чисел в жизни человека.

Объект исследования: Области применения положительных и отрицательных чисел в жизни человека.

Предмет исследования: Положительные и отрицательные числа.

Метод исследования: чтение и анализ используемой литературы и наблюдения.

Для достижения цели исследования были поставлены следующие задачи:

1. Изучить литературу по данной теме.

2. Понять суть положительных и отрицательных чисел в жизни человека.

3. Исследовать применение положительных и отрицательных чисел в различных областях.

4. Сделать выводы.

  1. История возникновения положительных и отрицательных чисел

Впервые положительные и отрицательные числа появились в Древнем Китае уже примерно 2100 лет тому назад.

Во II в. до н. э. китайский ученый Чжан Цань написал книгу «Арифметика в девяти главах». Из содержания книги видно, что это не вполне самостоятельный труд, а переработка других книг, написанных задолго до Чжан Цаня. В этой книге впервые в науке встречаются отрицательные количества. Они понимаются им не так, как понимаем и применяем их мы. Полного и ясного понимания природы отрицательных и положительных величин и правил действия с ними у него нет. Каждое отрицательное число он понимал как долг, а положительное – как имущество. Действия с отрицательными числами он производил не так, как мы, а используя рассуждения о долге. Например, если к одному долгу прибавить другой долг, то в результате получиться долг, а не имущество (т, е. по нашему (- а) + (- а) = - 2а. Знака минус тогда не знали, поэтому, чтобы отличить числа, выражавшие долг, Чжань Цань писал их другими чернилами, чем числа, выражавшие имущество (положительные). Положительные количества в китайской математике называли «чен» и изображали красным цветом, а отрицательные – «фу» и изображали черным. Такой способ изображения использовался в Китае до середины XII столетия, пока Ли Е не предложил более удобное обозначение отрицательных чисел – цифры, которые изображали отрицательные числа, перечеркивали черточкой наискось справа налево. Хотя китайские ученые и объяснили отрицательные количества как долг, а положительные - как имущество, всё же они избегали широкого употребления их, так как числа эти казались непонятными, действия с ними были неясны. Если же задача приводила к отрицательному решению, то старались заменить условие (как греки), чтобы в итоге получалось решение положительно. В V-VI столетиях отрицательные числа появляются и очень широко распространяются в индийской математике. В отличие от Китая в Индии были уже известны и правила умножения, деления. В Индии отрицательные числа систематически использовали в основном так, как это мы делаем сейчас. Уже в произведении выдающегося индийского математика и астронома Брахмагупты (598 – около 660 гг.) мы читаем: «имущество и имущество есть имущество, сумма двух долгов есть долг; сумма имущества и нуля есть имущество; сумма двух нулей есть нуль… Долг, который отнимают от нуля, становится имуществом, а имущество – долгом. Если нужно отнять имущество от долга, а долг от имущества, то берут их сумму».

Знаки «+» и «-» широко использовались в торговле. Виноделы на пустых бочках ставили знак «-», означавший убыль. Если бочку наполняли, то знак перечеркивали и получали знак «+», означавший прибыль. Эти знаки как математические ввел Ян Видман в XV.

В европейской науке отрицательные и положительные числа окончательно вошли в употребление лишь со времени Французского математика Р.Декарта(1596 – 1650), давшего геометрическое истолкование положительным и отрицательным числам как направленных отрезков. В 1637 году он ввел «координатную прямую».

В 1831 году Гаусс полно обосновал, что отрицательные числа абсолютно равнозначны по правам с положительными, а то что их можно применить не во всех случаях значения не имеет.

История возникновения отрицательных и положительных чисел заканчивается в XIX веке когда Уильям Гамильтон и Герман Грассман создали полную теорию положительных и отрицательных чисел. С этого момента начинается история развития данного математического понятия.

  1. Применение положительных и отрицательных чисел
  1. Медицина

Близорукость и дальнозоркость

Отрицательные числа выражают патологию глаза. Близорукость (миопия) проявляется снижением остроты зрения. Для того чтобы при близорукости глаз мог ясно видеть отдаленные предметы применяют рассеивающие (отрицательные) линзы. Близорукость (-), дальнозоркость (+).

Дальнозоркость (гиперметропия) - вид рефракции глаза, при котором изображение предмета фокусируется не на определенной области сетчатки, а в плоскости за ней. Такое состояние зрительной системы приводит к нечеткости изображения, которое воспринимает сетчатка.

Причиной дальнозоркости может быть укороченное глазное яблоко, либо слабая преломляющая сила оптических сред глаза. Увеличив ее, можно добиться того, что лучи будут фокусироваться там, где они фокусируются при нормальном зрении.

С возрастом, зрение особенно вблизи все больше ухудшается из-за уменьшения аккомодативной способности глаза вследствие возрастных изменений в хрусталике - снижается эластичность хрусталика, ослабевают мышцы, удерживающие его, и как следствие снижается зрение. Именно поэтому возрастная дальнозоркость (пресбиопия ) наличествует практически у всех людей после 40–50 лет.

При малых степенях дальнозоркости обычно сохраняется высокое зрение и вдаль, и вблизи, но могут быть жалобы на быструю утомляемость, головную боль, головокружение. При средней степени гиперметропии - зрение вдаль остается хорошим, а вблизи затруднено. При высокой дальнозоркости - плохое зрение и вдаль, и вблизи, так как исчерпаны все возможности глаза фокусировать на сетчатке изображение даже далеко расположенных предметов.

Дальнозоркость, в том числе и возрастная, может быть выявлена только при проведении тщательного диагностического обследования (при медикаментозном расширении зрачка хрусталик расслабляется и проявляется истинная рефракция глаза).

Близорукость – это болезнь глаз, при которой человек плохо видит предметы, расположенные вдалеке, но хорошо видит те предметы, которые находятся близко. Близорукость также называется миопией.

Считается, что около восьмисот миллионов людей болеют близорукостью. Близорукостью могут страдать все: и взрослые, и дети.

В наших глазах существуют роговица и хрусталик. Эти составляющие глаза способны пропускать лучи, преломляя их. А на сетчатке возникает изображение. Потом это изображение становится нервными импульсами и по зрительному нерву передается в мозг.

Если роговица и хрусталик преломляют лучи так, что фокус находится на сетчатке, то изображение будет четким. Поэтому люди без каких-либо болезней глаз будут хорошо видеть.

При близорукости изображение получается размытым и нечетким. Это может происходить по следующим причинам:

– если глаз сильно удлиняется, то сетчатка отходит от стабильного расположения фокуса. При близорукости у людей глаз достигает тридцати миллиметров. А у нормального здорового человека величина глаза равна двадцать три – двадцать четыре миллиметра;– если хрусталик и роговица преломляют лучи света слишком сильно.

По данным статистики, на земле каждый третий человек страдает миопией, то есть близорукостью. Таким людям сложно увидеть предметы, которые находятся вдалеке от них. Но при этом если книга или тетрадь будут близко расположены от глаз человека, который болеет близорукостью, то он будет хорошо видеть данные предметы .

2) Термометры

Посмотрим на шкалу обычного уличного термометра.

Она имеет вид, изображенный на шкале 1. На ней нанесены только положительные числа, и поэтому при указании численного значения температуры приходится дополнительно пояснять 20 градусов тепла (выше нуля). Это для физиков неудобно – ведь слова в формулу не подставишь! Поэтому в физике применяется шкала с отрицательными числами (шкала 2).

3) Баланс на телефоне

Проверяя баланс на своем телефоне или планшете можно увидеть число со знаком (-), это означает что данный абонент, имеет задолжность и не может осуществить звонок, пока не пополнит свой счет, число же без знака (-) означает что можно звонить или осуществлять какую-либо другую функцию.

  1. Уровень моря

Посмотрим на физическую карту мира. Участки суши на ней раскрашены различными оттенками зеленого и коричневого цветов, а моря и океаны раскрашены голубым и синим. Каждому цвету соответствует своя высота (для суши) или глубина (для морей и океанов). На карте нарисована шкала глубин и высот, которая показывает, какую высоту (глубину) означает тот или иной цвет, например, такая:

Шкала глубин и высот в метрах

Глубже 5000 2000 200 0 200 1000 2000 4000 выше

На этой шкале мы видим только положительные числа и нуль. За нуль принимается высота (и глубина тоже), на которой находится поверхность воды в Мировом океане. Использование в этой шкале только неотрицательных чисел неудобно для математика или физика. У физика получается такая шкала.

Шкала высот в метрах

Меньше -5000 -2000 -200 0 200 1000 2000 4000 больше

Используя такую шкалу, достаточно указать число без всяких дополнительных слов: положительные числа отвечают различным местам на суше, находящимся над поверхностью моря; отрицательные числа соответствуют точкам, находящимся под поверхностью моря.

В рассмотренной нами шкале высот за нулевую принимается высота поверхности воды в Мировом океане. Эта шкала используется в геодезии и картографии.

В отличие от этого, в быту мы обычно за нулевую высоту принимаем высоту поверхности земли (в том месте, в котором мы находимся).

5) Качества человека

Каждый человек индивидуален и неповторим! Однако мы не всегда задумываемся над тем, какие же черты характера определяют нас как личность, что в нас привлекает людей, а что отталкивает. Выделяют положительные и отрицательные качества человека. Например, положительные качества активность, благородность, динамичность, отважность, предприимчивость, решительность, самостоятельность, смелость, честность, энергичность, отрицательные, агрессивность, вспыльчивость, конкурентоспособная, критичность, упрямство, эгоистичность.

6) Физика и расческа

Положите на стол несколько маленьких кусочков тонкой бумаги. Возьмите чистую сухую пластмассовую расческу и 2-3 раза проведите ею по своим волосам. Расчесывая волосы, вы должны услышать легкое потрескивание. Затем медленно поднесите расческу к клочкам бумаги. Вы увидите, что они сначала притягиваются к расческе, а потом отталкиваются от нее.

Этой же расческой можно притягивать воду. Такое притяжение легко наблюдать, если поднести расческу к тонкой струйке воды, спокойно вытекающей из крана. Вы увидите, что струйка заметно искривляется.

Теперь сверните из тонкой бумаги (лучше всего папиросной) две трубочки длиной 2-3см. и диаметром 0,5см. Подвесьте их рядом (так, чтобы они слегка касались друг друга) на шелковых нитках. Расчесав волосы, прикоснитесь расческой к бумажным трубочкам – они сразу разойдутся в стороны и останутся в таком положении (то есть нитки будут отклонены). Мы видим, что трубочки отталкиваются друг от друга.

Если у вас есть стеклянная палочка (или трубочка, или пробирка) и кусочек шелковой ткани, то опыты можно продолжить.

Потрите палочку о шелк и поднесите к обрывкам бумаги – они начнут «прыгать» на палочку точно так же, как и на расческу, и затем соскальзывать с нее. Струйка воды тоже отклоняется стеклянной палочкой, а бумажные трубочки, к которым вы палочкой прикоснулись, отталкиваются друг от друга.

А теперь возьмите одну палочку, к которой вы прикасались расческой, и вторую трубочку, - и поднесите друг к другу. Вы увидите, что они притягиваются друг к другу. Итак, в этих опытах проявляются силы притяжения и силы отталкивания. В опытах мы видели, что заряженные предметы (физики говорят – заряженные тела) могут притягиваться друг к другу, а могут и отталкиваться друг от друга. Это объясняется тем, что существует два вида, два сорта электрических зарядов, причем заряды одного и того же вида отталкиваются друг от друга, а заряды разных видов притягиваются.

7) Счет времени

В разных странах по-разному. Например, в Древнем Египте каждый раз, когда начинал править новый царь, счёт лет начинался заново. Первый год правления царя считался первым годом, второй – вторым и так далее. Когда этот царь умирал и к власти приходил новый, вновь наступал первый год, затем второй, третий. Иным был счет лет, применявшийся жителями одного из древнейших городов мира-Рима. Год основания своего города римляне считали первым, следующий - вторым и так далее.

Счет лет, которым мы пользуемся, возник давно и связан с почитанием Иисуса Христа – основателя христианской религии. Счёт лет от рождения Иисуса Христа постепенно был принят в разных странах.В нашей стране он введён царём Петром Первым триста лет назад. Время, исчисляемое от Рождества Христова, мы называем НАША ЭРА (а пишем сокращённо Н.Э.). Продолжается наша эра две тысячи лет. Рассмотрим «линию времени» на рисунке.

Основание Начало Первое упоминание о Москве Рождение А. С. Пушкина

Рима восстания

Спартака

Заключение

Работая с различными источниками и исследуя различные явления и процессы, мы выяснили, что отрицательные и положительные используются в медицине, физике, географии, истории, в современных средствах связи, при изучении качеств человека и других сферах деятельности человека. Данная тема является актуальной и находит широкое применение и активно используются человеком.

Эту работу можно использовать на уроках математики, мотивируя учащихся к изучению положительных и отрицательных чисел.

Список используемой литературы

  1. Вигасин А.А,.Годер Г.И., «История древнего мира», учебник 5 кл.,2001.
  2. Выговская В.В. « Поурочные разработки по Математике:6 класс» - М.:ВАКО, 2008г.
  3. Газета «Математика» №4, 2010г.
  4. Гельфман Э.Г. «Положительные и отрицательные числа», учебное пособие по математике для 6-го класса, 2001.

Состоящее из положительных (натуральных) чисел, отрицательных чисел и нуля.

Все отрицательные числа, и только они, меньше, чем нуль. На числовой оси отрицательные числа располагаются слева от нуля. Для них, как и для положительных чисел , определено отношение порядка, позволяющее сравнивать одно целое число с другим.

n -n , которое дополняет n до нуля: n + (− n ) = 0 . Оба числа называются противоположными друг для друга. Вычитание целого числа a равносильно сложению с противоположным для него: -a .

Свойства отрицательных чисел

Отрицательные числа подчиняются практически тем же правилам, что и натуральные, но имеют некоторые особенности.

Исторический очерк

Литература

  • Выгодский М. Я. Справочник по элементарной математике. - М.: АСТ, 2003. - ISBN 5-17-009554-6
  • Глейзер Г. И. История математики в школе. - М.: Просвещение, 1964. - 376 с.

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое "Отрицательные числа" в других словарях:

    Действительные числа, меньшие нуля, например 2; 0,5; π и т. п. См. Число … Большая советская энциклопедия

    - (величины). Результат последовательных сложений или вычитаний не зависит от порядка, в котором эти действия производятся. Напр. 10 5 + 2 = 10 +2 5. Здесь переставлены не только числа 2 и 5, но и знаки, стоящие перед этими числами. Согласились… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    числа отрицательные - Числа в бухгалтерском учете, которые пишутся красным карандашом или красными чернилами. Тематики бухгалтерский учет … Справочник технического переводчика

    ЧИСЛА, ОТРИЦАТЕЛЬНЫЕ - числа в бухгалтерском учете, которые пишутся красным карандашом или красными чернилами … Большой бухгалтерский словарь

    Множество целых чисел определяется как замыкание множества натуральных чисел относительно арифметических операций сложения (+) и вычитания (). Таким образом, сумма, разность и произведение двух целых чисел есть снова целые числа. Оно состоит из… … Википедия

    Числа, возникающие естественным образом при счёте (как в смысле перечисления, так и в смысле исчисления). Существуют два подхода к определению натуральных чисел числа, используемые при: перечислении (нумеровании) предметов (первый, второй,… … Википедия

    Коэффициенты Е n в разложении Рекуррентная формула для Э. ч. имеет вид (в символической записи, (E + 1)n + (Е 1)n=0, E0 =1. При этом Е 2п+1=0, E4n положительные, E4n+2 отрицательные целые числа для всех n=0, 1, . . .; E2= 1, E4=5, E6=61, E8=1385 … Математическая энциклопедия

    Отрицательное число элемент множества отрицательных чисел, которое (вместе с нулём) появилось в математике при расширении множества натуральных чисел. Цель расширения: обеспечить выполнение операции вычитания для любых чисел. В результате… … Википедия

    Арифметика. Роспись Пинтуриккьо. Апартаменты Борджиа. 1492 1495. Рим, Ватиканские дворцы … Википедия

    Ганс Себальд Бехам. Арифметика. XVI век Арифметика (др. греч. ἀ … Википедия

Книги

  • Математика. 5 класс. Учебная книга и практикум. Положительные и отрицательные числа. В 2 частях. Часть 2. ФГОС, Гельфман Э.Г.. Учебная книга и практикум для 5 класса входят в состав УМК по математике для 5–6 классов, разработанный авторским коллективом под руководством Э. Г. Гельфман и М. А. Холодной в рамках проекта…

В рамках натуральных чисел можно вычесть только меньшее число из большего, а переместительный закон не включает вычитание - например, выражение 3 + 4 − 5 {\displaystyle 3+4-5} допустимо, а выражение с переставленными операндами 3 − 5 + 4 {\displaystyle 3-5+4} недопустимо...

Добавление к натуральным числам отрицательных чисел и нуля делает возможной операцию вычитания для любых пар натуральных чисел. В результате такого расширения получается множество (кольцо) «целых чисел ». При дальнейших расширениях множества чисел рациональными или вещественными числами для них тем же путём получаются соответствующие отрицательные значения. Для комплексных чисел упорядоченность не определена, и понятия «отрицательное число» не существует.

Все отрицательные числа, и только они, меньше, чем ноль. На числовой оси отрицательные числа располагаются слева от нуля. Для них, как и для положительных чисел, определено отношение порядка, позволяющее сравнивать одно целое число с другим.

Для каждого натурального числа n существует одно и только одно отрицательное число, обозначаемое -n , которое дополняет n до нуля:

n + (− n) = 0. {\displaystyle n+\left(-n\right)=0.}

Оба числа называются противоположными друг для друга. Вычитание целого числа a из другого целого числа b равносильно сложению b с противоположным для a :

b − a = b + (− a) . {\displaystyle b-a=b+\left(-a\right).}

Пример: 25 − 75 = − 50. {\displaystyle 25-75=-50.}

Свойства отрицательных чисел

Отрицательные числа подчиняются практически тем же алгебраическим правилам, что и натуральные, но имеют некоторые особенности.

  1. Если любое множество положительных чисел ограничено снизу, то любое множество отрицательных чисел ограничено сверху.
  2. При умножении целых чисел действует правило знаков : произведение чисел с разными знаками отрицательно, с одинаковыми - положительно.
  3. При умножении обеих частей неравенства на отрицательное число знак неравенства меняется на обратный. Например, умножая неравенство 3 −10.

При делении с остатком частное может иметь любой знак, но остаток, по соглашению, всегда неотрицателен (иначе он определяется не однозначно). Например, разделим −24 на 5 с остатком:

− 24 = 5 ⋅ (− 5) + 1 = 5 ⋅ (− 4) − 4 {\displaystyle -24=5\cdot (-5)+1=5\cdot (-4)-4} .

Вариации и обобщения

Понятия положительных и отрицательных чисел можно определить в любом упорядоченном кольце. Чаще всего эти понятия относятся к одной из следующих числовых систем:

Приведенные выше свойства 1-3 имеют место и в общем случае. К комплексным числам понятия «положительный» и «отрицательный» неприменимы.

Исторический очерк

Древний Египет, Вавилон и Древняя Греция не использовали отрицательных чисел, а если получались отрицательные корни уравнений (при вычитании), они отвергались как невозможные. Исключение составлял Диофант, который в III веке уже знал правило знаков и умел умножать отрицательные числа. Однако он рассматривал их лишь как промежуточный этап, полезный для вычисления окончательного, положительного результата.

Впервые отрицательные числа были частично узаконены в Китае, а затем (примерно с VII века) и в Индии, где трактовались как долги (недостача), или, как у Диофанта, признавались как временные значения. Умножение и деление для отрицательных чисел тогда ещё не были определены. Полезность и законность отрицательных чисел утверждались постепенно. Индийский математик Брахмагупта (VII век) уже рассматривал их наравне с положительными.

В Европе признание наступило на тысячу лет позже, да и то долгое время отрицательные числа называли «ложными», «мнимыми» или «абсурдными». Первое описание их в европейской литературе появилось в «Книге абака» Леонарда Пизанского (1202 год), который трактовал отрицательные числа как долг. Бомбелли и Жирар в своих трудах считали отрицательные числа вполне допустимыми и полезными, в частности, для обозначения нехватки чего-либо. Даже в XVII веке Паскаль считал, что 0 − 4 = 0 {\displaystyle 0-4=0} , так как «ничто не может быть меньше, чем ничто» . Отголоском тех времён является то обстоятельство, что в современной арифметике операция вычитания и знак отрицательных чисел обозначаются одним и тем же символом (минус), хотя алгебраически это совершенно разные понятия.

В XVII веке, с появлением аналитической геометрии, отрицательные числа получили наглядное геометрическое представление на числовой оси. С этого момента наступает их полное равноправие. Тем не менее теория отрицательных чисел долго находилась в стадии становления. Оживлённо обсуждалась, например, странная пропорция 1: (− 1) = (− 1) : 1 {\displaystyle 1:(-1)=(-1):1} - в ней первый член слева больше второго, а справа - наоборот, и получается, что большее равно меньшему («парадокс

1. Вопросы, связанные с отрицательными числами являются одним из трудных вопросов для освоения учащимися.

История развития математики показывает, что отрицательные числа значительно труднее дались человеку, это связано с тем, отрицательные числа менее связаны с практической жизнью.

Отрицательные числа возникли в связи с необходимостью выполнения с известными числами. Математики древней Греции не признали отрицательных чисел, они не могли дать им конкретного толкования. Лишь работу Диофанта (3 в. н.э) встречаются преобразования, которые приводят к необходимости выполнения операций над отрицательными числами.

Отрицательные числа появляются лишь в зачаточной форме. Довольно широкое распределение они получили в работах индийских ученых. Положительные числа они называли настоящими, а отрицательные- не настоящими- ложными. Отрицательные числа рассматривали, как долг, а положительные числа как наличные деньги.

Первые правила сложения и вычитания принадлежат индийским ученым. И связаны с трактовкой этих чисел как имущество и долг.

Ученые долго не могли объяснить, дать трактовку произведения двух отрицательных чисел. Почему произведение 2-х долгов есть имущество. Такие ученые как Эйлер, Коми давали свое объяснение правилу произведения чисел, но они приводили к ошибочным результатам.

Немецкий ученый М. Штифель впервые в 1544 г. дал определение отрицательных чисел, как чисел меньших нуля.

Впервые математическую интерпретацию дал Рене Декарт в 1737 г. в книги «Аналитическая геометрия». Отрицательные числа он рассматривал как самостоятельное, расположенное на оси ОХ влево от начало координат. Однако он эти числа назвал ложными. Всеобщее признание отрицательные числа получили в первой половине 21 века, так отрицательные числа вошли в историю математики.

2. Различные приемы введения отрицательных чисел. В учебной литературе можно отметить 3 способа введения отрицательных чисел.

1) Рассматриваются случаи, когда вычисление на множестве положительных чисел ложно.

2) Рассматривают векторы расположенные на одной прямой, необходимость охарактеризовать не только их длину, но и направление приводит к понятию положительных и отрицательных чисел.

3) Введение отрицательных чисел посредством расположения изменяющихся величин в противоположных направлениях.

Методика введения отрицательного числа.

Прежде чем дать понятие об отрицательном числе необходимо показать на конкретных примерах , что известно уч-ся чисел недостаточно для характеристики положения точки на прямой к началу отсчета.

На достаточном количестве примеров надо показать неудобства понятия типа вправо или влево, вверх или вниз начертить числовую ось. Необходимо отложить начало отсчета и чтоб для определенности таких шкал, которые находятся вправо со знаком плюс, влево с противоположным знаком- минус.

В учебнике рассматривается достаточное число примеров, показывающих о целесообразности использования определенных знаков для обозначения направления противоположности движения. Для понятия введения отрицательного числа необходимо пользоваться демонстративным термометром и другими пособиями.

Знакомству с противоположными числами способствует изучение центра симметрии.

Понятие о противоположных числах связывается симметричными точками. В тоже время введение этого понятия основывается с геометрическим истолкованием положительных и отрицательных чисел.

В пункте противоположных чисел вводится определение целых чисел. Натуральные числа, противоположные числа, нуль- называют целыми числами. Модуль числа- понятие модуль числа дает от начала отсчета до точки соответствующему числу. Следует обратить внимание учащихся как мотивировать определение модуля числа.

В учебниках понятие модуля числа вводится путем рассмотрения примеров, поясняют как находить модуль числа. Поясняется, что модуль числа не может быть отрицательным ибо модуль числа это расстояние- обращается внимание, что для положительного числа модуль равен самому числу. Модуль отрицательного числа равен противоположному числу.

Сравнение чисел.

Соотношения равенства и неравенства между положительными и отрицательными числами вводится по определению, они не могут быть получены путем доказательства, причем очень важно показать учащимся целесообразность определения на конкретных примерах и геометрических образах.

Учащиеся должны на столько прочно усвоить расположение чисел на числовой прямой, чтобы это могло служить основным средством сравнения чисел. Иногда возникают трудности в сравнении отрицательных чисел, чтобы преодолеть их, необходимо рассмотреть их на числовой прямой.

Действия над отрицательными и положительными числами.

Основное, что надо учитывать учителю при рассмотрении этого материала – это действия сложения и вычитания над положительными и отрицательными числами вводится по определению, причем формулировки этих определений должны включать в себя ранее известные учащимся понятия об этих действиях. Вычитание и деление определяются как обратные сложению и умножению.

В учебнике отдельно дается определение действия сложения чисел с разными знаками, формулировки этих правил содержат указание на следующие действия. В учебнике большое время уделяется к тому как подойти к действию сложению. Основное внимание уделяется к рассмотрению конкретных задач, обращаясь при этом к координатной прямой.

Каким бы путем не вводилось правило сложение учащимся должно быть ясно, что ничто не доказывается при рассмотрении следующих примеров.

Примеры признаны лишь иллюстрировать целесообразность правил. Учащиеся должны овладеть навыками выполнения сложения 2-х отрицательных чисел с разными знаками, противоположных чисел, нуля с положительными и отрицательными числами.

Рассматривая свойства действий важно показать учащимся, что при установленных определениях действий сложения и вычитания чисел сохраняется все те законы которые имели место для положительных чисел.

Учащимся дается формулировка переместительного и сочетательного законов запись каждого из них с помощью букв.

Вычитание отрицательных чисел определяются как действие обратное сложению. Вычитание сводится к прибавлению противоположного числа.

Умножение положительных и отрицательных чисел представляет наибольшую трудность, трудность заключается в том, что учащейся испытывают потребность в доказательстве правил знаков при умножение, а учитель должен убедить учащихся, что такого доказательства нельзя искать или требовать, таким образом действие умножения вводится по определению, которое можно ввести по разному и по разному истолковать правило знаков. Сложения и умножения имеют много общего, однако трактовка правил умножения вызывает больше трудности.

Рассмотрим объяснения правил умножения является рассмотрение конкретных задач, решение которых требует вычисление по формуле а в, при различных а и в. недостатком этого метода является, то что они доказывают правило умножения.

Многие авторы придерживаются пути, когда в начале дается формулировка правил умножения, затем оно поясняется на примерах, задачах. Учащийся убеждаются на конкретном математическом в практичной целесообразности введенного определения. обычно в учебниках формулировки правил умножения чисел с разными знаками и правил умножения натуральных чисел представляет расписания рядов примеров.

При этом используется положение о том, что если изменить знак одного из множителей, то изменится знак произведения.

Правило формулируется удобным для использования вида. Необходимо обратить внимание учащихся на условия равенство произведения нулю.

Деление положительных, отрицательных чисел рассматривается как действие обратное умножению. Учащемуся сообщается, что деление положительных и отрицательных чисел имеет тот же смысл, что и деление положительных чисел. Важно обратить внимание на законы вычисления и умножения выражений.

Так же как и в случая сложения, правило сложения и умножения натуральных чисел может быть выведены из умножения чисел. Считая, что правило знаков для суммы известно.

В 6 классе в теме рациональные числа вводятся памяти отрицательные числа, которое может быть записано в виде дроби. Расписывается множество рациональных чисел можно сбить внимание, что когда выполнимо:, +, *, - на число не равное нулю.

При вычитании или выполни действий учащийся получают числа того же множества и это множество обладает свойством замкнутости по отношению к действиям первой и второй степени. Для сложения справедливы переместительный и сочетательный законы имеется нейтральный элемент, имеется противоположный элемент.

Для умножения справедливы первый распределительный и сочетательный закон, имеется нейтральный элемент 1, противоположный элемент ().

Практическое занятие №2

Тема: Изучение функции в ШКМ

1. Методика введения понятия функции.

2. Методика изучения отдельных функций

3. Виды функций, изучаемых в основной школе

Литература: , . Дополнительная литература I.

Отрицательные числа — это числа со знаком минус (−), например −1, −2, −3. Читается как: минус один, минус два, минус три.

Примером применения отрицательных чисел является термометр, показывающий температуру тела, воздуха, почвы или воды. В зимнее время, когда на улице очень холодно, температура бывает отрицательной (или как говорят в народе «минусовой»).

Например, −10 градусов холода:

Обычные же числа, которые мы рассматривали ранее, такие как 1, 2, 3 называют положительными. Положительные числа — это числа со знаком плюс (+).

При записи положительных чисел знак + не записывают, поэтому мы и видим привычные для нас числа 1, 2, 3. Но следует иметь ввиду, что эти положительные числа выглядят так: +1, +2, +3.

Содержание урока

Это прямая линия, на которой располагаются все числа: и отрицательные и положительные. Выглядит следующим образом:

Здесь показаны числа от −5 до 5. На самом деле координатная прямая бесконечна. На рисунке представлен лишь её небольшой фрагмент.

Числа на координатной прямой отмечают в виде точек. На рисунке жирная чёрная точка является началом отсчёта. Начало отсчёта начинается с нуля. Слева от начала отсчёта отмечают отрицательные числа, а справа — положительные.

Координатная прямая продолжается бесконечно по обе стороны. Бесконечность в математике обозначается символом ∞. Отрицательное направление будет обозначаться символом −∞, а положительное символом +∞. Тогда можно сказать, что на координатной прямой располагаются все числа от минус бесконечности до плюс бесконечности:

Каждая точка на координатной прямой имеет своё имя и координату. Имя — это любая латинская буква. Координата — это число, которое показывает положение точки на этой прямой. Проще говоря, координата это то самое число, которое мы хотим отметить на координатной прямой.

Например, точка А(2) читается как «точка А с координатой 2» и будет обозначаться на координатной прямой следующим образом:

Здесь A — это имя точки, 2 — координата точки A.

Пример 2. Точка B(4) читается как «точка B с координатой 4»

Здесь B — это имя точки, 4 — координата точки B.

Пример 3. Точка M(−3) читается как «точка M с координатой минус три» и будет обозначаться на координатной прямой так:

Здесь M — это имя точки, −3 — координата точки M.

Точки можно обозначать любыми буквами. Но общепринято обозначать их большими латинскими буквами. Более того, начало отчёта, которое по другому называют началом координат принято обозначать большой латинской буквой O

Легко заметить, что отрицательные числа лежат левее относительно начала отсчёта, а положительные числа правее.

Существуют такие словосочетания, как «чем левее, тем меньше» и «чем правее, тем больше» . Наверное, вы уже догадались о чём идёт речь. При каждом шаге влево, число будет уменьшаться в меньшую сторону. И при каждом шаге вправо число будет увеличиваться. Стрелка, направленная вправо, указывает на положительное направление отсчёта.

Сравнение отрицательных и положительных чисел

Правило 1. Любое отрицательное число меньше любого положительного числа.

Например, сравним два числа: −5 и 3. Минус пять меньше , чем три, несмотря на то, что пятёрка бросается в глаза в первую очередь, как цифра большая, чем три.

Связано это с тем, что −5 является отрицательным числом, а 3 — положительным. На координатной прямой можно увидеть, где располагаются числа −5 и 3

Видно, что −5 лежит левее, а 3 правее. А мы говорили, что «чем левее, тем меньше» . И правило говорит, что любое отрицательное число меньше любого положительного числа. Отсюда следует, что

−5 < 3

«Минус пять меньше, чем три»

Правило 2. Из двух отрицательных чисел меньше то, которое располагается левее на координатной прямой.

Например, сравним числа −4 и −1. Минус четыре меньше , чем минус единица.

Связано это опять же с тем, что на координатной прямой −4 располагается левее, чем −1

Видно, что −4 лежит левее, а −1 правее. А мы говорили, что «чем левее, тем меньше» . И правило говорит, что из двух отрицательных чисел меньше то, которое располагается левее на координатной прямой. Отсюда следует, что

Минус четыре меньше, чем минус единица

Правило 3. Ноль больше любого отрицательного числа.

Например, сравним 0 и −3. Ноль больше , чем минус три. Связано это с тем, что на координатной прямой 0 располагается правее, чем −3

Видно, что 0 лежит правее, а −3 левее. А мы говорили, что «чем правее, тем больше» . И правило говорит, что ноль больше любого отрицательного числа. Отсюда следует, что

Ноль больше, чем минус три

Правило 4. Ноль меньше любого положительного числа.

Например, сравним 0 и 4. Ноль меньше , чем 4. Это в принципе ясно и так. Но мы попробуем увидеть это воочию, опять же на координатной прямой:

Видно, что на координатной прямой 0 располагается левее, а 4 правее. А мы говорили, что «чем левее, тем меньше» . И правило говорит, что ноль меньше любого положительного числа. Отсюда следует, что

Ноль меньше, чем четыре

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках