Обоняние и вкус. Психология и физиология восприятия информации

Обоняние и вкус, некогда столь же необходимые человеку для выживания, как слух, осязание и зрение, ныне гораздо слабее развиты, чем у животных, и играют второстепенную роль.

  • Для многих истинная красота роз скрыта в их упоительном аромате.
  • Лизнув мороженое кончиком языка, мы во всей полноте ощущаем его изумительный вкус!

С тех пор как человек поднялся с четверенек и оторвал нос от земли, его жизнь перестала в той же мере зависеть от обоняния и вкуса, как жизнь других животных. Утратив былое значение, эти физические чувства теперь служат человеку почти исключительно для выбора и получения удовольствия от еды и питья.

Химическая природа чувств

У вкуса и обоняния общая химическая природа. Это значит, что они представляют собой реакцию на присутствующие в окружающей среде химические вещества. Пробуя что-то на вкус, мы ощущаем присутствие во рту тех или иных химических веществ, а чувствуя запах - регистрируем их наличие в воздухе в газообразной форме.

Чистый воздух представляет собой смесь не имеющих запаха газов - главным образом, азота (78%) и кислорода (21%) с незначительными примесями инертных газов. Воздух может содержать до 5% водяных паров, тоже не имеющих запаха. Любые другие примеси потенциально можно обнаружить по запаху. Даже самые ничтожные концентрации химических примесей можно учуять носом, который подскажет хозяину, что годится в пищу, а что нет, что издает неприятный запах (и лучше держаться от него подальше), а что, возможно, является запахом другого животного - друга или врага.

Обоняние

Хорошо известно, что мы способны распознавать гораздо больше оттенков запаха, чем звуков. Однако ученым трудно уяснить, что же происходит, когда мы обоняем запах, как присутствующие в воздухе химические вещества воспринимаются носом и интерпретируются мозгом. До сих пор нет четкого понимания и того, как язык распознает и преобразует химические вещества во вкусовую информацию.

  • Любой шеф-повар скажет, что нельзя судить о свежести продукта по одному внешнему виду. В этой профессии не обойтись без тонкого обоняния.

Тончайшие волоски

Впрочем, известно, что небольшой участок в задней части носовой полости изобилует нервными окончаниями, воспринимающими запахи. Этот участок, называемый обонятельным эпителием, или обонятельной областью, буквально напичкан миллионами нервных окончаний. Каждое из них имеет не меньше десятка тончайших волосков, или жгутиков. Они постоянно увлажняются слизью, которая тоже служит ловушкой для пахучих веществ. Но из-за недоступности обонятельной области ученым трудно исследовать происходящие в ней процессы.

Полагают, что при вдыхании с воздухом доступных нашему обонянию пахучих веществ они растворяются в слизи, увлажняющей жгутики, в результате чего эти тончайшие волоски покрываются раствором пахучих веществ. Реагируя на них, жгутики посылают сигналы обонятельным клеткам для дальнейшей передачи по соответствующим нервным волокнам (их называют обонятельными нервами). Затем эти сигналы передаются в обонятельный мозг - участок головного мозга, гораздо слабее развитый у людей, нежели у животных.

Основные запахи

Насколько мы можем судить, все обонятельные клетки, действующие как рецепторы распознаваемых по запаху химических веществ, абсолютно одинаковы, по этому остается загадкой, как они различают тысячи многообразных запахов.

За многие века люди выделили шесть "основных" запахов: цветочный, фруктовый, зловонный, пряный, смолистый (как скипидар) и запах гари.

Чтобы обладать запахом, вещество должно испарять микроскопические частицы. Наименьшими "кирпичиками" любого вещества являются молекулы, и, как полагают, обонятельные клетки способны различать молекулы по их форме.

Частицы и запах

Чем больше частиц испускает вещество, тем сильнее запах. Например, кипящий на плите куриный суп пахнет сильнее, чем холодная курятина на тарелке, так как с паром в воздух попадает больше пахучих частиц. Они-то и распознаются как запахи в силу своей способности растворяться в воде. Под воздействием тепла в воздух попадает больше частиц, а содержащаяся в воздухе влага обеспечивает их повышенную концентрацию, поэтому в теплой и влажной атмосфере запахи усиливаются. Вероятно, вы и сами замечали, что в теплой дымке после летнего дождя усиливается благоухание сада или травы; или что щепотка соли для ванн издает в горячей воде более сильный аромат, чем целая сухая упаковка.

Адаптация и маскировка

Если вы войдете в помещение, где кто-то ест котлеты с луком, резкий запах тотчас ударит вам в нос, хотя находящиеся здесь же люди его не замечают. Это явление называется адаптацией. Причина, по-видимому, в том, что когда все рецепторы "заполнены" пахучими химическими частицами, они перестают посылать сигналы в мозг.

Возможно, вы задавались вопросом, как освежители воздуха устраняют неприятные запахи. Этот эффект называется маскировкой. Освежитель вовсе не удаляет из воздуха дурно пахнущие частицы, но благодаря его присутствию мы перестаем их замечать. Нечто подобное происходит и при маскировке слуха, когда громкий звук заглушает более тихий, даже если наши уши воспринимают обе частоты. Мы пока не знаем, почему один запах "громче" другого. Само собой, если в воздухе присутствуют два запаха, маскировка происходит далеко не всегда. Часто оба запаха смешиваются либо по-прежнему воспринимаются по отдельности.

Вкус

О вкусе известно гораздо больше, чем об обонянии, и принято считать, что основных вкусов всего четыре: сладкий, соленый, кислый и горький. Но всем богатством оттенков того, что называют вкусом, мы обязаны обонянию. Должно быть, вы успели заметить, что при сильной простуде обоняние на время пропадает, и пища становится безвкусной. А дело в том, что при простуде вы получаете информацию о вкусе только с языка. Как показали опыты, пробуя продукты на вкус только языком, человек не отличает даже очищенного яблока от сырого картофеля.

Рецепторы, улавливающие сигналы от растворенных химических веществ, из которых состоит наша пища, называются вкусовыми сосочками. Это скопления микроскопических клеток, или нервных окончаний, на крохотных бугорках, расположенных на языке, нёбе и гортани. Каждый вкусовой сосочек - это гроздь из 50 с лишним клеток, соединенных с мозгом нервными волокнами. Все вкусовые сосочки способны различать четыре основных вкуса. Некоторые из них служат опорными клетками, остальные же - вкусовыми. Подобно рецепторам запаха, каждая вкусовая клетка имеет крохотный волосок (микровиллу). Внешние оконечности вкусовых сосочков соединены с осязательными нервами, благодаря чему вкус и осязание пищи во рту тесно связаны между собой. Услышав спор о том, какая говядина вкуснее - тонко или грубо нарезанная, - вы можете задаться вопросом, а в чем, собственно, разница. Однако от осязания пищи языком зависит и ее вкусовое восприятие.

Строение языка

Лучше всего реагирует на сладкое верхушка (кончик) языка, на кислое - его боковые края, на соленое - область по соседству с верхушкой и на горькое - прикорневая область. Как и рецепторы запаха, все вкусовые сосочки похожи друг на друга, однако в разных отделах языка они поразному сгруппированы. Все еще остается загадкой, как одни и те же клетки воспринимают разные раздражители. Ученые полагают, что организм вырабатывает так называемые рецепторные вещества, с помощью которых ощущаются различия во вкусе. До сих пор в опытах на животных были открыты только протеины, действующие как рецепторы горечи и сладости. Не исключено, что разные отделы языка вырабатывают разные количества рецепторных веществ. Хотя четкого представления о том, как это происходит, ученые пока не имеют, но уже сейчас можно с достаточной уверенностью предположить, что, вступая в контакт с растворенными химическими веществами, вкусовые сосочки издают соответствующий электрический импульс, который по нервам поступает в головной мозг.

Вкусно или нет?

Помимо вкуса, на наше представление о том, что мы едим, влияет целый букет впечатлений. Прежде всего, газы, выделяемые при пережевывании пищи, поднимаются в полость носа, воздействуя на обоняние. Значение имеет и структура пищи. К процессу подключаются температурные и болевые ощущения - ведь острая пища стимулирует болевые рецепторы (мазнув аджикой по лицу, вы ощутите на коже такое же жжение, как и на языке). Рецепторы осязания и давления подсказывают, что у нас во рту - хрустящие кусочки или крем, жесткая пища или мягкая; уши воспринимают звуки, издаваемые пищей при пережевывании. И, само собой, память - мы надолго запомним вызвавшее отвращение блюдо.

Наконец, глаза докладывают о внешнем виде того или иного блюда, и мы не раз возвращаемся к нему в памяти. Вероятно, у вас не раз текли слюнки не только при виде, но и при одной мысли о чемнибудь вкусненьком. Можно провести с друзьями любопытный эксперимент, пробуя что-нибудь на вкус с завязанными глазами. Вы, например, обнаружите, что не можете отличить апельсиновый сок от грейпфрутового, не видя их и не представив заранее вкуса. Любой хороший повар знает, что красиво оформленное блюдо усиливает аппетит, и ваши эксперименты это подтвердят. Что ни говори, а мы все же привыкли больше полагаться на зрение, чем на обоняние и вкус.

  • Наш нюх гораздо слабее, чем у животных, и большинство людей просто не ощущает издаваемых нами природных запахов для привлечения сексуального партнера, полагаясь в этом на искусственно созданные ароматы.
  • Определяя качество вина, опытный дегустатор полагается не только на чувствительное нёбо, но и на тонкое обоняние. Для настоящего знатока в букете вина нет секретов.

Знаете ли вы?

  • Произрастающий в Западной Африке плод называют "волшебным", потому что он превращает кислую пищу в сладкую. Полагают, что он содержит протеин, заставляющий вкусовые сосочки подавать сигналы о наличии сладости в присутствии кислоты.
  • Соленый и сладкий вкус имеют больше общего, чем кажется на первый взгляд. При очень высокой (пороговой) концентрации соль кажется сладкой.
  • По некоторым оценкам, для определения вкуса нам требуется в 25 000 раз больше вещества, чем для определения запаха.
  • У взрослого человека около 9000 вкусовых сосочков. Удетей их больше.
  • Летучие вещества, например, бензин, обычно обладают сильным запахом, так как попадают в нос в довольно высокой концентрации.
  • Желая хорошенько принюхаться к чему-нибудь, мы автоматически втягиваем воздух носом, чтобы захватить побольше пахучих частиц.

Доктор технических наук В. МАЙОРОВ.

В последнее десятилетие ХХ века в науке о запахах произошла подлинная революция. Решающую роль сыграло открытие 1000 видов обонятельных рецепторов, связывающих молекулы пахучих веществ. Однако механизм передачи обонятельного сигнала в центральную нервную систему таит в себе еще много загадок.

Наука и жизнь // Иллюстрации

Пути передачи информации о запахах в головной мозг.

Схематическое изображение обонятельного эпителия. Базальные клетки являются клетками-предшественниками обонятельных рецепторных нейронов.

Изображение реснички обонятельного нейрона, сделанное с помощью флуоресцентного красителя. На мембране ресничек расположены рецепторные белки, взаимодействующие с молекулами одорантов.

Модель молекулы обонятельного рецепторного белка мыши, к которому присоединена молекула одоранта - гексанола (пурпурного цвета).

Одна из моделей процесса преобразования сигнала внутри реснички обонятельного нейрона.

Схематическое изображение комбинаторных рецепторных кодов одорантов.

Электроольфактограмма (ЭОГ) - электрический колебательный сигнал, регистрируемый специальным электродом с участка внешней поверхности обонятельного эпителия крысы.

Чуть более четверти века назад в журнале "Наука и жизнь" (№ 1, 1978 г.) была опубликована статья "Загадка запаха". Ее автор, кандидат химических наук Г. Шульпин, справедливо отмечал, что современное ему состояние науки о запахах примерно такое же, как состояние органической химии в 1835 году. Тогда один из зачинателей этой науки, Ф. Велер, писал, что органическая химия представляется ему дремучим лесом, из которого невозможно выбраться. Но уже через четверть века А. М. Бутлеров, создав теорию химического строения вещества, сумел "выбраться из чащи". Шульпин выражал уверенность, что загадка запаха будет решена едва ли не быстрее, чем в случае органической химии.

И он оказался прав на все 100%! В последнее время произошел настоящий прорыв в понимании молекулярных основ обоняния. Разберем основные стадии восприятия запахов в свете современных представлений.

КАК ВОСПРИНИМАЕТСЯ ЗАПАХ

Проделаем простой опыт. Возьмем флакон с пахучей жидкостью, например духами, откроем пробку и понюхаем содержимое в спокойном ритме дыхания. Легко обнаружить, что мы ощущаем запах только во время вдоха; начинается выдох - запах исчезает.

При вдохе через нос воздух вместе с молекулами пахучего вещества (называемого обонятельным стимулом или одорантом) проходит в каждой из двух носовых полостей по щелевидному каналу сложной конфигурации, который образован продольной носовой перегородкой и тремя носовыми раковинами. Здесь воздух очищается от пыли, увлажняется и нагревается. Затем часть воздуха поступает в расположенную в верхней задней зоне канала обонятельную область, имеющую вид щели, покрытой обонятельным эпителием.

Общая поверхность, занимаемая эпителием в обеих половинках носа взрослого человека, невелика - 2 - 4 см 2 (у кролика эта величина равна 7-10 см 2 , у собак - 27 - 200 см 2). Эпителий покрыт слоем обонятельной слизи и содержит три типа первичных клеток: обонятельные рецепторы, опорные и базальные клетки. Влекомые воздухом пахучие молекулы проникают в носовую полость и переносятся над поверхностью эпителия. При нормальном спокойном дыхании вблизи обонятельного эпителия проходит 7 -10% вдыхаемого воздуха. Обонятельный эпителий имеет толщину приблизительно 150-300 мкм. Он покрыт слоем слизи (10-50 мкм), который молекулам одоранта предстоит преодолеть, прежде чем они провзаимодействуют со специальными сенсорными нейронами - обонятельными рецепторами.

Основная функция обонятельного рецептора состоит в выделении, кодировании и передаче информации об интенсивности, качестве и продолжительности запаха в обонятельную луковицу и специальным центрам в головном мозге. Эпителий в обеих носовых полостях у человека содержит приблизительно 10 млн обонятельных нейронов (у кролика - около 100 млн, а у немецкой овчарки - до 225 млн).

Как известно, нейрон состоит из тела и отростков: аксонов и дендритов. Нервный импульс с одной нервной клетки на другую передается с аксона на дендрит. Диаметр утолщенной центральной части обонятельного нейрона (сомы) 5-10 мкм. Дендритная часть в виде волокнистых отростков диаметром 1-2 мкм выходит к внешней поверхности эпителия. Здесь дендриты заканчиваются утолщением, от которого отходит пучок из 6-12 ресничек (цилий) диаметром 0,2-0,3 мкм и длиной до 200 мкм, погруженный внутрь слоя слизи (у кролика число ресничек в одном рецепторном нейроне составляет 30-60, а у собак достигает 100-150). Отходящее от сомы нервное волокно (аксон) имеет диаметр около 0,2 мкм и выходит к внутренней поверхности эпителия. Здесь аксоны от соседних нейронов объединяются в жгуты (филы), доходящие до обонятельной луковицы.

СЕМИОТИКА ОБОНЯНИЯ

Для того чтобы обонятельный сигнал был воспринят нейроном, молекула одоранта связывается со специальной белковой структурой, расположен ной в нейрональной клеточной мембране. Такая структура называется рецепторным белком. Используя методы молекулярной биологии, американские ученые Линда Бак и Ричард Аксель в 1991 году установили, что обонятельные нейроны у млекопитающих содержат около 1000 различных видов рецепторных белков (у человека их меньше - около 350). Признанием важности этого открытия стало присуждение им в 2004 году Нобелевской премии за исследования в области физиологии и медицины (см. "Наука и жизнь" № 12, 2004 г).

Каким образом рецепторы распределяются по нейронам: имеются ли отдельные представители этого семейства во всех обонятельных нейронах или каждый нейрон несет на своей мембране только один вид рецепторного белка? Как может мозг определить, какой из 1000 типов рецепторов подал сигнал? Имеющиеся данные позволяют сделать заключение о том, что на одном нейроне присутствует только обонятельный рецепторный белок одного вида. Нейроны с разными рецепторами обладают различной функциональностью, то есть в эпителии имеются тысячи различных типов нейронов. В этом случае проблема идентификации активированного запахом отдельного рецептора сводится к задаче выявления подавшего сигнал нейрона.

Принимая во внимание, что общее число обонятельных нейронов у человека около 10 млн, число обонятельных рецепторов одного типа исчисляется в среднем десятками тысяч.

Обонятельная система использует комбинаторную схему для идентификации одорантов и кодирования сигнала. Согласно ей один тип обонятельных рецепторов активируется множеством одорантов и один одорант активирует множество типов рецепторов. Различные одоранты кодируются различными комбинациями обонятельных рецепторов, причем увеличение концентрации стимула приводит к возрастанию числа активируемых рецепторов и к усложнению его рецепторного кода. В этой схеме каждый рецептор выступает в качестве одного из компонентов комбинаторного рецепторного кода для многих одорантов и как бы выполняет роль буквы своеобразного алфавита, из совокупности которых составляются соответствующие слова-запахи.

Минимальные структурные отличия молекул одорантов, например, по функциональной группе, по длине углеродной цепи, по пространственной структуре приводят к различному рецепторному коду. Для отличительного признака молекулы одоранта, способного изменить кодировку запаха, был предложен термин "одотоп" (odotope ), или детерминант запаха. Различные обонятельные рецепторы, которые распознают один и тот же одорант, могут идентифицировать различные его признаки-одотопы. Одиночный обонятельный рецептор способен "различать" молекулы, отличающиеся длиной углеродной цепочки всего лишь на один атом углерода, или молекулы, имеющие одинаковую длину углеродной цепочки, но отличающиеся функциональной группой. Учитывая, что в эпителии млекопитающих имеется приблизительно 1000 видов обонятельных рецепторов, можно полагать, что такая комбинаторная схема позволяет различить громадное число одорантов (даже человек различает до 10 000 запахов).

Полученные в последнее время результаты экспериментальных исследований свойств обонятельных рецепторных белков позволили создать на молекулярном уровне структурную модель спиральной молекулы обонятельного белка. Обонятельные рецепторные белки принадлежат к суперсемейству мембранносвязанных рецепторов. Они пересекают двухслойную липидную мембрану реснички семь раз. У содержащей 300-350 аминокислот молекулы рецепторного белка три наружные петли соединяются с тремя внутриклеточными петлями семью пересекающими мембрану трансмембранными участками.

НЕОБХОДИМАЯ СЛИЗЬ

Находящиеся в потоке воздуха молекулы одоранта, перед тем как достичь обонятельных рецепторных нейронов, должны пересечь обволакива ющий поверхность обонятельного эпителия слой слизи. Физиологические функции слоя слизи полностью до сих пор не выяснены. Не вызывает сомнения, что она создает гидрофильную оболочку для чувствительных и хрупких обонятельных рецепторов, выполняя защитную функцию. Ведь систему восприятия сигнала нужно защитить от воздействия внешней среды, то есть от молекул одорантов, среди которых могут быть достаточно опасные и химически активные вещества.

Слой слизи состоит из двух подслоев. Внешний, водный, имеет толщину примерно 5 мкм, а внутренний, более вязкий, - около 30 мкм. Реснички-цилии направлены наклонно к внешней поверхности слоя слизи. Они образуют своего рода сетку с нерегулярными ячейками, причем эта сетка размещена у поверхности раздела подслоев так, что основная часть поверхности ресничек (около 85%) оказывается расположен ной вблизи границы раздела.

Слой слизи содержит разнообразные растворимые в воде белки, значительную часть которых составляют так называемые гликопротеины. Благодаря разветвленной молекулярной структуре эти белки способны связывать и удерживать молекулы воды, образуя гель.

Другие виды белков, содержащихся в слизи, взаимодействуют с молекулами одорантов и тем самым могут оказывать влияние на восприятие и распознавание запахов. Эти белки подразделяются на два основных класса - одорант-связующие белки (OBP) и одорант-разрушающие ферменты.

ОВР относятся к семейству белков, имеющих складчатую бочкообразную структуру с внутренней глубокой полостью, в которую попадают маленькие молекулы гидрофильных (жирорастворимых) одорантов. Разные подвиды этих белков отличаются высокой избирательностью взаимодействия с одорантами различных химических классов.

Полагают, что OBP способствуют растворению одоранта и транспортируют его молекулы сквозь слой слизи, действуют как фильтр для разделения одорантов, могут облегчать связывание одоранта с рецепторным белком и даже очищать околорецепторное пространство от ненужных компонентов.

Кроме одорант-связующих белков в слизи обонятельного эпителия вблизи рецепторных нейронов обнаружены несколько видов одорант-разрушающих ферментов. Все эти ферменты запускают реакции превращения молекул одорантов в другие соединения. Образующиеся в результате этих реакций продукты также вносят свой вклад в восприятие запаха. В конечном итоге все поступающие в слой слизи молекулы одорантов быстро, практически одновременно с завершением вдоха, теряют свою "запаховую" активность. Так что обонятельная система при каждом вдохе получает новую информацию от свежих порций одоранта.

ОБОНЯНИЕ НА УРОВНЕ МОЛЕКУЛ

Многие свойства системы восприятия запахов можно объяснить на молекулярном уровне. Молекула одоранта встречает на поверхности слизи, покрывающей обонятельный эпителий, молекулу одорант-связующего белка, которая связывает и переносит молекулу одоранта через слой слизи к поверхности реснички обонятельного нейрона. В ресничках осуществляется основной процесс передачи обонятельного сигнала. Его механизм достаточно типичен для многих видов взаимодействий физиологически активных веществ с рецепторами нервных клеток.

Молекула одоранта прикрепляется к определенному обонятельному рецептору (R). Между процессом связывания молекулы одоранта с рецептором и передачей обонятельного сигнала в нервную систему лежит сложный каскад биохимических реакций, проходящих в нейроне. Связывание молекулы одоранта с рецепторным белком активирует так называемый G-белок, расположенный на внутренней стороне клеточной мембраны. G-белок в свою очередь активирует аденилатциклазу (AC) - фермент, преобразующий внутриклеточный аденозинтрифосфат (ATP) в циклический аденозинмонофосфат (cAMP). А уже cAMP активирует другой мембранносвязанный белок, который называется ионным каналом, поскольку открывает и закрывает вход заряженным частицам внутрь клетки. Когда ионный канал открыт, в клетку проникают катионы металлов. Таким способом меняется электрический потенциал клеточной мембраны и генерируется электрический импульс, передающий сигнал с одного нейрона на другой.

Несколько молекулярных стадий передачи внутриклеточного сигнала обеспечивают его усиление, в результате чего небольшого числа молекул одоранта становится достаточно для генерирования нейроном электрического импульса. Такие усилительные каскады обеспечивают большую чувствительность системы восприятия запахов.

Итак, активация рецепторного белка молекулой одоранта в конечном счете приводит к генерированию электрического тока в обонятельном рецепторном нейроне. Ток распространяется по дендриту нейрона в его соматическую часть, где возбуждает выходной электрический импульс. Этот импульс передается по нейрональному аксону в обонятельную луковицу.

Одиночный электрический сигнал-импульс на выходе имеет длительность не более 5 мс и пиковую амплитуду около 100 мкВ. Почти все нейроны генерируют импульсы и при отсутствии воздействия одоранта, то есть обладают спонтанной активностью, называемой биологическим шумом. Частота этих импульсов меняется в диапазоне от 0,07 до 1,8 импульса в секунду.

ЛУКОВИЧНАЯ НЕЙРОСЕТЬ

Обонятельные рецепторные нейроны распознают громадное число разнообразных молекул пахучих веществ и посылают информацию о них через аксоны в обонятельную луковицу, служащую первым центром обработки обонятельной информации в головном мозге. Парные обонятельные луковицы представляют собой продолговатые образования "на ножках". Отсюда начинается путь обонятельного сигнала к полушариям мозга. Аксоны обонятельных нейронов оканчиваются в обонятельной луковице разветвлениями в сферических концентраторах (диаметром 100-200 мкм), называемых гломерулами. В гломерулах осуществляется контакт между окончаниями аксонов обонятельных нейронов и дендритами нейронов второго порядка, которыми являются митральные и пучковые клетки.

Митральные клетки - самые крупные нервные клетки, выходящие из обонятельной луковицы. Пучковые клетки меньше митральных, но функционально с ними схожи. Представление о количестве нервных клеток у млекопитающих могут дать характеристики обонятельной системы кролика. В ней имеется по 50 миллионов обонятельных рецепторных нейронов справа и слева (ровно в десять раз больше, чем у человека). Аксоны обонятельных рецепторов распределены между 1900 гломерулами обонятельной луковицы - примерно по 26 000 аксонов на гломерулу. Дендритные окончания 45 000 митральных и 130 000 пучковых клеток получают сигналы от аксонов в гломерулах и передают их из обонятельной луковицы в центры обоняния в головном мозге. Около 24 митральных и 70 пучковых клеток получают информацию от аксонов в каждой гломеруле. У человека около 10 млн аксонов обонятельных нейронов распределяются по 2000 гломерул обонятельной луковицы.

Все аксоны одной популяции обонятельных нейронов сходятся на две гломерулы, зеркально расположенные по разные стороны двумерного поверхностного слоя обонятельной луковицы. В зависимости от содержания передаваемого сигнала гломерулы активируются различным образом. Совокупность активированных гломерул называется картой запаха и представляет своего рода "слепок" запаха, то есть она показывает, из каких пахучих веществ состоит воспринимаемый обонятельный объект.

Механизм активации гломерул до сих пор не выяснен. Усилия исследователей направлены на то, чтобы выяснить, каким образом многообразие одорантов воспроизводится в двумерном слое гломерул на поверхности обонятельной луковицы. Кстати, эти отображения имеют динамический характер - они постоянно меняются в ходе восприятия запаха, усложняя научную задачу.

Обонятельная луковица - это большая многослойная нейросеть для пространственно-временнoй обработки отображения запаха в гломерулах. Ее можно рассматривать как совокупность множества микросхем с большим количеством связей, со взаимной активацией и ингибированием активности нейронов. Выполняемые нейронами операции выделяют характерные свойства карты запаха.

От обонятельной луковицы аксоны митральных и пучковых клеток передают информацию в первичные обонятельные участки коры головного мозга, а затем в высшие ее участки, где формируется осознанное ощущение запаха, и в лимбическую систему, которая порождает эмоциональную и мотивационную реакцию на обонятельный сигнал.

Свойства обонятельных зон коры головного мозга позволяют формировать ассоциативную память, которая устанавливает связь нового аромата с отпечатками воспринятых ранее обонятельных стимулов. Полагают, что процесс идентификации одоранта включает сравнение получающегося отображения с его описанием в семантической памяти. В случае совпадения отпечатка и памяти о запахе происходит какой-либо ответ (эмоциональный, двигательный) организма. Процесс этот осуществляется очень быстро, в течение секунды, и информация о совпадении после ответа сразу сбрасывается, поскольку мозг готовит себя к решению следующей задачи восприятия запаха.

ЗАГАДКИ ЗАПАХОВ

То, о чем говорилось в предыдущих разделах, относится пусть к самому сложному, основополагающему, но начальному разделу науки о запахах - к их восприятию. Не раскрыт механизм взаимодействия обоняния с другими системами восприятия, например со вкусом (см. "Наука и жизнь" № , с. 16-20). Ведь известно, что если человеку зажать ноздри, то при дегустации даже хорошо известных вкусовых пищевых продуктов (например - кофе) он не в состоянии точно определить, что он пробовал. Достаточно разжать ноздри - и вкусовые ощущения восстанавливаются.

С молекулярной точки зрения пока непонятно, в каких единицах измерять интенсивность запаха и от чего она зависит, что такое качество запаха, его "букет", чем отличается один запах от другого и как охарактеризовать это отличие, что происходит с запахом при смешивании различных одорантов. Оказывается, что независимо от вида одорантов и уровня подготовленности даже опытный эксперт не может определить все составляющие смесь компоненты, если их больше трех. Если же смесь содержит более десяти одорантов, то человек не в состоянии идентифицировать ни одного из них.

Остается еще множество вопросов, касающихся механизмов и видов воздействия запахов на эмоциональное, психическое и физическое состояния человека. В последнее время на эту тему появилось немало спекуляций, чему поспособствовал вышедший в 1985 году роман П. Зюскинда "Парфюмер", более восьми лет прочно занимавший место в первой десятке бестселлеров на западном книжном рынке. Фантазии на тему чрезвычайной силы подсознательного воздействия ароматов на эмоциональное состояние человека обеспечили этому произведению огромный успех.

Однако художественный вымысел постепенно получает обоснование. Недавно в периодической печати появились сообщения о том, что американские военные "парфюмеры" разработали на редкость дурно пахнущую бомбу, способную не только вызвать отвращение, но и разогнать солдат противника или агрессивно настроенную толпу.

Общественные аллюзии на парфюмерные темы подстегнули всеобщий интерес к искусству ароматерапии. Расширилось использование ароматов в общественных местах, таких, как офисы, торговые залы, холлы гостиниц. Появились даже специальным образом ароматизированные товары, улучшающие настроение. Возникла такая отрасль рыночной экономики, как аромамаркетинг - "наука" о привлечении клиентов с помощью приятных запахов. Так, запах кожи навевает покупателю мысли о дорогом качественном товаре, аромат кофе побуждает к покупкам для домашнего ужина и т.д. Каким образом запахи формируют в головном мозге сигналы, побуждающие человека совершать покупки? Ученым предстоит совершить еще немало открытий, прежде чем ответить на этот и многие другие вопросы и отделить мифы о запахах от реальности.

Литература

Лозовская Е., канд. физ.-мат. наук. // Наука и жизнь, 2004, № 12.

Майоров В. А. Запахи: их восприятие, воздействие, устранение. - М.: Мир, 2006.

Марголина А., канд. биол. наук. // Наука и жизнь, 2005, № 7.

Шульпин Г., канд. хим. наук. Загадка запаха // Наука и жизнь, 1978, № 1.

Наша жизнь представляет собой непрерывную реакцию организма на поступающую информацию. Львиную ее долю поставляет зрение. А обоняние называют пятым чувством - после зрения, слуха, вкуса и осязания. Однако запахи имеют для человека, пожалуй, даже большее значение, чем информация от остальных органов чувств.

Сезон отпусков подходил к концу, а в одном из парижских уни­вермагов оставался непроданным большой запас летних товаров. И то­гда директор обратился за помощью к специалистам по запахам - одорологам. Те порекомендовали ис­пользовать в торговых залах аромат свежескошенного сена. Гранулы с этим запахом срочно разместили во всех отделах, где продавались това­ры для отдыха. И они пошли нарас­хват. Через неделю владелец уни­вермага вместо убытков подсчиты­вал прибыль: запах не подвел.

Можно привести десятки подоб­ных примеров, но сами по себе они не объясняют тайну власти запахов над нами. Чтобы понять ее, начнем, как говорится, танцевать от печки, в данном случае - от носа, издавна считавшегося самым загадочным из всех органов чувств. Лишь сравни­тельно недавно исследователям удалось проследить сложные связи между носом, воспринимающим за­пахи, и другими органами.

Дело обстоит так. Обонятельная область находится в верхнем отделе полости носа. Воздух попадает туда, пройдя фильтр из реснитчатых кле­ток эпителия, которые задерживают мельчайшие частицы пыли и микро­организмы.

Слизистая оболочка обонятель­ной ямки отличается от слизистой остальной поверхности полости носа от остальных органов чувств и цветом, и строением. В ее толще находится более 10 миллионов рецепторных клеток. Каждая из них по форме напоминает веретено с двумя отростками. Один - короткий, пе­риферический - направлен к по­верхности слизистой оболочки, дру­гой - длинный, так называемый центральный - в головной мозг.

На концах периферических отро­стков есть утолщения с 10-12 очень подвижными тонкими волосками. Они сгибаются, выпрямляются, по­ворачиваются в разные стороны, отыскивая и улавливая молекулы пахучих веществ. На этих обоня­тельных ресничках расположены ре-цепторные участки, отличающиеся друг от друга своим строением, бла­годаря чему каждый Из них вступает в контакт только с определенными пахучими молекулами.

В результате этого контакта в рецепторной клетке рождается нерв­ный импульс, который и устремляет­ся по центральному отростку в мозг - в его височную долю, где нахо­дится высший отдел обонятельного анализатора. После обработки при­нятой информации в нем форми­руется ощущение того или иного за­паха.

От анализатора разбегаются нер­вные пучки (их так и называют цен­тробежными), которые связывают его с вегетативными ядрами, гипота­ламусом, зрительным бугром и неко- торыми другими образованиями лим-бического комплекса. « В этих бога­тейших нервных связях обонятельно­го анализатора со многими структу­рами мозга, - подчеркивает про­фессор Е.С. Вельховер, - и кроется разгадка влияния различных обоня­тельных ощущений на функции орга­низма».

Кстати, наш « нюхательный аппа­рат» обладает уникальной особен­ностью. Известно, что нервные клет­ки головного мозга не восстанавли­ваются. Однако ученые из Центра медицинских исследований при уни­верситете штата Нью-Йорк обнару­жили исключение из этого правила. Оказывается, природа позаботилась о повышенной надежности нашего органа « пятого чувства» - очевид­но, в силу его чрезвычайной важно­сти для всего организма. Обоня­тельный нерв функционирует лишь 30-90 дней, а затем отмирает. Но к этому времени уже сформировался новенький нерв! Причем сам процесс их замены нисколько не влияет на чувствительность к запахам.

Нейробиолог Джеймс Швоб ком­ментирует это открытие так: « В обо­нятельной системе постоянно повто­ряются такие процессы, которые ха­рактерны для головного мозга лишь на эмбриональной стадии развития, а именно - процессы зарождения и дифференциации нейронов. Если мы поймем механизм их регенерации, то получим бесценную информацию о том, как развивается мозг».

Что такое запах? Если задаться вопросом, сколько существует запа­хов, ответ должен быть таким: столь­ко, сколько различных веществ и их комбинаций. У каждого вещества 74 свои летучие составляющие. Пахнут даже камни, в чем каждый может убедиться, если с силой ударит один камень о другой. Это подтверждает и « электронный нос» - лазерный при­бор, анализирующий испарения твердых тел, переведенных в газооб­разное состояние. На такой слож­нейший анализ требуется три секун­ды. А вот муха практически мгновен­но отличает сахар от сахарина, ана­лизируя, как установили исследова­тели, пространственное строение молекул запаха.

Люди давно догадывались, что запах - не что иное, как мельчай­шие частицы вещества, попадающие в нос. Но каким образом человек различает запахи? Как нос понимает, что, например, пахнет подгоревшим молоком, а не хвоей? Как он разли­чает бесконечные оттенки запахов? Взять хотя бы растительное масло. По запаху можно не только отличить соевое масло от подсолнечного, но и определить его происхождение: им­портное (оно почти без запаха), или с городского маслозавода, или дере­венское (самое пахучее).

С такой задачей справится почти любой человек. Но есть люди, кото­рые различают в несколько раз больше запахов, чем другие. Таких гениев обоняния единицы. « Носы» - именно так уважительно называ­ют дегустаторов-одорологов экстра­класса. Особенно ценятся « носы» в парфюмерной промышленности. В восприятии запахов есть и свои без­дарности, которым « медведь на нос наступил».

Вообще человеческий нос спосо­бен воспринять более 10 тысяч за­пахов. Но подавляющее большинст- во сигналов обонятельного анализа­тора отсылается в подсознание, и лишь незначительная часть одоро­логической информации восприни­мается мозгом как важная. Второ­степенная информация органов обо­няния усваивается на подсознатель­ном уровне, причем ее роль часто оказывается очень существенной, хотя человек может об этом даже не подозревать. Биологически важными запахами для любого живого суще­ства всегда остаются запахи пищи, опасности, полового партнера, ре­бенка.

В принципе, каждый может на­тренировать свой нюх, чтобы расши­рить спектр различаемых запахов. Для этого есть специальные методи­ки. Самая простая - специально об­ращать внимание на запахи. Как только вы начинаете фиксировать внимание на запахах, у вас начинает развиваться и соответствующая зона мозга.

Итак, пахучие молекулы воздей­ствуют на рецепторы обонятельных ресничек. Но как это происходит? Видные специалисты в области сте­реохимии Р. Монкрифф и Дж. Эймур доказали, что все дело в форме мо­лекулы. Ее восприятие молекулой рецептора подобно вхождению клю­ча в замок. Если они подходят друг к другу, происходит реакция « узнава­ния» определенного первичного за­паха.

На основании этой теории ученые построили трехмерные модели « пер­вичных» запахов. Молекула камфа­ры, например, округлая, мускуса - имеет форму диска. Приятный цве­точный запах вызывают пахучие мо­лекулы сходной дискообразной формы, но с гибким хвостом, как у воз­душных змеев. Прохладным мятным запахом обладают молекулы клино­образной формы. А эфирный запах обязан своим происхождением па­лочковидным молекулам.

А теперь проследуем за инфор­мационным импульсом из обоня­тельного анализатора, в головной мозг.

Когда речь идет о механизме процессов регуляции в организме, обычно его объясняют так: тот или иной орган посылает свой импульс, по нервным каналам в мозг, который в ответ отдает соответствующую ко­мандусигнал этому органу. А по по­воду характеристик таких импульсов и сигналов обычно произносят стан­дартную фразу: « электрические по своей природе». Но это все равно, что в ответ на вопрос о содержании телеграммы сказать: « Она послана с помощью электрического тока». Главное в биоэлектрических сигна­лах, циркулирующих в организме, - спектр их частот. Именно они явля­ются содержанием нервных импуль­сов, обеспечивающих согласованное функционирование различных сис­тем и органов. Эти частоты можно назвать « словами» непрерывного « диалога», а то и « выступлений» участников « общего собрания» орга­низма.

Обонятельный анализатор тоже активно участвует в « обмене репли­ками». Когда « ключ» (молекула па­хучего вещества) попадает в « замок» (соответствующую ей молекулу ре­цептора), по нервным каналам сле­дует электромагнитный сигнал стро­го определенной частоты. То, что он является электрическим, а не хими- ческим, было доказано в целом ряде опытов.

В апреле 1991 года американцы Линда Бак и Ричард Акселем из Ме­ждународного института имени Го­варда Хьюза при Колумбийском уни­верситете сообщили о своем откры­тии, ставшим одной из самых гром­ких научных сенсаций последних лет: устройство обонятельных рецепто­ров запрограммировано генетически! Оказывается, существует целое се­мейство генов, в которых закодиро­ваны « индивидуальные инструкции» по устройству разнотипных рецепто­ров. Другими словами, природа за­ранее позаботилась создать разно­типные рецепторы для каждого из более чем 10 тысяч запахов, которые воспринимает человек. Образно го­воря, это она изготовила 10 тысяч « замков» для 10 тысяч « ключей».

В мозге запаховые сигналы из обонятельного анализатора, попав в гипоталамус, приводят в действие « спусковой механизм», стимули­рующий выработку различных гор­монов. Впрочем, не исключено, что эти сигналы могут поступать прямо в центры эмоций, расположенные в височной доле. Главное, что в лю­бом случае под влиянием запахов рождаются гормоны, которые влияют на наше эмоциональное состояние. Еще в древних медицинских тракта­тах отмечено, что аромат одних рас­тений может возбуждать, бодрить, придавать силу и смелость, а других, наоборот, успокаивать, усыплять, вызывать тоску и тревогу у совер­шенно здоровых людей.

А вот любопытное свидетельство на сей счет современного исследо­вателя Сергея Москалева: « Для транспорта я использую особый оде­колон. Он надежно защищает меня от грязных и негармоничных вибра­ций. В свою очередь, окружающие меня люди, попадая в поле этого одеколона, также ощущают его бла­готворное воздействие, например, они перестают быть агрессивными… Если я нахожусь в троллейбусе и рядом стоит или сидит раздражен­ный и издерганный человек, то он, воспринимая успокаивающий запах, меняется на глазах: его состояние начинает улучшаться - взгляд теп­леет, напряженные мышцы лица раз­глаживаются, рука уже не так судо­рожно сжимает поручень, голос при­обретает мягкие оттенки».

Больше того, запахи влияют не только на психику, но и на сому - наше тело. Через гормональные ме­ханизмы они способны изменять ритм дыхания и пульс, накладывать свой отпечаток на зрительные, слу­ховые, вкусовые ощущения. Что ка­сается вкуса, то каждый знает, как возбуждает аппетит вкусно пахнущая еда. Но достаточно подхватить на­сморк, блокирующий обонятельный анализатор, и та же самая пища ка­жется безвкусной.

Сбои и поломки в « нюхательном аппарате» могут вызывать и более серьезные последствия. Так, во вре­мя опытов крысы с удаленными обо­нятельными луковицами набрасыва­лись на любое живое существо, ко­торое сажали в клетку: мышь, лягуш­ку, черепаху, даже крысенка, хотя нормальные особи лишь обнюхива­ли гостей. Лишившись обоняния, они проявляли немотивированную агрес­сию ко всему, что двигалось.

По схожести воздействия на че- ловека запахи делятся на несколько групп. Приятные - снижают кровя­ное давление и частоту пульса, вы­зывают чувство удовлетворения и высокую самооценку. Неприятные - повышают кровяное давление и час­тоту пульса, делают дыхание более частым и глубоким, провоцируют раздражение и недовольство собой. Сладкие и горькие - увеличивают работоспособность, мускусные - га­зообмен. Мятные, лимонные, розо­вые, напротив, уменьшают газооб­мен. К тому же ванилин, розовое и бергамотные масла нормализуют ритм дыхания.

Эти общие закономерности давно нашли практическое отражение в на­родной медицине, в которой есть ре­комендации для различных жизнен­ных ситуаций. Например, если нужно успокоиться, можно просто понюхать ромашку или герань. Кстати, про ро­машку Авиценна писал: « Если ню­хать ее свежую, она усыпляет». За­пах герани помогает избавиться от головной боли, гвоздики - от зуб­ной, левзеи - снять синдром похме­лья. Подскочило давление - помо­гут валериана, ваниль, мелисса. Ра­боту сердца усилит запах тополя и боярышника.

Японские ученые провели иссле­дование, чтобы определить, какие запахи мобилизуют внутренние ре­зервы организма, а какие помогают расслабиться и отдохнуть. Оказа­лось, что запахи лимона и эвкалипта возбуждают и увеличивают произво­дительность труда, а лаванды и роз­марина действуют успокаивающе. Студенты лучше справлялись с тес­тами, если аудитория периодически наполнялась ароматами мяты или ландыша. Запах ванили снимает стрессовое состояние, способствует расслаблению после сильного нерв­ного напряжения. У программистов г количество ошибок уменьшалось на 20%, когда они вдыхали запах ла­ванды, на 33% - от запаха жасмина и на 54% - от запаха лимона. Кроме того, было установлено, что запах моря - соли и йода - может уменьшить чувство тревоги. А запах яблока, по данным американских ис­следователей, ускоряет решение за­дач на сообразительность.

Исходя из результатов подобных исследований, корпорация « Кадзима» установила 33 мощные системы для насыщения ароматами воздуха в административных зданиях и 250 аналогичных устройств меньшей мощности для офисов различных компаний. Причем « ароматическое меню» на день составлено таким об­разом, чтобы запахи не только под­стегивали человека, но и периодиче­ски давали ему возможность рас­слабиться и немного отдохнуть. По­добная гуманность обусловлена прежде всего тем, что, как показали исследования ученых из Медицин­ского центра Джона Гопкинса и Дьюкского университета, при дли­тельном воздействии одного и того же запаха он просто перестает вы­зывать соответствующую гормо­нальную реакцию. Причина проста: обонятельные рецепторы теряют к нему чувствительность, поскольку их блокирует специфический белок-фермент.

Сергей Демкин

С. САМСОНОВ, кандидат биологических наук.

В познании фоторецепции – работы органов зрения за последнюю четверть века достигнуты существенные успехи. Механизмы обоняния, восприятия запахов изучены значительно меньше, хотя интерес к ним продолжает возрастать. Перспективные результаты, имеющие не только научную, но и практическую ценность, получены в лаборатории рецепции Института биологической физики АН СССР, которой руководит профессор Е.Е. Фесенко.

Орган обоняния поистине уникален. Он способен быстро распознавать огромное число самых различных веществ, хотя бы их было ничтожно мало – всего несколько сотен молекул в кубическом сантиметре окружающего нас пространства. Природный анализатор запахов неизмеримо превосходит соответствующие приборы, созданные людьми. Как писал академик П.Л. Капица, «физика располагает приборами во много раз чувствительнее наших органов чувств. Только... обоняние... у животных более совершенно...». И считал одной из важнейших проблем физики будущего – «догнать обоняние собаки».

Очевидно, чувство обоняния появилось у представителей животного царства раньше остальных. В глубинах теплых древнейших морей оно расширило возможности поисков пищи, особей другого пола и, конечно, помогало избежать опасности.

С тех пор миновала длинная череда миллионолетий, но свое непреходящее значение обоняние сохранило и сейчас. Конечно, люди в смысле восприятия запахов многое потеряли по сравнению со своими далекими предками и в ряду живых существ занимают в этом отношении скромное место. И все же современный человек способен уловить разницу между доброй сотней тысяч различных соединений и множеством их комбинаций. Можно сказать, что это даже слишком много, поскольку человеческий язык не в состоянии дать каждому из запахов достаточно полную качественную характеристику. Слишком беден словарный запас.

Исследователи постоянно стремятся найти у пахучих соединений общие черты, обусловливающие их восприятие. Например, имеет значение молекулярная масса вещества: она должна находиться в диапазоне 17...300 дальтон – только тогда они для нас пахнут. И тем сильнее, чем больше и сложнее молекула, но тоже до определенных пределов, поскольку при усложнении уменьшается летучесть вещества, а это свойство определяет распространение запаха.

Делались попытки найти зависимость между особенностями восприятия различных веществ и формой их молекулы. Американский ученый Дж. Эймур, анализируя несколько сотен органических соединений, пришел к выводу, что их можно сгруппировать вокруг семи основных запахов: камфорного, мускусного, мятного, эфирного, цветочного, острого, гнилостного. Каждая группа имеет внутреннее сходство в молекулярном строении, а на мембранах рецепторных клеток должны находиться стереоспецифические активные центры семи типов. Так появилась на свет стереохимическая теория, ставшая существенным шагом вперед на пути классификации запахов, хотя она и носила в значительной степени умозрительный характер. Последующие исследования показали, что дело обстоит сложнее, чем предполагал Дж. Эймур, и воздействие на клетки, воспринимающие запах (обонятельные рецепторы), определяется не только формой, но и другими параметрами молекулы.

Результаты многих исследований также окончательно подтвердили, что обонятельный анализатор животных способен обнаруживать чрезвычайно низкие концентрации пахучих веществ. Особенно он чувствителен у насекомых, улавливающих издалека присутствие полового феромона, даже если в кубическом сантиметре воздуха его не более 100 молекул. Но все-таки многие свойства рецепторной клетки продолжали оставаться неясными.

Одним из центральных вопросов, вставших перед исследователями, была необходимость найти тот элемент клетки, с помощью которого она воспринимает запахи.

Предварительно стоит коротко рассказать об общей организации обонятельной системы у позвоночных. Рецепторные клетки обонятельного эпителия играют роль первичного механизма, улавливающего запахи извне. Они, по существу, являются нервными клетками, и от каждой из них отходит очень тонкий (диаметром около 0,2 микрометра) отросток – аксон, который оканчивается на поверхности одного из периферических отделов головного мозга – обонятельной луковицы. Здесь происходит первичная обработка полученной пахучей информации. Далее она передается по нервным волокнам обонятельного тракта в соответствующие участки головного мозга.

Обычно обонятельные клетки имеют веретенообразную форму и наделены периферическим и центральным отростками. Первый заканчивается обонятельной булавой, усаженной тончайшими волосками (антеннами), имеющими довольно сложное строение. Антенны содержат набор трубчатых фибрилл, напоминая в этом отношении жгутики или реснички, широко распространенные в мире простейших. Они находятся в постоянном движении, напоминая при разглядывании в микроскоп колосящуюся ниву.

Центральный отросток – аксон представляет собой не что иное, как ответвление обонятельного нерва. Аксоны разных клеток объединены в группы по 20...100 волокон и в составе обонятельного нерва идут к уже упомянутой обонятельной луковице.

Анализаторы различных животных могут существенно отличаться друг от друга. Разница заключается не только в плотности размещения рецепторных клеток, но и в их общем количестве. Для примера сравним собаку и человека. Разница в восприятии запахов у них громадна, хотя на квадратный сантиметр обонятельного эпителия приходится примерно одинаковое число рецепторных клеток. Зато их общее количество у собаки в 20...25 раз больше, чем у человека, и составляет около 200 миллионов. Поскольку каждая рецепторная клетка имеет свой аксон, обонятельный нерв собаки представляет собой «кабель», содержащий 200 миллионов «жил»!

Строение участка эпителия – приемника запахов

Кроме обонятельных, в составе эпителия имеются опорные клетки. Они образуют каркас эпителия, поддерживающий его структуру. Это, однако, не единственная их функция. Ряд исследователей полагают, что они не только поддерживают рецепторные клетки, но и помогают им в обмене веществ.

Есть еще третий тип клеток – базальные, находящиеся в глубине эпителия. Они образуют клеточный резерв, из которого при необходимости формируются рецепторные и опорные клетки. Поверхность эпителия, выстилающего обонятельную полость, покрыта слизью, что характерно для всех позвоночных. Слизь защищает эпителий от высыхания у наземных животных и от излишнего смачивания – у водных. Кроме того, она является источником ионов, необходимых для генерации электрического ответа клетки (то есть сигнала в мозг о появлении запаха), и участвует, возможно, в удалении остатков пахучих веществ с поверхности обонятельного эпителия по окончании их действия. В сущности, она является средой, где возникает и заканчивается взаимодействие пахучих веществ с обонятельными клетками.

Теперь вернемся к исследованию природы рецепторного элемента. Основой для постановки экспериментов послужила давно известная способность белков обеспечивать высокую специфичность и избирательность биологических реакций, в которые они вовлечены. Образно говоря, к каждому белку можно подобрать определенный «ключ», он будет единственным, и по нему можно узнавать, с каким «замком» имеешь дело. Ученые предполагали, что и обонятельные клетки не обходятся без белковых структур, взаимодействующих с пахучими веществами, но это надо было проверить.

Чтобы найти эти структуры, ученые решили ввести в клетку радиоактивное пахучее вещество, а затем, разделяя клеточные компоненты и измеряя радиоактивность каждого из них, найти тот, что взаимодействует с пахучей радиоактивной меткой. Это и будет кандидат в рецепторы пахучих веществ.

Для этих экспериментов необходимо было пахучее вещество с высокой удельной радиоактивностью. Выбор пал на камфору, которая часто используется в электрофизиологических экспериментах и обладает одним из 7 основных запахов по классификации Дж. Эймура. Здесь на помощь биологам пришли радиохимики из Института молекулярной генетики АН СССР, которые специально для этих опытов синтезировали радиоактивную камфору с нужными свойствами.

Опыты ставились следующим образом. На первом этапе с помощью соскоба получали препараты обонятельного эпителия лягушки и крысы с частичками мембран рецепторных клеток. В препарат вводили радиоактивную камфору и затем выделяли фракцию, содержащую радиоактивную метку. Для контроля то же самое проделывали с препаратами, приготовленными из других органов животного.

Как и следовало ожидать, компонент, способный эффективно связывать камфору при очень низких концентрациях последней, был обнаружен только в препарате обонятельного эпителия. В тканях языка, легких, печени его не оказалось. Удалось определить и молекулярную массу рецептора, составившую около 140 000 дальтон. В специальных экспериментах была установлена белковая природа рецептора. Исследователи показали, что молекула рецептора состоит из 2-х субъединиц с молекулярной массой 88 000 и 55 000 дальтон, причем центр связывания камфоры находится на большой субъединице. Как и предполагали, рецептор пахучих веществ оказался мембранным белком, практически не растворимым в воде.

Но полученные результаты не удовлетворили исследователей. Дело в том, что сама по себе способность связывать пахучее вещество еще не доказательство рецепторной природы того или иного компонента клетки. Она может оказаться случайной или играющей иную роль, не связанную с узнаванием пахучего вещества. В принципе в обонятельном эпителии могут быть несколько компонентов, способных связывать пахучие вещества, и только один из них может оказаться рецептором. Необходимо было еще раз проверить, но уже иными методами, что обнаруженные белки действительно служат рецепторами запахов.

Здесь исследователи пошли иммунохимическим путем. Если взять проверяемые белки, скажем, у крысы и ввести кролику, то там они сыграют роль «чужака»-антигена и, стало быть, вызовут образование антител к этим белкам. Если затем ввести антитела в препарат обонятельной ткани, то они, найдя там «свои» белки (кандидаты в рецепторы), помешают им связаться с радиоактивной камфорой. В этом случае электрического сигнала о получении запаха не будет. А если будет, то, значит, этот белок не рецептор.

Выполнив чрезвычайно трудоемкую операцию по извлечению нужных белков из крыс, исследователи иммунизировали ими кролика и получили в конечном итоге антитела к рецептору. Затем в специальных экспериментах было показано, что антитела эффективно блокируют связывание камфоры с рецептором. Остался последний, решающий шаг – показать, что антитела блокируют также электрический ответ клетки на пахучие вещества. Электрофизиологический эксперимент показал, что это действительно так. Сомнений в том, что выделенный белок относится к классу рецепторных, практически не осталось.

Иммунохимический подход позволил исследователям попутно решить еще две важные задачи. Во-первых, было определено место расположения рецепторов запаха в обонятельном эпителии. Как и предполагали, они локализованы в его поверхностном слое. Во-вторых, с помощью антител удалось резко упростить и ускорить процедуру выделения рецептора. Вместо прежних многосуточных процедур рецептор теперь можно выделить в течение 2...3 часов: для этого достаточно один раз пропустить препарат обонятельного эпителия через колонку с антителами. При этом через колонку проходят все компоненты препарата, кроме рецептора, который задерживает антитела. После удаления всех остальных компонентов рецептор вымывается из колонки специальным раствором, в котором ослабляется взаимодействие антитела и рецептора.

Сравнив свойства камфорных рецепторов из обонятельной ткани лягушки и крысы, исследователи обнаружили, что они очень похожи по своим свойствам. А как обстоит дело с рецепторами на другие пахучие вещества? Быть может, все они очень похожи друг на друга и составляют семейство обонятельных рецепторных белков, подобно зрительным пигментам различных животных? Чтобы ответить на этот вопрос, необходимо было синтезировать хотя бы несколько радиоактивных пахучих веществ, относящихся к разным классам запахов. К сожалению, синтез каждой такой метки представляет сложную и очень трудоемкую задачу, поэтому исследователи были вынуждены пойти по другому пути. Они сменили объект и стали использовать в опытах препараты обонятельного эпителия рыб, для которых химическими стимулами служат аминокислоты, а их радиоактивные аналоги легкодоступны.

Надо сказать, что рыбы обладают хорошо развитой обонятельной системой и способны реагировать на весьма низкие концентрации пахучих веществ. Некоторые аминокислоты и их смеси имеют сигнальное значение для рыб. Так, угорь находит моллюска, которого использует в пищу, по выделенному им в воду комплексу из 7 аминокислот. С давних пор известно, что лососи стараются обойти то место в реке, где медведь ловит рыбу. Было выяснено, что сигнал тревоги имеет химическую природу и вымывается из кожи медведя. Его назвали «фактором звериной шкуры». Оказалось, что главным компонентом этого фактора является аминокислота L-серин. Ее добавление в речную воду само по себе вызывает реакцию тревоги у лососей. В последнее время удалось экспериментально доказать возможность привлечения с помощью химических сигналов некоторых морских рыб.

Все это делает рыб весьма привлекательным объектом с точки зрения изучения механизмов восприятия запахов. В опытах сотрудников лаборатории, которые были проведены на базе Карадагской биостанции, использовались черноморские скаты-хвостоколы, обладающие хорошо развитым и легкодоступным обонятельным анализатором. В качестве стимулов применялись уже упомянутые L-серин и другие аминокислоты. Во всех случаях были обнаружены мембранные белки, способные эффективно связывать аминокислоты. Их характеристики, в частности молекулярный вес и субъединичное строение, оказались практически такими же, как у камфорного рецептора лягушки и крысы. Сегодня у исследователей нет сомнений, что они имеют дело с новым семейством рецепторных белков, уникальными свойствами которых в значительной степени объясняются рекордные чувствительность и избирательность обонятельного анализатора.

Последующие эксперименты показали, что, кроме белкового рецептора, в обонятельном эпителии животных присутствует другой высокомолекулярный компонент, также способный связывать пахучие вещества. В отличие от мембранного белка он растворяется в воде, и, по крайней мере, часть его находится в слизи, покрывающей обонятельный эпителий. Установлено, что он имеет нуклеопротеидную природу, его молекулярная масса составляет около 150 000 дальтон. Его концентрация в эпителии в несколько тысяч раз выше, чем мембранного рецептора, а специфичность по отношению к пахучим веществам значительно меньше. Принимает ли нуклеопротеид участие в восприятии пахучих веществ? Если да, то какова его роль в этом процессе? Исследователи полагают, что он входит в состав неспецифической системы, обеспечивающей очистку обонятельного эпителия от различных пахучих веществ по окончании их действия, что необходимо для приема других запахов. Иными словами, предполагается, что нуклеопротеид, попадая в слизь, способен усиливать ток слизи и тем увеличивать эффективность очистки обонятельного эпителия. Не исключено также, что нуклеопротеид, находясь в слизи, способствует растворению пахучих веществ в ней и, возможно, выполняет транспортные функции.


Молекула пахучего вещества, доставленная гранулой-адсорбентом к мембране клетки, взаимодействует с распознающим участком рецептора, который специальным белком G активирует аденилатцинлазу (АЦ) или какой-нибудь другой фермент. Синтезированные при этом внутриклеточные медиаторы (АТФ → цАМФ) активизируют ионные каналы, что приводит к возбуждению электрического сигнала в мозг о появлении запаха.

Исследователи располагают данными, указывающими на то, что нуклеопротеид синтезируется в опорных клетках и входит в состав пигментных гранул, которые выбрасываются из опорных клеток в слизь в ответ на стимуляцию обонятельного эпителия пахучими веществами. Может быть, это одна из основных функций опорных клеток при восприятии пахучих веществ?

Итак, результаты исследований говорят о том, что в процессе восприятия пахучих веществ участвуют две системы рецепторных элементов. Одна из них – система мембранных рецепторов – обеспечивает физиологический ответ клетки, характеризующийся высокой чувствительностью и избирательностью, вторая же – нуклеопротеидной природы – обеспечивает очистку обонятельного эпителия от пахучих веществ после приема сигнала.

Над чем сейчас работают ученые? Одна из задач – дальнейшее исследование свойств рецепторов и в частности определение функциональной роли малой (с молекулярной массой 55 000 дальтон) его субъединицы в реакции клетки на пахучее вещество. Но главное, пожалуй, сегодня не это. Необходимо понять, каким образом взаимодействие рецептора, с пахучим веществом вызывает генерацию электрического ответа клетки. По косвенным данным можно судить, что обонятельная клетка способна реагировать на одну (!) молекулу пахучего вещества – это предел физической чувствительности. Но в этом случае она должна обладать эффективной системой усиления слабых сигналов и чрезвычайно низким уровнем собственного шума. Расшифровать эти механизмы – значит сделать принципиальный шаг в познании общих принципов, лежащих в основе возбуждения клетки. И в этом направлении имеются уже первые успехи.

Познание тончайших механизмов восприятия разнообразнейших запахов, несомненно, имеет далеко идущие перспективы. Об этом свидетельствует то, что новые данные, полученные в лаборатории рецепции, быстро нашли выход в практику. Они послужили основой для разработки способа разделения тутового шелкопряда по полу. На первый взгляд проблема кажется не особенно важной, но такое впечатление ошибочно. С древнейших времен шелководство связано с сортировкой шелкопряда по половому признаку. До последнего времени операция производится вручную, что отнимает массу времени и сил.

Сотрудники лаборатории совместно со специалистами Среднеазиатского НИИ шелководства предложили оригинальный способ, который базируется на применении синтетического полового феромона. Этот способ дает научную основу для коренной модернизации производства грены (яичек шелкопряда) с помощью автоматизации ряда трудоемких операций. Его использование в промышленных масштабах сулит немалую экономию.

Наука и жизнь. 1988. №4.