Определение понятий. Требования к определению понятия

Для распознавания объекта необязательно проверять у него все существенные свойства, достаточно лишь некоторых. Этим пользуются, когда понятию дают определение.

Определить понятие – это значит дать способ, позволяющий отделить объекты, охватываемые данным понятием, от всех других объектов изучения в зависимости от присущих им существенных свойств. Таким образом, определение (лат. «definitio» – «определение») понятий – логическая операция, в процессе которой раскрывается содержание понятия.

Определение понятий – это логическая операция, с помощью которой указываются существенные (отличительные) свойства объекта изучения, достаточные для распознавания этого объекта, т.е. в процессе которой раскрывается содержание понятия либо устанавливается значение термина.

Определение понятия позволяет отличать определяемые объекты от других объектов. Так, например, определение понятия «прямоугольный треугольник» позволяет отличить его от других треугольников.

По способу раскрытия свойств определяемого понятия различают неявные и явные определения. К неявным определениям относятся невербальные определения, к явным - вербальные определения (лат. слово «verbalis» означает «словесный »).

Невербальное определение – это определение значения понятия путём непосредственной демонстрации предметов или указания контекста, в котором применяется то или иное понятие.

Невербальные определения понятий используются в начальном курсе математики, так как младшие школьники обладают преимущественно наглядным мышлением, и именно наглядные представления о математических понятиях играют для них основную роль в обучении математике.

Невербальные определения разделяются на остенсивные (лат. слово «ostendere» – «показывать ») и контекстуальные определения.

Остенсивное определение – определение, в котором содержание нового понятия раскрывается путём демонстрации объектов (указания на объекты).

Например.

    Понятия «треугольник», «круг» «квадрат», «прямоугольник» в дошкольном образовательном учреждении определяются с помощью демонстрации соответствующих моделей фигур.

    Таким же способом показа можно определить в начальном курсе математики понятия «равенство» и «неравенство».

3 · 5 > 3 · 4 8 · 7 = 56

15 – 4 < 15 5 · 6 = 6 · 5

18+7 >18 17 – 5 = 8 + 4

Это неравенства. Это равенства.

При ознакомлении дошкольников с новыми математическими понятиями в основном используются остенсивные определения.

Однако это не исключает в дальнейшем изучения их свойств, то есть формирования у детей представлений об объёме и содержании понятий, первоначально определенных остенсивно.

Контекстуальное определение – определение, в котором содержание нового понятия раскрывается через отрывок текста, через контекст, через анализ конкретной ситуации, описывающей смысл водимого понятия.

Например.

    Понятия «больше», «меньше», «равно» в начальном курсе математики определяются с помощью указания контекста (больше на 3 – это значит столько же и ещё 3).

    Примером контекстуального определения может быть определение уравнения и его решения, которые даются во 2 классе. В учебнике математики после записи  + 6 = 15 и перечня чисел 0, 5, 9, 10 идет текст: «К какому числу надо прибавить 6, чтобы получилось 15? Обозначим число неизвестное число буквой х (икс): х + 6 = 15 – это уравнение. Решить уравнение – значит найти неизвестное число. В данном уравнении неизвестное число равно 9, т.к. 9+6=15. Объясни, почему числа 0,5 и 10 не подходят».

Из приведенного текста следует, что уравнение – это равенство, в котором есть неизвестное число. Оно может быть обозначено буквой х и это число надо найти. Кроме того, из этого текста следует, что решение уравнения – это число, которое при подстановке вместо х обращает уравнение в верное равенство.

Иногда встречаются определения, сочетающие контекст и показ.

Например.

    Нарисовав прямые углы, имеющие разное расположение на плоскости, и сделав надпись: «Это – прямые углы», учитель знакомит младших школьников с понятием «прямой угол».

    Примером такого определения может служить следующее определение прямоугольника. На рисунке дается изображение четырехугольников и приведен текст: «У этих четырехугольников все углы прямые». Под рисунком написано: «Это – прямоугольники».

Таким образом, на начальном этапе обучения учащихся математике чаще всего используются невербальные определения понятий, а именно, остенсивные, контекстуальные и их сочетание.

Необходимо отметить, что невербальные определения понятий характеризуются некоторой незавершенностью. Действительно, определение понятий путем показа или через контекст не всегда указывает на свойства, существенные (отличительные) для данных понятий. Такие определения только связывают новые термины (понятия) с некоторыми объектами или предметами. Поэтому после невербальных определений необходимо дальнейшее уточнение свойств рассмотренных понятий и изучение строгих определений математических понятий.

В средних и старших классах, в связи с развитием языка и накоплением достаточного запаса математических понятий, на смену невербальным определениям приходят вербальные определения понятий. При этом все большую роль начинают играть не наглядные представления о математических понятиях, а их строгие определения. Они основываются на свойствах, которыми обладают определяемые понятия.

Вербальное определение – перечисление существенных (отличительных) свойств данного понятия, сведенных в связное предложение.

В начальном курсе математики изучаемые понятия располагают в таком порядке, чтобы каждое последующее понятие можно было определить, опираясь на ранее изученные их свойства или ранее изученные понятия. Поэтому некоторые математические понятия не определяются (или косвенно определяются через аксиомы). Например, понятия: «множество», «точка», «прямая», «плоскость». Они являются основными , базисными или неопределяемыми понятиями математики. Определение понятий можно рассматривать в виде процесса сведения одного понятия к другому, ранее изученному, и, в конечном счете, к одному из основных понятий.

Например, квадрат есть особый ромб, ромб – особый параллелограмм, параллелограмм – особый четырехугольник, четырехугольник – особый многоугольник, многоугольник – особая геометрическая фигура, геометрическая фигура – точечное множество. Таким образом, мы дошли до основных неопределяемых понятий математики: «точка» и «множество».

В этой последовательности понятий каждое понятие, начиная со второго, является родовым понятием для предыдущего понятия, т.е. объёмы этих понятий находятся между собой в последовательном отношении включения:

Va Vв  Vc  Vd  Ve  Vf  Vq , где а: «квадрат», в: «ромб»,

с: «параллелограмм», d : «четырехугольник», e : «многоугольник»,

f : «геометрическая фигура», q : «точечное множество». Наглядно объемы этих понятий можно изображать и на диаграмме Эйлера-Венна (рис. 7).

V a V в V c V d V e V f V q

Рассмотрим основные способы вербальных определений понятий.

    Определение через род и видовое отличие – самый распространенный вид явных определений.

Например, определение понятия «квадрат».

«Квадратом называется прямоугольник, у которого все стороны равны».

Проанализируем структуру этого определения. Сначала указано определяемое понятие - «квадрат», а затем приведено определяющее понятие, в котором можно выделить две части: 1) понятие «прямоугольник», которое является родовым по отношению к понятию «квадрат»; 2) свойство «иметь все равные стороны», которое позволяет выделить из всевозможных прямоугольников один вид – квадрат, поэтому это свойство называют видовым отличием .

Видовым отличием называются свойства (одно или несколько), которые позволяют выделить определяемое понятие из объема родового понятия.

Следует иметь в виду, что понятия рода и вида относительны. Так, «прямоугольник» – это родовое к понятию «квадрат», но видовое по отношению к понятию «четырехугольник».

Кроме того, для одного понятия может существовать несколько родовых. Например, для квадрата родовыми являются ромб, четырехугольник, многоугольник, геометрическая фигура. В определении через род и видовое отличие для определяемого понятия принято называть ближайшее родовое понятие.

Схематично структуру определений через род и видовое отличие можно представить следующим образом (рис. 8).



Определяющее понятие

Очевидно, что определяемое понятие и определяющее понятие должны быть тождественны, т.е. их объёмы должны совпадать.

По данной схеме можно строить определения понятий не только в математике, но и в других науках.

Следующие способы определения понятий являются частными случаями определения через род и видовое отличие.

    Генетическое или конструктивное определение , т.е. определение, в котором видовое отличие определяемого понятия указывает на его происхождение или способ образования, построения (греч. слово «denesis» – «происхождение» , лат. слово «constructio» – «построение» ).

Например.

1. Определение понятия «угол».

«Углом называется фигура, образованная двумя углами, исходящими из одной точки». В этом примере понятие «фигура» является родовым, а способ образования этой фигуры – «образована двумя лучами, исходящими из одной точки» - является видовым отличием.

2. Определение понятия «треугольник».

«Треугольником называется фигура, которая состоит из трех точек, не лежащих на одной прямой, и трех попарно соединяющих их отрезков».

В этом определении указано родовое понятие по отношению к треугольнику – «фигура», а затем видовое отличие, которое раскрывает способ построения фигуры, являющейся треугольником: взять три точки, не лежащие на одной прямой, и соединить каждую их пару отрезком.

    Индуктивное определение или определение понятия с использованием формулы, позволяющей сформулировать общее отличительное свойство данного понятия (лат. слово «inductio» – «наведение » на рассуждение от частного к общему).

Например, определение понятия «функция прямой пропорциональности».

«Функцией прямой пропорциональности называется функция вида «y=kx , где x R , k ≠0». В этом примере понятие «функция» - родовое понятие, а формула «y =kx , где x R , k ≠0» - видовое отличие понятия «функция прямой пропорциональности» от других видов функций.

Рассмотренные способы определения понятий позволяют наглядно изобразить виды определения понятий на следующей схеме (рис. 9).

Определение понятий

Неявное определение Явное определение

Невербальное определение Вербальное определение

Остенсивное Контекстуальное Определение понятия «через

определение определение род и видовое отличие»

Остенсивно-контекстуальное Генетическое или Индуктивное

определение конструктивное определение

Основные правила явного определения.

Определения понятий не доказывают и не опровергают. Как оценивают правильность тех или иных определений? Имеются определённые правила и требования, которые необходимо выполнять, формулируя определение данного понятия. Рассмотрим основные из них.

1. Определение должно быть соразмерным . Это означает, что объемы определяемого и определяющего понятий должны совпадать. Если это правило нарушается, в определении возникают логические ошибки: определение оказывается слишком узким (недостаточным) или слишком широким (избыточным). В первом случае определяющее понятие будет меньшим по объёму, чем определяемое понятие, а во втором – большим.

Например, определения «Прямоугольником называется четырехуголь-ник, имеющий прямой угол», «Глаз – это орган зрения человека» - узкое, а определения «Прямоугольником называется четырехугольник, у которого все углы прямые и смежные стороны равны», «Костёр – это источник тепла», «Овощи и фрукты – это источники витаминов» - широкое. Также несоразмерно такое определение квадрата: «Квадратом называется четырехугольник, у которого все стороны равны». Действительно, объём определяемого понятия – множество квадратов, а объём определяющего понятия – множество четырехугольников, все стороны которых равны, а это множество ромбов. Но не всякий ромб есть квадрат, т.е. объёмы определяемого и определяющего понятия не совпадают.

2. Определения не должны содержать «порочного круга». Это означает, что нельзя определять одно понятие через другое, а это другое понятие – через первое.

Например, если определить окружность как границу круга, а круг как часть плоскости, ограниченную окружностью, то мы будем иметь «порочный круг» в определениях данных понятий; если определить перпендикулярные прямые как прямые, которые при пересечении образуют прямые углы, а прямые углы как углы, которые образуются при пересечении перпендикулярных прямых, то мы видим, что одно понятие определяется через другое и наоборот.

3. Определение не должно быть тавтологией, т.е. нельзя понятие определять через само себя, изменяя только (и то зачастую незначительно) словесную форму понятия.

Например, определения: «Перпендикулярные прямые – это прямые, которые перпендикулярны», «Равные треугольники – это треугольники, которые равны», «Касательная к окружности – это прямая, которая касается окружности», «Прямой угол – это угол в 90°», «Сложением называется действие, при котором числа складываются», «Скрипучая дверь – это дверь, которая скрипит», «Холодильник – это место, где всегда холодно» - содержат тавтологию. (Понятие определяется через само себя.)

4. Определение должно содержать указание на ближайшее родовое понятие . Нарушение этого правила приводит к различным ошибкам. Так, учащиеся, формулируя определение, иногда не указывают родовое понятие. Например, определение квадрата: «Это когда все стороны равны». Другой тип ошибок связан с тем, что в определении указывается не ближайшее родовое понятие, а более широкое родовое понятие. Например, определение того же квадрата: «Квадратом называется четырехугольник, у которого все стороны равны».

5. Определение по возможности не должно быть отрицательным . Это означает, что следует избегать таких определений, в которых видовое отличие выступает в качестве отрицательного. Вместе с тем, в математике все же используют такие определения, в частности, если в них указываются свойства, не принадлежащие определяемому понятию. Например, определение «Иррациональное число – число, которое нельзя представить в виде , гдеp и q – целые числа и q ≠0 ».

Последовательность действий, которую мы должны соблюдать, если хотим воспроизвести определение знакомого понятия или построить определение нового: назвать определяемое понятия (термин); указать ближайшее родовое (по отношению к определяемому) понятие; перечислить свойства, выделяющие определяемые объекты из объёма родового, т.е. сформулировать видовое отличие; проверить, выполнены ли правила определения понятия.

Знание вышеперечисленных правил определения понятий даcт возможность учителю более строго относиться к определениям, которые даёт он сам учащимся на уроках, и к определениям, которые дают учащиеся в своих ответах.

Род – логическая характеристика класса предметов, в объем которого входят другие классы предметов, являющиеся видами данного рода. Так, класс треугольников является родом в отношении к классам остроугольных треугольников, прямоугольных треугольников и тупоугольных треугольников.

Видом, соответственно, называется каждый класс предметов, который входит в объем более широкого родового класса.

Выделяется высший род (summum genus) и низший вид (infima species). Высший род – это такой род, который уже не может служить видом для другого рода. Соответственно, низший вид – это такой вид, в который входят не меньшие по объему виды, а отдельные индивиды (individuum (лат.) – неделимое, особь). Кроме того, используется понятие ближайший род. Класс, который непосредственно делится на виды, называется по отношению к этим видам ближайшим родом (genus proximum). Например, ближайшим родом для понятий “сосна”, “ель”, “кедр”, “пихта” является понятие “хвойное дерево”. (Отношения рода и вида основываются на принципе гилиморфизма Аристотеля. Суть данного принципа состоит в том, что каждая конкретная вещь обладает формой и материей. При этом материя понимается как некоторый субстрат, а форма – как способ связи элементов этого субстрата. То, что в одном отношении является формой – в другом может быть материей и наоборот.)

Родовое понятие – понятие, которое выражает существенные признаки класса предметов, являющегося родом каких-либо видов. Родовое понятие является подчиняющим понятием, в состав которого входят меньшие по объему видовые понятия.

Видовое понятие – понятие, которое выражает существенные признаки класса предметов, являющегося видом какого-либо рода. Видовое понятие является подчиненным понятием, входящим в состав другого, более общего понятия, которое называется родовым. Так, понятие “европеец” является видовым по отношению к понятию “человек”, которое в данном случае берется как родовое понятие. Всем предметам, отображенным в видовом понятии, присущи все признаки родового понятия, но вместе с тем им присущи и свои видовые признаки. Одно и то же понятие (за исключением высшего родового и низшего видового понятий) может быть как видовым, так и родовым одновременно в зависимости от того, по отношению к какому понятию оно рассматривается. Так, понятие “европеец” является видовым по отношению к понятию “человек” и одновременно родовым – по отношению к понятию “грек”.

2. 5. Виды (классы) понятий

Все понятия могут быть разделены на отдельные виды.

1. Единичные и общие

Единичными (индивидуальными) понятиями называются такие, которые относятся к одному какому-нибудь определенному предмету, событию, отдельному явлению. Объем таких понятий имеет только один элемент. Например, “Петербург”, “Отечественная война 1812 года”.

Общими называются понятия, объем которых включает более одного элемента, например, “четное число” (в объеме бесконечно много элементов), “петербургские вузы” (в объеме несколько элементов).

2. Собирательные и разделительные

Собирательные понятия – это такие понятия, в которых отображены признаки совокупности, собрания, группы однородных предметов, представляющих единое целое, например, “полк”, “собрание”, “человечество”. То, что утверждается в собирательном понятии, относится ко всем предметам, обозначаемым данным понятием, но не может быть приложимо к отдельным предметам, входящим в это целое. Например, в сообщении о том, что “собрание учеников десятого класса проходило очень шумно” понятие “собрание учеников десятого класса” употребляется в собирательном смысле. Это сообщение нельзя распространить на каждого ученика. Возможно, что некоторые ученики не шумели. Собирательные понятия тем отличаются от общих понятий, что ими нельзя характеризовать отдельный предмет, а только их совокупность.

Разделительное понятие – это такое понятие, которое характеризует каждый отдельный член какого-либо класса, но не может быть приложимо к классу в целом. Например, “Студенты второго курса сдали экзамен по философии”. Хотя здесь говорится обо всех студентах, но экзамен сдавал каждый.

3. Конкретные и абстрактные

Если элемент объема – предмет (материальный или идеальный), явление, ситуация, то понятие конкретное. Если же элементом является свойство или отношение – понятие абстрактное. Например, понятия: “дружба”, “параллельность”, “работоспособность” являются абстрактными, так как в них мыслятся отношения или свойства. Понятия же “идеализм”, “вечный двигатель”, “революция” – конкретные, потому что в них мыслятся предметы, события пусть даже не существующие.

4. Положительные и отрицательные

Положительным называется такое понятие, которое отображает наличие в предмете того или иного качества (например, “красивый”, “высокий”, “здоровый”).

Отрицательным называется такое понятие, которое отображает отсутствие в предмете того или иного качества (например, “некрасивый”, “невысокий”, “нездоровый”). Следует отметить, что с логической точки зрения понятие “неумный” является отрицательным, а понятие “глупый” – положительным, ибо в нем указывается на наличие, а не отсутствие признака, хотя этот признак может быть плохим с чьей-то точки зрения.

5. Относительные и безотносительные

Относительными называются такие понятия, в содержании которых имеется признак, прямо указывающий на отношение к какому-то другому предмету. Например, “сосед” – понятие относительное, потому что сосед это – человек, проживающий рядом с каким-нибудь другим человеком, или предмет, занимающий ближайшее к какому-то другому предмету место. Во всех относительных понятиях обобщаются предметы, рассматриваемые не сами по себе, а как вступившие в какие-то отношения, как выполняющие некоторые функции.

В содержание безотносительных понятий включены только признаки-свойства, которые присущи или не присущи предмету самому по себе и существенны для него самого по себе. Рассматривая некоторый предмет, безотносительно к чему бы то ни было, мы можем обнаружить у него, например, свойства живого существа с позвоночником, с постоянной температурой тела и молочными железами. На основании этих свойств мы можем считать предмет элементом объемов понятий: “животное”, “позвоночное животное”, “теплокровное животное”, “млекопитающее животное”, каждое из которых является безотносительным.

Любое понятие можно охарактеризовать сразу по всем указанным рубрикам. Например, понятие “рабочий класс” – общее, собирательное, конкретное, положительное, безотносительное. Оно – общее, потому что рабочий класс бывает разный, например, рабочий класс Англии. Оно – собирательное, поскольку элементом объема является, например, рабочий класс Англии XIX в. , который есть множество наемных рабочих. Это понятие – конкретное, так как в нем мыслится не свойство и не отношение, а предмет. Оно – положительное и безотносительное, потому что в его содержании нет отрицательного признака, и признаки его содержания не указывают на отношение к чему-либо.

Всякий математический объект обладает определенными свойствами. Например, квадрат имеет равные стороны, равносторонний треугольник - равные углы, четные числа делятся на 2 и т.д. Данные объекты имеют и другие свойства: квадрат имеет прямые углы, равносторонний треугольник - равные стороны, четные числа на 1 больше нечетных в порядке их следования.


При выделении объекта из ряда других объектов различают его существенные и несущественные свойства.


Свойство считают существенным для объекта, если оно присуще этому объекту и без него не может существовать.


Несущественные свойства - это свойства, отсутствие которых не влияет на существование объекта.


Например, четные числа делятся на 2 - существенное свойство, больше на 1 - несущественное.


Чтобы понимать, что представляет собой объект, достаточно знать его существенные свойства. В этом случае говорят, что имеется понятие об этом объекте.


Условимся обозначать понятия строчными буквами латинского алфавита: a, b, c, …, z.


Когда говорят о математическом понятии, то обычно имеют в виду множество объектов, обозначаемых одним термином. Так, говоря о квадрате, имеют в виду геометрические фигуры, являющиеся квадратами. Считают, что множество всех квадратов составляет объем понятия «квадрат».


Объем понятия - это множество объектов, обозначаемых одним термином. Соответственно обозначаются большими буквами латинского алфавита: A, B, C…


Совокупность всех взаимосвязанных существенных свойств объекта, отраженных в данном понятии, составляет содержание понятия.


Рассмотрим,например,понятие «прямоугольник».


Объем понятия - это множество различных прямоугольников, а в его содержание входят такие свойства прямоугольников, как «иметь четыре прямых угла», «иметь равные противоположные стороны», «иметь равные диагонали» и т.д.


Между объемом понятия и его содержанием существует взаимосвязь: если увеличивается объем понятия, то уменьшается его содержание, и наоборот. Так, например, объем понятия «квадрат» является частью объема понятия «прямоугольник». В содержании понятия «квадрат» содержится больше свойств, чем в содержании понятия «прямоугольник».


Если объемы понятий a и b не пересекаются, т.е. А В=, то говорят, что понятия a и b несовместимы.


Если объемы понятий a и b находятся в отношении пересечения, т.е. А В, то понятия совместимы.


Если объем понятия а является собственным подмножеством объема понятия b , т.е. А В и АВ , то говорят, что:


1) понятие а является видовым по отношению к понятию b , а понятие b - родовым по отношению к a ;


2) понятие a уже, чем понятие b , а понятие b шире понятия а ;


3) понятие а есть частный случай понятия b , а понятие b есть обобщение понятия а.


Например, если а - «прямоугольник», b - «четырехугольник», то их объемы А и В находятся в отношении включения: А В и АВ , поскольку всякий прямоугольник является четырехугольником. Поэтому можно утверждать, что понятие «прямоугольник» - видовое по отношению к понятию «четырехугольник», а понятие «четырехугольник» - родовое по отношению к понятию «прямоугольник».


Если объемы понятий равны, т.е. А=В, то говорят, что понятия а и b тождественны.


Например, понятия «равносторонний треугольник» и «равноугольный треугольник» тождественны, так как их объемы совпадают.


Рассмотрим подробнее отношение вида и рода между понятиями. Во-первых, понятия рода и вида относительны: одно и то же понятие может быть родовым по отношению к одному понятию и видовым по отношению к другому. Например, понятие «прямоугольник» - родовое по отношению к понятию «квадрат» и видовое по отношению к понятию «четырехугольник».


Во-вторых, для данного понятия часто можно указать несколько родовых понятий. Так, для понятия «прямоугольник» родовым являются понятия «четырехугольник», «параллелограмм», «многоугольник». Среди них можно указать ближайшее. Например, «параллелограмм».


В-третьих, видовое понятие обладает всеми свойствами родового понятия. Например, квадрат, являясь видовым понятием по отношению к понятию «прямоугольник», обладает всеми свойствами прямоугольника.


Так как объем понятия является множеством, удобно, устанавливая отношения между объемами понятий, изображать их при помощи кругов Эйлера. Установим отношения между некоторыми понятиями и изобразим отношения между их объемами на кругах Эйлера: 1) а - «целое число»,
b - «натуральное число», с - «отрицательное число»; 2) а - «дерево», b - «растение», с - «кустарник».


Решение: Выясним, в каком отношении находятся данные объемы.


1) Целое число может быть как положительным, так и отрицательным. Натуральные числа - это целые положительные. Отрицательные числа могут быть и целыми и дробными. Значит В А, АС, ВС. На кругах Эйлера это выглядит так.

Объем и содержание понятия. Отношения между понятиями

Глава 6. Математические понятия

Контрольные вопросы

1. Какое утверждение называется теоремой?

2. Для теоремы вида А (х ) Þ В (х ) запишите обратное, противоположное, обратное противоположному предложения. В каком случае полученные предложения будут являться теоремами?


Всякий математический объект обладает определенными свойствами. Например, ромб имеет 4 угла, 4 стороны, противоположные стороны параллельны. Можно указать и другие свойства, например, диагональ АС расположена горизонтально.

Среди свойств различают существенные и несущественные. Свойство считают существенным для объекта, если оно присуще этому объекту и без него он не может существовать. Несущественные свойства – это такие свойства, отсутствие которых не влияет на существование объекта.

Существенные свойства: иметь 4 равных стороны, 4 угла.

Несущественные свойства: вершина В лежит напротив вершины D , диагональ АС расположена горизонтально.

Чтобы понимать, что представляет собой данный объект, надо знать его существенные свойства. В этом случае говорят, что имеется понятие об этом объекте.

Когда говорят о математическом понятии, то обычно имеют в виду множество объектов, обозначаемых одним термином. Так, говоря о треугольнике, имеют в виду все геометрические фигуры, являющиеся треугольниками.

Любое понятие имеет объем и содержание.

Определение . Объем понятия – это множество всех объектов, обозначаемых одним термином.

Определение . Содержание понятия – это множество всех существенных свойств объекта, отраженных в этом понятии.

Пример . Рассмотрим понятие «параллелограмм». Объем понятия – это множество различных параллелограммов (в том числе и ромбов, прямоугольников, квадратов). В содержание понятия входят такие свойства параллелограммов, как «иметь 4 стороны», «иметь параллельные противоположные стороны», «иметь равные противоположные углы» и т.д.

Между объемом и содержанием понятия существует такая связь: чем «больше» объем понятия, тем «меньше» его содержание и наоборот. Например, объем понятия «ромб» является частью понятия «параллелограмм», а в содержании понятия «ромб» содержится больше свойств, чем в содержании понятия «параллелограмм». Например, в содержании понятия «ромб» есть свойство «все стороны равны», которого нет в содержании понятия «параллелограмм».

Отношения между понятиями тесно связаны с отношениями между их объемами.

Условимся понятия обозначать строчными буквами а , b , с , d ,…, а их объемы соответственно А , В , С , D ,… .



Если объемы понятий а и b не пересекаются, т.е. А Ç В = Æ, то говорят, что понятия а и b несовместимы. Примерами несовместимых понятий являются понятия трапеции и треугольника.

Если объемы понятий а и b пересекаются, т.е. А Ç В ¹ Æ, то говорят, что понятия а и b совместимы. Пример – прямоугольник и ромб.

Если объемы понятий а и b совпадают, т.е. А = В , то говорят, что понятия а и b тождественны. Пример – квадрат и ромб с прямым углом.

Если объем понятия а является собственным подмножеством объема понятия b , т.е. А Ì В , А ¹ В , то говорят, что:

а) понятие а является видовым по отношению к понятию b , понятие b – родовым по отношению к понятию а ;

б) понятие а уже, чем понятие b , понятие b шире, чем понятие а ;

в) понятие а есть частный случай понятия b , а понятие b – обобщение понятия а .

Пример: понятие «квадрат» – видовое по отношению к понятию «прямоугольник», а понятие «прямоугольник» – родовое по отношению к понятию «квадрат».

Остановимся подробнее на последнем отношении.

1) Понятие рода и вида относительны. Одно и то же понятие может быть видовым по отношению к одному понятию и родовым по отношению к другому. Например, понятие «прямоугольник» является родовым по отношению к понятию «квадрат» и видовым по отношению к понятию «параллелограмм».

2) Для данного понятия часто можно указать несколько родовых понятий, среди которых можно указать ближайшее. Например, родовыми для понятия «квадрат» будут понятия «прямоугольник», «параллелограмм», «четырехугольник». Ближайшим среди них будет понятие «прямоугольник».

3) Видовое понятие обладает всеми свойствами родового понятия. Например, понятие «ромб» является видовым по отношению к понятию «параллелограмм»; ромбы обладают всеми свойствами, присущими параллелограммам.

Рассмотрим отношения между понятиями «отрезок» и «прямая». Объемы этих понятий не пересекаются, т.к. ни один отрезок нельзя назвать прямой и наоборот. Об этих понятиях можно сказать, что они находятся в отношении целого и части: отрезок – часть прямой, а не ее вид. Заметим, что часть не всегда обладает свойством целого. Прямая бесконечна, а отрезок – нет.

Появление в математике новых понятий, а значит, и новых терминов, обозначающих эти понятия, предполагает их определение.

Определением обычно называют предложение, разъясняющее суть нового термина. Как правило, делают это на основе ранее введенных понятий. Определить понятие – значит указать существенные свойства объекта, которых достаточно для распознавания объекта.

Различают явные и неявные определения.

Явные определения имеют форму равенства, совпадения двух понятий, его можно представить в таком виде: а есть (по определению) b . Слова «есть (по определению)» обычно заменяют символом , и тогда определение выглядит так: а b .

Рассмотрим определение квадрата: «Квадратом называется прямоугольник с равными сторонами». В этом определении можно выделить определяемой понятие «квадрат» и определяющее понятие «прямоугольник с равными сторонами».

Примеры явных определений.

Определение через род и видовое отличие. Оно имеет вид:

определяющее понятие

Примером такого определения является определение квадрата, данное выше.

Требования к определению через род и видовое отличие:

ü Определение должно быть соразмерным – объемы определяемого и определяющего понятия должно совпадать. Например, определение «Квадрат – это четырехугольник с равными сторонами» соразмерным не является, т.к. множество четырехугольников с равными сторонами – это множество ромбов.

ü В определении не должно быть порочного круга – нельзя определять понятие через само себя. Так, нельзя дать такое определение: «сложение называется действие, при котором числа складываются».

ü Определение должно быть ясным – значения терминов, входящих в определяющее понятие должны быть известны к моменту определении нового понятия. Например, нельзя определить квадрат как ромб с прямыми углами, если понятие «параллелограмм» еще не изучено.

ü Определение должно быть достаточным – в определении должны быть указаны все свойства, позволяющие однозначно выделять объекты, принадлежащие объему определяемого понятия. Например, в определении «Биссектрисой угла называется луч, делящий угол пополам» этим свойством не обладает, т.к. не указано, что луч выходит из вершины угла.

ü Определение не должно быть избыточным – не должно быть указано лишних свойств. Так, в определении «Ромбом называется параллелограмм, у которого все стороны равны и диагонали взаимно перпендикулярны» свойство, что диагонали взаимно перпендикулярны, является лишним.

2) Генетические – указывается способ образования определяемого объекта. Например: «Ломаной называется линия, состоящая из точек и соединяющих их отрезков

3) Индуктивные – указываются некоторые основные объекты теории и правила, позволяющие получать новые из уже имеющихся. Например: «Геометрической прогрессией называется числовая последовательность, каждый член которой, начиная со второго, равен предыдущему, умноженному на одно и то же число».

Неявные определения не имеют формы совпадения двух понятий. В них нельзя выделить определяемое и определяющее понятия.

Примеры неявных определений.

1) Контекстуальные – содержание нового понятия раскрывается через отрывок текста, через контекст. Пример: после записи 3 + х = 9 и перечня чисел 2, 3, 6 и 7 идет текст: «х – неизвестное число, которое надо найти. Какое из чисел надо подставить вместо х , чтобы равенство было верным? Это число 6». Из этого текста следует, что уравнение – это равенство с неизвестным числом, которое надо найти, а решить уравнение – это значит найти такое значение х , при подстановке которого в уравнение получается верное равенство.

2) Остенсивные – введение терминов путем показа, демонстрации объектов, которые этими терминами обозначают. Пример: 2 < 7, 2 · 4 > 5 – это неравенства.

Неявные определения часто используются в начальной школе.

Контрольные вопросы

1. Какие свойства считают существенными и несущественными для объекта?

2. Что понимают под объемом понятия?

3. Что понимают под содержанием понятия?

4. В каком отношении находятся объемы понятий, если понятия несовместимы, совместимы, тождественны, одно понятие является видовым по отношении к другому понятию?

5. Что значит – определить понятие?

6. Какие определения относят к явным и неявным?

7. Какие правила необходимо соблюдать, формулируя определения понятий через род и видовое отличие?

Математические понятия

Понятия, которые изучаются в начальном курсе математики, обычно представляют в виде четырех групп. В первую включаются понятия, связанные с числами и операциями над ними: число, сложение, слагаемое, больше и др. Во вторую входят алгебраические понятия: выражение, равенство, уравнения и др. Третью группу составляют геометрические понятия: прямая, отрезок, треугольник и т.д. Четвертую группу образуют понятия, связанные с величинами и их измерением.

Чтобы изучать все разнообразие понятий, надо иметь представление о понятии как логической категории и особенностях математических понятий.

В логике понятия рассматривают как форму мысли , отражающую объекты (предметы и явления) в их существенных и общих свойствах. Языковой формой понятия является слово (термин) или группа слов.

Составить понятие об объекте – это значит уметь отличить его от других сходных с ним объектов. Математические понятия обладают рядом особенностей. Главная заключается в том, что математические объекты, о которых необходимо составить понятие, в реальности не существуют. Математические объекты созданы умом человека. Это идеальные объекты, отражающие реальные предметы или явления. Например, в геометрии изучают форму и размеры предметов, не принимая во внимание другие свойства: цвет, массу, твердость и т.д. От всего этого абстрагируются. Поэтому в геометрии вместо слова «предмет» говорят «геометрическая фигура».

Результатом абстрагирования являются и такие математические понятия, как «число» и «величина».

Вообще математические объекты существуют лишь в мышлении человека и в тех знаках и символах, которые образуют математический язык.

К сказанному можно добавить, что, изучая пространственные формы и количественные отношения материального мира , математика не только пользуется различными приемами абстрагирования, но и само абстрагирование выступает как многоступенчатый процесс. В математике рассматривают не только понятия, появившиеся при изучении реальных предметов, но и понятия, возникшие на основе первых. Например, общее понятие функции как соответствия является обобщением понятий конкретных функции, т.е. абстракцией от абстракций.

  1. Объем и содержание понятия. Отношения между понятиями

Всякий математический объект обладает определенными свойствами. Например, квадрат имеет четыре стороны, четыре прямых угла, равные диагонали. Можно указать и другие его свойства.

Среди свойств объекта различают существенные и несущественные . Свойство считают существенным для объекта, если оно присуще этому объекту и без него он не может существовать . Например, для квадрата существенными являются все свойства, названные выше. Несущественно для квадрата АВСD свойство «сторона АВ горизонтальна».

Когда говорят о математическом понятии, то обычно имеют в виду множество объектов, обозначаемых одним термином (словом или группой слов). Так, говоря о квадрате, имеют в виду все геометрические фигуры, являющиеся квадратами. Считают, что множество всех квадратов составляет объем понятия «квадрат».

Вообще, объем понятия – это множество всех объектов, обозначаемых одним термином.

Любое понятие имеет не только объем, но и содержание.

Рассмотрим, например, понятие «прямоугольник».

Объем понятия – это множество различных прямоугольников, а в его содержание входят такие свойства прямоугольников, как «иметь четыре прямых угла», «иметь равные противоположные стороны», «иметь равные диагонали» и т.д.

Между объемом понятия и его содержанием существует взаимосвязь: если увеличивается объем понятия, то уменьшается его содержание, и наоборот . Так, например, объем понятия «квадрат» является частью объема понятия «прямоугольник», а в содержании понятия «квадрат» содержится больше свойств, чем в содержании понятия «прямоугольник» («все стороны равны», «диагонали взаимно перпендикулярны» и др.).

Любое понятие нельзя усвоить, не осознав его взаимосвязи с другими понятиями. Поэтому важно знать, в каких отношениях могут находиться понятия, и уметь устанавливать эти связи.

Отношения между понятиями тесно связаны с отношениями между их объемами, т.е. множествами.

Условимся понятия обозначать строчными буквами латинского алфавита: а, b, c, d, …, z.

Пусть заданы два понятия а и b. Объемы их обозначим соответственно А и В.

Если А ⊂ В (А ≠ В), то говорят, что понятие а – видовое по отношению к понятию b, а понятие b – родовое по отношению к понятию а.

Например, если а – «прямоугольник», b – «четырехугольник», то их объемы А и В находятся в отношении включения (А ⊂ В и А ≠ В), поэтому всякий прямоугольник является четырехугольником. Поэтому можно утверждать, что понятие «прямоугольник» - видовое по отношению к понятию «четырехугольник», а понятие «четырехугольник» - родовое по отношению к понятию «прямоугольник».

Если А = В, то говорят, что понятия А и В тождественны.

Например, тождественны понятия «равносторонний треугольник» и «равнобедренный треугольник», так как их объемы совпадают.

Рассмотрим подробнее отношение рода и вида между понятиями.

1. Во-первых, понятия рода и вида относительны: одно и то же понятие может быть родовым по отношению к одному понятию и видовым по отношению к другому. Например, понятие «прямоугольник» - родовое по отношению к понятию «квадрат» и видовое по отношению к понятию «четырехугольник».

2. Во-вторых, для данного понятия часто можно указать несколько родовых понятий. Так, для понятия «прямоугольник» родовыми являются понятия «четырехугольник», «параллелограмм», «многоугольник». Среди указанных можно указать ближайшее. Для понятия «прямоугольник» ближайшим является понятие «параллелограмм».

3. В-третьих, видовое понятие обладает всеми свойствами родового понятия. Например, квадрат, являясь видовым понятием по отношению к понятию «прямоугольник», обладает всеми свойствами, присущими прямоугольнику.

Так как объем понятия – множество, удобно, устанавливая отношения между объемами понятий, изображать их при помощи кругов Эйлера.

Установим, например, отношения между следующими парами понятий а и b, если:

1) а – «прямоугольник», b – «ромб»;

2) а – «многоугольник», b – «параллелограмм»;

3) а – «прямая», b – «отрезок».

Отношения между множествами отображены на рисунке соответственно



2. Определение понятий . Определяемые и неопределяемые понятия.

Появление в математике новых понятий, а значит, и новых терминов, обозначающих эти понятия, предполагает их определение.

Определением обычно называют предложение, разъясняющее суть нового термина (или обозначения). Как правило, делают это на основе ранее введенных понятий. Например, прямоугольник можно определить так: «Прямоугольником называется четырехугольник, у которого все углы прямые». В этом определении есть две части – определяемое понятие (прямоугольник) и определяющее понятие (четырехугольник, у которого все углы прямые). Если обозначить через а первое понятие, а через b – второе, то данное определение можно представить в таком виде:

а есть (по определению) b.

Слова «есть (по определению)» обычно заменяют символом ⇔, и тогда определение выглядит так:

Читают: «а равносильно b по определению». Можно прочитать эту запись еще и так: «а тогда и только тогда, когда b.

Определения, имеющие такую структуру, называются явными . Рассмотрим их подробнее.

Обратимся ко второй части определения «прямоугольник».

В нем можно выделить:

1) понятие «четырехугольник», которое является родовым по отношению к понятию «прямоугольник».

2) свойство «иметь все углы прямые», которое позволяет выделить из всевозможных четырехугольников один вид – прямоугольники; поэтому его называют видовым отличием.

Вообще видовое отличие – это свойства (одно или несколько), которые позволяют выделить определяемые объекты из объема родового понятия.

Итоги нашего анализа можно представить в виде схемы:

Знак «+» используется как замена частица «и».

Нам известно, что любое понятие имеет объем. Если понятие а определено через род и видовое отличие, то о его объеме – множестве А – можно сказать, что в нем содержатся такие объекты, которые принадлежат множеству С (объему родового понятия с) и обладают свойством Р:

А = {х/ х ∈ С и Р(х)}.

Так как определение понятия через род и видовое отличие является по существу условным соглашением о введении нового термина для замены какой-либо совокупности известных терминов, то об определении нельзя сказать, верное оно или неверное; его не доказывают и не опровергают. Но, формулируя определения, придерживаются ряда правил. Назовем их.

1. Определение должно быть соразмерным . Это означает, что объемы определяемого и определяющего понятий должны совпадать.

2. В определении (или их системе) не должно быть порочного круга . Это означает, что нельзя определять понятие через само себя.

3. Определение должно быть ясным . Требуется, например, чтобы значения терминов, входящих в определяющее понятие, были известны к моменту введения определения нового понятия.

4. Одно и то же понятие определить через род и видовое отличие, соблюдая сформулированные выше правила, можно по-разному . Так, квадрат можно определить как:

а) прямоугольник, у которого соседние стороны равны;

б) прямоугольник, у которого диагонали взаимно перпендикулярны;

в) ромб, у которого есть прямой угол;

г) параллелограмм, у которого все стороны равны, а углы прямые.

Различные определения одного и того же понятия возможны потому, что из большого числа свойств, входящих в содержание понятия, в определение включаются только некоторые. И тогда из возможных определений выбирают одно, исходят из того, какое из них проще и целесообразнее для дальнейшего построения теории.

Назовем ту последовательность действий, которую мы должны соблюдать, если хотим воспроизвести определение знакомого понятия или построить определение нового:

1. Назвать определяемое понятие (термин).

2. Указать ближайшее родовое понятие (по отношению к определяемому) понятие.

3. Перечислить свойства, выделяющие определяемые объекты из объема родового, т.е сформулировать видовое отличие.

4. Проверить, выполнены ли правила определения понятия (соразмерно ли оно, нет ли порочного круга и т.д.).