Почему рукава галактик вращаются быстрее. Происхождение рукавов галактики млечный путь

Космос, который мы стараемся изучить, представляет собой огромное и бескрайнее пространство, в котором существуют десятки, сотни, тысячи триллионов звезд, объединенные в определенные группы. Наша Земля не живет сама по себе. Мы входим в состав солнечной системы, которая является маленькой частицей и входит в состав Млечного Пути — более крупного космического образования.

Наша Земля, как и другие планеты Млечного Пути, наша звезда по имени Солнце, как и другие звезды Млечного Пути, двигаются во Вселенной в определенном порядке и занимают отведенные места. Постараемся подробнее разобраться, каково строение Млечного Пути, и каковы основные особенности нашей галактики?

Происхождение Млечного Пути

Наша галактика имеет свою историю, как и другие области космического пространства, и является продуктом катастрофы вселенского масштаба. Основная теория происхождения Вселенной, которая сегодня доминирует в научном сообществе – Большой Взрыв. Модель, которая прекрасно характеризует теорию Большого Взрыва — цепная ядерная реакция на микроскопическом уровне. Изначально существовала какая-то субстанция, которая в силу определенных причин в одно мгновение пришла в движение и взорвалась. Об условиях, приведших к началу взрывной реакции, говорить не стоит. Это далеко от нашего понимания. Сейчас образовавшаяся 15 млрд. лет назад в результате катаклизма Вселенная представляет собой огромный, бескрайний полигон.

Первичные продукты взрыва сначала представляли скопления и облака газа. В дальнейшем под воздействием гравитационных сил и других физических процессов произошло образование более крупных объектов вселенского масштаба. Все произошло очень быстро по космическим меркам, в течение миллиардов лет. Сначала было формирование звезд, которые сформировали скопления и позже объединились в галактики, точное количество которых неизвестно. По своему составу галактическое вещество – это атомы водорода и гелия в компании других элементов, которые являются строительным материалом для образования звезд и других космических объектов.

Сказать точно, в каком месте Вселенной находится Млечный Путь, не представляется возможным, так как точно неизвестен центр мироздания.

Ввиду схожести процессов, сформировавших Вселенную, наша галактика очень похожа по своей структуре на многие другие. По своему типу это типичная спиральная галактика, тип объектов, который распространен во Вселенной в огромном множестве. По своим размерам галактика находится в золотой середине — не маленькая и не огромная. Меньших соседей по звездному дому у нашей галактики гораздо больше, чем тех, кто обладает колоссальными размерами.

Одинаков и возраст всех галактик, которые существуют в космическом пространстве. Наша галактика практически ровесница Вселенной и имеет возраст 14,5 млрд. лет. За этот громадный промежуток времени неоднократно менялась структура Млечного Пути, происходит это и сегодня, только незаметно, в сравнении с темпами земной жизни.

Любопытна история с названием нашей галактики. Ученые считают, что название Млечный Путь легендарно. Это попытка связать расположение звезд на нашем небосклоне с древнегреческим мифом об отце богов Кроносе, который пожирал собственных детей. Последний ребенок, которого ожидала такая же печальная участь, оказался худым и был отдан кормилице на откорм. Во время кормления брызги молока упали на небо, тем самым создав молочную дорожку. Впоследствии ученые и астрономы всех времен и народов сходились во мнении, что наша галактика действительно очень похожа на молочную дорогу.

В настоящее время Млечный Путь пребывает в середине своего цикла развития. Другими словами, космический газ и вещество для формирования новых звезд подходят к концу. Существующие при этом звезды еще достаточно молоды. Как и в истории с Солнцем, которая возможно через 6-7 млрд. лет превратиться в Красный Гигант, наши потомки будут наблюдать трансформацию других звезд и всей галактики в целом в красную последовательность.

Прекратить свое существование наша галактика может и в результате очередного вселенского катаклизма. Темы исследований последних лет ориентируются на предстоящую в далеком будущем встречу Млечного Пути с ближайшей нашей соседкой — галактикой Андромеда. Вероятно, Млечный Путь после встречи с галактикой Андромеды распадется на несколько маленьких галактик. В любом случае это станет поводом для появления новых звезд и переустройства ближайшего к нам космоса. Остается только предполагать, какая судьба Вселенной и нашей галактики в далеком будущем.

Астрофизические параметры Млечного Пути

Для того чтобы представить, как выглядит Млечный Путь в масштабах космоса, достаточно взглянуть на саму Вселенную и сравнить отдельные ее части. Наша галактика входит в подгруппу, которая в свою очередь является частью Местной группы, более крупного образования. Здесь наш космический мегаполис соседствует с галактиками Андромеда и Треугольника. Окружение троице составляют более 40 мелких галактик. Местная группа уже входит в состав еще более крупного образования и является частью сверхскопления Девы. Некоторые утверждают, что это только приблизительные предположения о том, где находится наша галактика. Масштабы образований настолько огромны, что все это представить практически невозможно. Сегодня мы знаем расстояние до ближайших соседствующих галактик. Другие объекты глубокого космоса находятся за пределами видимости. Только теоретически и математически допускается их существование.

Местоположение галактики стало известно только благодаря приблизительным расчетам, определившим расстояние до ближайших соседей. Спутниками Млечного Пути являются карликовые галактики – Малое и Большое Магелланово Облако. Всего, по мнению ученых, насчитывается до 14 галактик-спутников, которые составляют эскорт вселенской колесницы под названием Млечный Путь.

Что касается обозримого мира, то сегодня имеется достаточно информации о том, как выглядит наша галактика. Существующая модель, а вместе с ней и карта Млечного Пути, составлена на основании математических расчетов, данных полученных в результате астрофизических наблюдений. Каждое космическое тело или фрагмент галактики занимает свое место. Это, как и во Вселенной, только в меньшем масштабе. Интересны астрофизические параметры нашего космического мегаполиса, а они впечатляют.

Наша галактика спирального типа с перемычкой, которую на звездных картах обозначают индексом SBbc. Диаметр галактического диска Млечного Пути составляет порядка 50-90 тысяч световых лет или 30 тысяч парсек. Для сравнения радиус галактики Андромеды равен 110 тыс. световых лет в масштабах Вселенной. Можно только представить насколько больше Млечного Пути наша соседка. Размеры же ближайших к Млечному Пути карликовых галактик в десятки раз меньше параметров нашей галактики. Магеллановы облака имеют диаметр всего 7-10 тыс. световых лет. В этом огромном звездном круговороте насчитывается порядка 200-400 миллиардов звезд. Эти звезды собраны в скопления и туманности. Значительная ее часть – это рукава Млечного Пути, в одном из которых находится наша солнечная система.

Все остальное — это темная материя, облака космического газа и пузыри, которые заполняют межзвездное пространство. Чем ближе к центру галактики, тем больше звезд, тем теснее становится космическое пространство. Наше Солнце располагается в области космоса, состоящем из более мелких космических объектов, находящихся на значительном расстоянии друг от друга.

Масса Млечного Пути составляет 6х1042 кг, что в триллионы раз больше массы нашего Солнца. Практически все звезды, населяющие нашу звездную страну, расположены в плоскости одного диска, толщина которого составляет по разным оценкам 1000 световых лет. Узнать точную массу нашей галактики не представляется возможным, так как большая часть видимого спектра звезд, скрыта от нас рукавами Млечного Пути. К тому же неизвестна масса темной материи, которая занимает огромные межзвездные пространства.

Расстояние от Солнца до центра нашей галактики составляет 27 тыс. световых лет. Находясь на относительной периферии, Солнце стремительно движется вокруг центра галактики, совершая полный оборот за 240 млн. лет.

Центр галактики имеет диаметр 1000 парсек и состоит из ядра с интересной последовательностью. Центр ядра имеет форму выпуклости, в которой сосредоточены крупнейшие звезды и скопление раскаленных газов. Именно эта область выделяет огромное количество энергии, которая по совокупности больше, чем излучают миллиарды звезд, входящие в состав галактики. Эта часть ядра самая активная и самая яркая часть галактики. По краям ядра имеется перемычка, которая является началом рукавов нашей галактики. Такой мостик возникает в результате колоссальной силы гравитации, вызванной стремительной скоростью вращения самой галактики.

Рассматривая центральную часть галактики, парадоксальным выглядит следующий факт. Ученые долгое время не могли понять, что находится в центре Млечного Пути. Оказывается, в самом центре звездной страны под названием Млечный Путь устроилась сверхмассивная черная дыра, диаметр которой составляет порядка 140 км. Именно туда и уходит большая часть энергии, выделяемой ядром галактики, именно в этой бездонной бездне растворяются и умирают звезды. Присутствие черной дыры в центре Млечного Пути свидетельствует о том, что все процессы образования во Вселенной, должны когда-то закончиться. Материя превратится в антиматерию и все повторится снова. Как будет себя вести это чудовище через миллионы и миллиарды лет, черная бездна молчит, что указывает на то, что процессы поглощения материи только набирают силу.

От центра отходят два главных рукава галактики — Щит Кентавра и Персея. Названия эти структурные образования получили по расположеным на небе созвездиям. В дополнение к главным рукавам галактику опоясывают еще 5 малых рукавов.

Ближайшее и далекое будущее

Рожденные ядром Млечного Пути рукава раскручиваются по спирали, заполняя звездами и космическими материалом космическое пространство. Здесь уместна аналогия с космическими телами, которые вращаются вокруг Солнца в нашей звездной системе. Огромная масса звезд, больших и малых, скоплений и туманностей, космических объектов разной величины и природы, вертится на гигантской карусели. Все они создают чудесную картину звездного неба, на которое человек глядит уже не одну тысячу лет. Изучая нашу галактику, следует знать, что звезды в галактике живут по своим законам, находясь сегодня в одном из рукавов галактики, завтра они начнут путь в другую сторону, покидая один рукав и перелетая в другой.

Земля в галактике Млечный Путь — далеко не единственная планета, пригодная для жизни. Это всего лишь частица пыли, размером с атом, которая затерялась в огромном звездном мире нашей галактики. Таких планет, похожих на Землю, в галактике может быть огромное количество. Достаточно представить количество звезд, которые так или иначе имеют свои звездные планетарные системы. Другая жизнь может быть далеко, на самом краю галактики, в десятках тысяч световых лет или, наоборот, присутствовать в соседних областях, которые скрыты от нас рукавами Млечного Пути.

Точно такая же ситуация с нашей Галактикой. Мы точно знаем, что мы живем в такой же спиральной галактике, как и, скажем, М31 – туманность Андромеды. Но вот карту спиральных рукавов той же М31 мы себе представляем гораздо лучше, чем нашего Млечного Пути. Мы даже не знаем, сколько у нас спиральных рукавов.

Полвека назад, в 1958 году Ян Оорт (Jan Hendrik Oort) впервые попытался выяснить форму спиральных рукавов Млечного Пути. Для этого он построил карту распределения молекулярного газа в нашей Галактике, основанную на измерениях, сделанных на волне нейтрального атомарного водорода. Его карта не включала сектор диска внешней части Млечного Пути «над» Землей, а также более крупный сектор, включающий как внешнюю, так и внутреннюю области «под» Землей. Кроме того, карта Оорта содержала много погрешностей, связанных с неправильным определением расстояний до некоторых объектов и неточностью используемой для построения газового распределения модели. В результате карта Оорта оказалась несимметрична, потому ее не удалось описать разумной моделью спирального узора. Хотя то, что атомарный водород концентрируется в спирально закрученных рукавах, было понятно уже тогда.

После этого многие ученые создавали более подробные карты, основанные на данных наблюдений как на волне атомарного водорода, так и на волне молекулы CO. Карты были как двухмерные, так и трехмерные. Большинство из них основывалось на простейших законах кругового вращения. Некоторые из этих карт содержали два спиральных рукава молекулярного газа, некоторые – четыре. Ученые так и не пришли к единому мнению, какая же из моделей более верная.

О новом исследовании в этом направлении сообщил проект астронома из ГАИШ Сергея Попова – «Астрономическая научная картинка дня» или АНКа. Исследование, выполненное под руководством швейцарца Петера Энглмайера (Peter Englmaier) из Института теоретической физики при Университете Цюриха, похоже, впервые позволяет более или менее четко хотя бы посчитать рукава в спиральном узоре нашей звездной системы. Исследование, опирающееся на распределение молекулярного СО и молекулярного водорода, показывает, что картина весьма сложная. При этом на глобальный вопрос «два или четыре» швейцарцы отвечают - «и тем, и этим».

Судя по всему, во внутренней части нашей Галактики есть перемычка (бар), от концов которой отходят два спиральных рукава. При этом они не идут во внешние области. Скорее всего, во внешней области Млечного Пути таких рукавов четыре. Весьма возможно, что от бара отходят еще два рукава, которые как раз и разделяются на четыре во внешней части Галактики. Разные варианты спирального устройства внутренних областей Галактики уже предлагались, и в отношении нынешней работы можно спорить только о ее точности. Энглмайер, специалист по 3D−обработке данных, впервые в истории астрономии сумел «увидеть» спиральные рукава во внешней области Млечного Пути, на расстоянии более 20 килопарсек от ее центра. И это уже можно считать прорывом.

Рис. 15. Галактика NGC 6814, сходная с нашей Галактикой, наблюдаемая в плане Галактики, подобные нашей, при наблюдении в плане выглядят как галактика NGC 6814, показанная на рисунке 15.

Из ядра галактики выходят спиральные ветви, рукава. Они огибают ядро и, постепенно расширяясь и разветвляясь, теряют яркость. На определенном расстоянии их след и вовсе пропадает.

Исследования показали, что спиральные ветви других галактик состоят из звезд - горячих гигантов и сверхгигантов, а также из пыли и газа (водорода). Если перечисленные объекты убрать из спиральных галактик, то их ветви-рукава исчезнут. Исчезнет их спиральная структура. Дело в том, что красные и желтые звезды, как карлики, так и гиганты, одинаково равномерно заполняют как области в спиральных ветвях, так и области между спиральными ветвями.

Если мы хотим изучить спиральную структуру нашей Галактики, мы должны проследить расположение в ней звезд - горячих гигантов, а также пыли и газа. Но сделать это непросто, поскольку мы вынуждены наблюдать спиральную структуру Галактики изнутри. При этом различные части спиральных ветвей проектируются друг на друга. Наша задача усложняется и тем, что мы не умеем точно определять расстояние до далеких звезд - горячих гигантов. Можно сказать, что измерять большие расстояния в Галактике вообще нельзя - прежде всего из-за пылевого вещества, которое поглощает свет звезд. Спиральные рукава располагаются в плоскости Галактики. Именно там больше всего пыли. Но пылевое вещество не только поглощает свет и затрудняет измерения расстояний. Оно делает практически невидимыми очень далекие звезды - горячие гиганты. Именно за ними мы должны следить, если хотим узнать расположение спиральных рукавов. Таким образом, методом наблюдения распределения в пространстве звезд - горячих гигантов или звездных ассоциаций изучить спиральные ветви нашей Галактики не удается.

Получить определенную информацию о спиральных рукавах можно с помощью использования излучения нейтрального водорода на длине волны 21 сантиметр. Мы уже говорили, что таким образом можно вывести закон вращения Галактики. Была измерена плотность нейтрального водорода в различных местах Галактики. Результаты этих измерений показаны на рисунке 16. Видно, что в двух небольших секторах наблюдения отсутствовали. Тем не менее просматривается расположение спиральных ветвей. Дело в том, что водород обычно соседствует со звездами - горячими гигантами. Именно они определяют форму спиральных рукавов. Поэтому места уплотнения водорода должны повторять рисунок спиральной структуры Галактики.

Как уже говорилось, излучение нейтрального водорода с длиной волны 21 сантиметр находится в радиодиапазоне. Пыль не оказывает на него никакого влияния. Поэтому оно доходит до нас от самых далеких областей Галактики.

Предоставлено: Thiago Ize & Chris Johnson, Scientific Computing and Imaging Institute.

То, как дисковые галактики образуют свои спиральные рукава, астрофизики разгадывали почти так же долго, как наблюдали за ними. Со временем они пришли к двум выводам... либо их структура вызвана различиями в гравитации, ваяющей газ, пыль и в знакомые формы, либо случайное существование, которое приходит и уходит со временем.

Теперь исследователи начинают переносить свои выводы на находки, основанные на новом моделировании суперкомпьютером - моделировании, которое включает движение до 100 миллионов "звездных частиц", которые подражают гравитационным и астрофизическим силам, формирующим их в естественную спиральную структуру. Исследовательская команда из University of Wisconsin-Madison и Гарвард-Смитсоновского Центра Астрофизики были рады этим выводам и сообщают, что модели могут содержать существенные подсказки о том, как образовались спиральные рукава.

"Мы показываем в первый раз, что звездные спиральные рукава не являются переходными особенностями, как утверждали в течение нескольких десятилетий", сообщает астрофизик Elena D’Onghia из UW-Madison, которая возглавляла новое исследование вместе с коллегами из Гарварда Mark Vogelsberger и Lars Hernquist.

"Спиральные рукава являются само сохраняющимися, постоянными и удивительно долго живущими", добавляет Vogelsberger.

Когда появляется спиральная структура, она, вероятно, наиболее широко распространенная из форм Вселенной. Наша собственная считается , и около 70% галактик около нас тоже имеют спиральную структуру. Когда мы размышляем в более широком смысле, сколько же вещей обретают это обычное образование? Смахивание пыли метлой заставляет частицы двигаться по спирали в спиральную форму... слив воды вызывает водоворот... погодные образования имеют форму спирали. Это универсальный случай, и это происходит по некоторой причине. Очевидно, что причина - это гравитация, и что-то тревожит ее. В случае с галактикой, это гигантское молекулярное облако - . Введенные в моделирование облака, как сообщает D’Onghia, профессор астрономии UW-Madison, действуют как "нарушители порядка" и достаточны не только для запуска образования спиральных рукавов, но и для поддержания их бесконечно долго.

"Мы узнаем, что они образуют спиральные рукава", объясняет D’Onghia. "Прошлая теория, поддерживающая рукава, ушла бы с удалением пертурбаций, но мы видим, что однажды образованные рукава самосохраняются, даже когда пертурбации удалены. Это доказывает, что как только рукава создаются через эти облака, они могут существовать сами по себе через влияние гравитации, даже когда пертурбаций больше нет".

Так, что же о галактиках компаньонах? Может ли спиральная структура быть вызвана близостью к ним? Новое исследование также допускает это в расчетах и моделях для "одиноких" галактик. Тем не менее, это еще не все исследование. Согласно Vogelsberger и Hernquist, новое моделирование, созданное компьютером, фокусируется на очищении наблюдательных данных. Они бросают более близкий взгляд на молекулярные облака высокой плотности и "вызванные гравитацией дыры в космосе", которые действуют как "механизмы, которые управляют образованием характерных рукавов спиральных галактик".

До тех пор, мы знаем, что спиральная структура не просто случайность, она, вероятно, самая обычная форма

ПРИРОДА КОЛЕБАНИЙ.

Спиральная структура - столь распространенная и бросающаяся в глаза особенность многих галактик, что проблема ее природы уступает по своей важности разве только проблеме активности галактических ядер. Именно ядрам некоторые исследователи и приписывают порождение спиральных рукавов. Первым высказал это предположение (еще в 1928 году) Дж. Джине. Он писал: «Каждая неудачная попытка объяснить происхождение спиральных ветвей делает все более трудным сопротивление предположению, что спиральные рукава являются полем действия сил, полностью неизвестных нам, отражающих, возможно, новые метрические свойства пространства, о которых мы и не подозреваем». Джине допускал, что в ядрах галактик «в нашу Вселенную вливается вещество из каких-то других, совершенно чуждых нам пространственных измерений». Истечение вещества из ядра в сочетании с вращением и могло бы породить рукава. Однако сейчас нет необходимости привлекать потусторонние силы для объяснения спиральной структуры. Круговые орбиты звезд галактического диска, отсутствие движения вещества вдоль рукавов - уже только эти факты делают подобные объяснения несостоятельными. К тому же рукава, как правило, начинаются не в непосредственной близости от ядра, а в нескольких килопарсеках от него. Джине тем не менее был, очевидно, прав в одном: «Пока спиральные ветви остаются необъясненными, невозможно чувствовать доверие к любым предположениям и гипотезам, касающимся других особенностей туманностей, которые кажутся более легко поддающимися объяснению».

ДВА МНЕНИЯ О СПИРАЛЬНОЙ СТРУКТУРЕ.

На первый взгляд, спиральный узор галактик вызван их дифференциальным вращением. Лишь центральные области галактик вращаются как твердое тело, а дальше угловая скорость вращения убывает с расстоянием от центра. Поэтому любая достаточно большая и разреженная группировка звезд, в которой взаимное притяжение между звездами слабое, должна со временем превратиться в обрывок спирального рукава. Но, прежде чем галактика сделает один оборот, в этом фрагменте рукава погаснут звезды большой светимости, и он исчезнет из вида. Вместе с тем уже возникшую каким-то образом спиральную структуру дифференциальное галактическое вращение должно «размыть» за пару оборотов. Однако в 1976 году американские астрономы М. Мюллер и В. Арнет показали, что, если процесс звездообразования распространяется на соседние области, то дифференциальное вращение галактики может породить довольно длинные, хотя и не очень правильные, спиральные рукава, неоднократно появляющиеся и исчезающие за время жизни галактики. Массивные звезды образуются в газовом облаке гораздо быстрее, когда это облако испытывает повышенное давление,- приходит волна сжатия после взрыва расположенной неподалеку сверхновой или возгорания мощно излучающих 0-звезд. Массивные звезды, рождающиеся в облаке, быстро превращаются в сверхновые или 0-звезды, и, если рядом есть другие газовые облаке, эстафета звездообразования передается дальше. О возможности такого, эпидемического характера звездообразования В. Бааде говорил еще четверть века назад.

У. Герола и Ф. Сейден (США) усовершенствовали модель образования спиральной структуры, предложенную Мюллером и Арнетом, еще более приблизив ее к реальности. Эта модель привлекательна тем, что она объясняет природу спиральной структуры процессами и явлениями (дифференциальное вращение и эпидемическое звездообразование), без сомнения существующими в действительности. Тем не менее все большую популярность приобретает волновая теория спиральной структуры, которую возродили в 1964 году Ц. Лин и Ф. Шу (США), развившие идеи Б. Линдблада. Согласно волновой теории, спиральные рукава - это волны повышенной плотности вещества, вращающиеся вокруг центра галактики как твердое тело, подобно узору на волчке. Волны плотности движутся, не перенося с собой вещества, как, например, звуковые волны или волны на поверхности воды. Скорости, с которыми вращаются вокруг центра галактики спиральные рукава (волны плотности) и вещество (звезды и газ), вообще говоря, не совпадают. Достаточно близко к центру газ вращается быстрее волны плотности и натекает на спиральный рукав с внутренней стороны. Если различие их скоростей достаточно велико, возникает ударная волна, в которой плотность газа повышается раз в десять, и это сжатие газа приводит к интенсивному образованию массивных звезд. Помимо газа у внутреннего края спирального рукава концентрируется и пыль, видимая на фотографиях как темная полоса. Радиоастрономические данные подтверждают, что именно в этих темных полосах особенно велика плотность водорода.

Различие скоростей вращения спирального узора и галактического вещества уменьшается по мере удаления от центра галактики, пока эти скорости не становятся равными на радиусе коротации. Еще дальше от центра галактики спиральные рукава вращаются быстрее, чем звезды и газ, столкновение с которыми теперь должно происходить у внешнего края рукава (подразумевается, что в галактиках спиральные рукава всегда закручиваются). Однако близ радиуса коротации спиральные рукава едва заметны, и, что делается за этим радиусом, сказать трудно.

Ближе к центру галактики самые молодые звезды должны быть сосредоточены у внутреннего края рукава - там, где они и рождаются. Звезды вращаются быстрее рукава и, обгоняя его, успевают постареть и стать менее яркими или недоступными нашим телескопам, превратившись в черную дыру или белый карлик. Таким образом, в поперечном сечении спирального рукава должен существовать перепад (градиент) возрастов звезд. У внутреннего края рукава располагаются зоны наивысшей плотности газа и пыли, затем - области звездообразования и молодые звезды, у внешнего края рукава - самые старые звезды из тех, что концентрируются к рукавам.

Некое подобие волны плотности можно наблюдать в движении муравьев, если на их тропе выкопать канавку. Очень скоро плотность муравьев вблизи канавки становится много больше, чем в среднем на тропе. Муравьи довольно быстро выбираются из канавки, но в ней застревают все новые муравьи, и зона повышенной плотности у канавки сохраняется. Если теперь вообразить, что канавка перемещается вдоль тропы, аналогия с волной плотности в спиральных галактиках станет полнее. Спиральная волна плотности способна возникнуть в галактике под действием приливного возмущения от близкого спутника или в результате отклонения от осевой симметрии в распределении звезд вокруг центра галактики. Эти отклонения могут быть столь незначительны, что остаются незамеченными. Волновая теория имеет ряд убедительных подтверждений: бесспорные признаки резкого повышения плотности газа и пыли перед внутренним краем звездных спиральных рукавов, наблюдающиеся во многих галактиках, и связанные с гравитационным полем рукавов крупномасштабные отклонения от кругового вращения. Эти отклонения выявлены по лучевым скоростям звезд высокой светимости в нашей Галактике и нейтрального водорода в галактике М 81 в созвездии Большой Медведицы. По-видимому, только волновая теория может объяснить существование (хотя и редких) галактик с длинными гладкими рукавами без признаков звездообразования в них. В таких галактиках практически нет газа.

Очевидно, что эпидемическое звездообразование может происходить и при наличии спиральной волны плотности. Первое поколение массивных звезд, родившихся в этой волне, вполне способно воздействовать на окружающие газовые облака, распространяя эпидемию звездообразования дальше. Задача состоит в том, чтобы понять, в каких галактиках или их областях спиральная структура обязана своим происхождением волне плотности, а в каких - дифференциальному вращению и эпидемическому звездообразованию, и почему в той или иной галактике доминирует один из этих механизмов, Казалось бы, легче всего выяснить природу спиральных рукавов, проведя поиск градиента возрастов молодых звезд в поперечном сечении рукава. Но в далеких галактиках такой поиск не приносит определенных результатов - скорее всего из-за трудностей в интерпретации данных интегральной фотометрии и малого разрешения, а в нашей Галактике ему очень мешают наблюдательная селекция и неточность в знании расстояний. К тому же в диске Галактики из-за межзвездного поглощения оптическим телескопам доступны расстояния, обычно не превышающие 4- 5 кпк, то есть область, охватывающая не более 10% площади ее диска. Некоторые исследователи даже считают, что молодые звезды и звездные скопления в окрестностях Солнца распределены преимущественно вдоль радиусов, направленных от Солнца. Но такое распределение отражает влияние наблюдательной селекции и в особенности наличие больших пылевых облаков, резко ослабляющих блеск расположенных за ними объектов. В нашей Галактике мы подобны путникам в густом лесу- из-за деревьев не видим леса, тогда как по отношению к далеким галактикам - пролетаем над лесом слишком высоко, чтобы различить породы деревьев или рельеф местности. Надо изучать ближайшие галактики, где нам доступны отдельные звезды, где мы можем исследовать характеристики этих звезд и однозначно установить их связь с элементами галактической структуры. Эффективность исследований ближайших галактик подтверждается всей историей астрономии XX века.

КЛЮЧ К ПРОБЛЕМЕ- В БЛИЖАЙШИХ ГАЛАКТИКАХ.

В наше время, когда внимание физиков и астрономов устремлено к границам Вселенной, стали забывать, что астрономическая картина мира родилась именно при изучении ближайших галактик, в первую "очередь - туманности Андромеды (М31) и галактики в созвездии Треугольника (М 33). В конце 1923 года молодой астроном обсерватории Маунт Вилсон - бывший боксер и адвокат Э. Хаббл, проводя поиск новых звезд, открыл в туманности Андромеды первую цефеиду, а через год, применив уже к 12 цефеидам зависимость период - светимость, оценил расстояние до этой «туманности». Выяснилось: по размерам, составу и строению она такая же галактика, как и наша. Опираясь на цефеиды в ближайших галактиках, Хаббл смог затем определить расстояния до далеких галактик и в 1929 году показал, что красное смещение в спектрах галактик пропорционально их расстоянию от нас. Итак, Вселенная населена галактиками и расширяется. Доказательство этого остается и по сей день крупнейшим достижением астрономии XX века, незыблемым фундаментом естествознания.

Становление фундаментальной концепции звездных населений также связано с исследованием ближайших галактик. В 1943 году В. Бааде обнаружил, что центральная часть М 31 состоит из таких же звезд, как старые шаровые скопления. Стало окончательно ясно, что в дисках и спиральных рукавах галактик «обитает» молодое население I, в коронах и центральных областях спиральных галактик, в шаровых скоплениях и эллиптических галактиках-старое население II. Через несколько лет Бааде выяснил, что спиральные рукава М 31 обрисовываются не только звездами высокой светимости, но и пылью, а также областями ионизированного водорода Н II. Изучая области Н II в нашей Галактике, В.Морган и его сотрудники получили в 1952 году первые надежные данные о локализации отрезков спиральных рукавов в окрестностях Солнца.

Исследование спиральных рукавов в ближайших галактиках подтвердило также, что гигантские молекулярные облака (состоящие в основном из молекул водорода) концентрируются в рукавах. Эти облака были обнаружены в нашей Галактике в 1975-1976 годах. И вплоть до 1981 года одни исследователи полагали, что молекулярные облака «равнодушны» к спиральной структуре, другие же считали, что они концентрируются в спиральных рукавах. И только детальное изучение спиральной структуры М 31 позволило доказать, что молекулярные облака столь же хорошо обрисовывают рукава, как и атомарный водород. Облака образуются в спиральных рукавах, а затем разрушаются под воздействием излучения родившихся в них 0-звезд. А так как масса газа, не израсходованного на формирование звезд, обычно существенно больше суммарной массы звезд, остающаяся после раз-лета газа звездная группировка оказывается гравитационно неустойчивой, чем и объясняется распад 0-ассоциаций - разреженных группировок молодых звезд.

Поиски градиента возрастов звезд в спиральных рукавах также имеют наибольшие шансы на успех именно в ближайших галактиках. Одними из первых попытались это сделать французские астрономы. В М 33 они нашли признаки градиента возрастов лишь в части южного спирального рукава, ближайшей к центру галактики. Эти признаки (преимущественная концентрация пыли и областей Н II у внутреннего края рукава) выражены довольно слабо, а нейтральный водород (Н I) оказался плотнее всего не у края, а близ середины рукава. Спиральные рукава М 33 состоят из довольно коротких обрывков, много звезд высокой светимости находится за пределами рукавов, поэтому главная роль в образовании спиральной структуры этой галактики должна принадлежать не волнам плотности, а дифференциальному вращению и эпидемическому звездообразованию.

Четкий спиральный узор заметен у галактики М31, но его детальное исследование долгое время представлялось мало перспективным. Из-за небольшого угла между плоскостью галактики и лучом зрения расшифровка ее спиральной структуры весьма трудна, и до сих пор продолжаются споры не только о числе рукавов, но. и об их ориентации относительно направления вращения галактики. По мнению автора, даже на фотографиях видно, что рукава отходят от ядра М 31 по часовой стрелке и, поскольку галактика вращается в противоположном направлении, спирали закручиваются. Это предположение подтверждается формой пылевых волокон близ ядра М 31 и распределением нейтрального водорода вдали от центра галактики. Во всяком случае, локализация многих отрезков рукавов в М 31 однозначна, и, следовательно, особенности их структуры можно сопоставить с предсказаниями волновой теории.

АНАТОМИЯ СПИРАЛЬНОГО РУКАВА.

В юго-западном «углу» галактики М 31 хорошо заметен отрезок спирального рукава, обозначенный Бааде как S 4. Он пересекает большую ось галактики на расстоянии 50" от ее центра. В этом рукаве действительно наблюдается последовательность возрастов, предсказываемая волновой теорией. Перед его внутренним краем видна.мощная пылевая полоса, с нею совпадает максимум плотности нейтрального водорода. В центральной и юго-восточной частях S4 наиболее яркие области Н II встречаются почти исключительно у внутреннего края рукава. Здесь, следовательно, сосредоточены самые молодые и горячие 0-звезды. Максимумы плотности атомарного и молекулярного водорода совпадают друг с другом, указывая места максимального сжатия газа. Молекулы водорода образуются в наиболее плотных и холодных облаках, и именно в молекулярных облаках выполняются условия, необходимые для звездообразования. Этот процесс начинается перед краем рукава, там, где плотность нейтрального и молекулярного водорода максимальная, а в зонах Н II на самом краю наиболее массивные звезды уже сформировались. Здесь сияют 0-звезды, возраст которых не превышает 10^6 лет.

Дальше от края рукава зон Н II почти нет, так как при своем движении от края рукава 0-звезды успевают проэволюционировать и превратиться в нейтронные звезды или черные дыры. Градиент возрастов звезд в поперечном сечении спирального рукава S 4 удобнее исследовать на участке, где рукав разворачивается, то есть близ большой оси. Здесь луч зрения направлен почти точно вдоль рукава и расстояния звезд от его внутреннего края определяются увереннее. В этой области рукава S 4 автор статьи вместе с сотрудником кафедры астрономии Софийского университета Г. Р. Ивановым измерили видимые величины звезд на пластинке, полученной с 2-метровым рефлектором Национальной астрономической обсерватории НРБ. Зная расстояние до М 31 и учтя межзвездное поглощение света, можно от видимых звездных величин перейти" к абсолютным, а значит, найти светимости звезд. Спиральный рукав S 4 неоднократно фотографировал на 5-метровом рефлекторе Бааде, изучавший в 1950-1952 годах переменные звезды в М31. К счастью, среди переменных оказалось много цефеид. Для них существует зависимость период-возраст (по наблюдательным данным ее получил автор статьи в 1964 году), объясняющаяся тем, что более массивные звезды быстрее переходят в стадию цефеид и имеют больший период пульсаций. Изучив в какой-то области галактики распределение цефеид разных возрастов, можно восстановить здесь историю звездообразования на временном интервале от 10 (период пульсаций 50 дней) до 90 (период пульсаций 2 дня) миллионов лет назад.

В рукаве S 4 светимости постоянных звезд и периоды цефеид, максимальные для данного расстояния от края рукава, убывают с удалением от него. Это и есть градиент возрастов, ибо максимальные светимости звезд и периоды цефеид зависят от возраста. Какова же скорость вращения спирального узора (волны плотности) в М31? У внешнего края рукава S 4, на расстоянии примерно 2,5 кпк от его внутреннего края, возраст самых молодых звезд около (2-2,5)*10^7 лет. За это время звезды, родившиеся, согласно исходному предположению волновой теории, у внутреннего края рукава, успели его пересечь, поскольку их скорость превышает скорость твердотельного вращения спирального узора. Зная ширину рукава (2,5 кпк) и время, затраченное звездами на его пересечение, можно оценить различие скоростей вращения спирального узора и звезд.

Поскольку скорости звезд известны из наблюдений, можно теперь найти и угловую скорость вращения спирального узора в М31. Она составляет 10 км/с на 1 кпк. Эта величина может быть ошибочна на 50%, и все же она, пожалуй, самая надежная из существующих ныне оценок скорости вращения спирального узора в других галактиках. При этом ее значении радиус коротации в М31, на котором нет движения звезд относительно спирального рукава и не должно быть градиента возрастов, равен около 20 кпк. Примерно на таком расстоянии от центра галактики находится спиральный рукав S 6. В нем ярчайшие звезды занимают полосу шириной 100-200 пк, но находится она не у внутреннего края рукава, как в S 4, а посередине его, распределение звезд в поперечном сечении рукава S 6 симметрично. Градиента возрастов звезд в рукаве S 6 действительно нет. Вероятно, этот рукав существует лишь потому, что области звездообразования растягиваются дифференциальным вращением.

СПИРАЛЬНЫЕ РУКАВА В М31 И В ГАЛАКТИКЕ.

Итак, ситуация в центральной и юго-восточной части рукава S 4 в галактике М31 полностью объясняется волновой теорией и современными представлениями о происхождении массивных звезд. В северной части рукава S 4 положение более сложное. Здесь находится гигантский комплекс звезд высокой светимости NGC 206, который уступает по яркости лишь центральной части М 31 и ее эллиптическим спутникам М 32 и NGC 205. Почему именно в этой области образовались самые массивные звезды? Плотность газа перед внутренним краем рукава близ NGC 206 гораздо меньше, -зоны Н II разбросаны беспорядочно, а не сконцентрированы около внутреннего края. Севернее NGC 206 рукав S 4 на значительном протяжении теряется вообще; точнее, локализации газа, звезд высокой светимости и пылевых прожилок становятся мало связанными Друг с другом. Именно эту область подразумевал Бааде, говоря, что спиральный рукав иногда ведет себя подобно хамелеону, превращаясь из пылевого в звездный и наоборот.

Особенности гигантского звездного комплекса NGC 206, расщепление близ него рукава S 4 и появление тянущихся к соседним рукавам перемычек не нашли еще полного объяснения. Возможно, все это связано с воздействием на спиральную структуру М 31 ее близкого спутника - эллиптической галактики М 32. Можно также предположить, что дело просто в большой массе этого комплекса, позволяющей ему почти не зависеть от условий в спиральном рукаве и даже, наоборот, влиять на них. Однако вполне понятно, почему к югу от NGC 206 спиральный рукав S 4 показывает столь ярко выраженный градиент возрастов. Скорость встречи рукава и набегающего на него газа тем больше, чем больше угол закручивания рукава " и чем дальше рукав от радиуса коротации. В центральной части S 4 угол закручивания едва ли не максимальный в М 31 (около 25°, тогда как в среднем в М 31 около 10°), поэтому скорость набегания газа на него очень велика. На границе рукава возникает ударная волна, и плотность газа повышается в 10-30 раз, что весьма благоприятно для звездообразования, в первую очередь-образования массивных звезд, которых у внутреннего края S 4 особенно много. Резко выраженная волна плотности управляет звездообразованием в рукаве S 4, и вне этого рукава массивных звезд, в том числе цефеид, почти нет.

Рукав S4 находится в среднем на таком же расстоянии от центра М31, как Солнце от центра Галактики (около 9 кпк), но между распределением цефеид в этих двух областях огромная разница. В окрестностях Солнца, в круге радиусом в 3-4 кпк, нет таких обширных, свободных от цефеид пространств, какие наблюдаются по обе стороны рукава S 4, Наиболее вероятным объяснением представляется близость Солнца к радиусу коротации Галактики, в силу чего звездообразование в наших окрестностях мало зависит от слабой здесь волны плотности. Лишь наиболее молодые звезды и скопления обрисовывают вокруг Солнца отрезки спиральных рукавов. Цефеиды же, по-видимому, концентрируются только в отрезке рукава Киль - Стрелец, находящемся ближе к центру Галактики (и дальше от радиуса коротации). Тогда значение радиуса коротации в Галактике-10-12 кпк. Эта величина радиуса коротации согласуется с моделью спиральных волн плотности, возбуждаемых небольшим отклонением от осевой симметрии в распределении массы близ центра Галактики. При радиусе коротации 10-12 кпк угловая скорость вращений спирального узора составляет 20-24 км/с на 1 кпк. Эта модель подтверждается исследованием кинематики цефеид, проведенными Ю. Н. Мишуровым, Е. Д. Павловской и А. А. Сучковым. И, как считает Л. С. Марочник, видимо, не случайно жизнь возникла именно на Земле, возле Солнца, которое находится близ радиуса коротации. Здесь промежуток времени между последовательными попаданиями звезды в волну плотности очень велик (на самом радиусе - бесконечно велик), а встреча с волной плотности, наверняка, оказалась бы губительной для всего живого - хотя бы из-за частых взрывов сверхновых в областях звездообразования. А чтобы на планете появились астрономы, необходимы миллиарды лет спокойного развития жизни на ней...