Расчет тепловых потерь в окружающую среду. Теплообмен организма человека с окружающей средой

Оглавление темы "Регуляция обмена веществ и энергии. Рациональное питание. Основной обмен. Температура тела и ее регуляция.":
1. Энергетические затраты организма в условиях физической нагрузки. Коэффициент физической активности. Рабочая прибавка.
2. Регуляция обмена веществ и энергии. Центр регуляции обмена веществ. Модуляторы.
3. Концентрация глюкозы в крови. Схема регуляции концентрации глюкозы. Гипогликемия. Гипогликемическая кома. Чувство голода.
4. Питание. Норма питания. Соотношение белков, жиров и углеводов. Энергетической ценность. Калорийность.
5. Рацион беременных и кормящих женщин. Рацион детского питания. Распределение суточного рациона. Пищевые волокна.
6. Рациональное питание как фактор сохранения и укрепления здоровья. Здоровый образ жизни. Режим приема пищи.
7. Температура тела и ее регуляция. Гомойотермные. Пойкилотермные. Изотермия. Гетеротермные организмы.
8. Нормальная температура тела. Гомойотермное ядро. Пойкилотермная оболочка. Температура комфорта. Температура тела человека.
9. Теплопродукция. Первичная теплота. Эндогенная терморегуляция. Вторичная теплота. Сократительный термогенез. Несократительный термогенез.

Существуют следующие пути отдачи тепла организмом в окружающую среду: излучение , теплопроведение , конвекция и испарение .

Излучение - это способ отдачи тепла в окружающую среду поверхностью тела человека в виде электромагнитных волн инфракрасного диапазона (а = 5-20 мкм). Количество тепла, рассеиваемого организмом в окружающую среду излучением, пропорционально площади поверхности излучения и разности средних значений температур кожи и окружающей среды. Площадь поверхности излучения - это суммарная площадь поверхности тех частей тела, которые соприкасаются с воздухом. При температуре окружающей среды 20 °С и относительной влажности воздуха 40-60 % организм взрослого человека рассеивает путем излучения около 40-50 % всего отдаваемого тепла. Теплоотдача путем излучения возрастает при понижении температуры окружающей среды и уменьшается при ее повышении. В условиях постоянной температуры окружающей среды излучение с поверхности тела возрастает при повышении температуры кожи и уменьшается при ее понижении. Если средние температуры поверхности кожи и окружающей среды выравниваются (разность температур становится равной нулю), отдача тепла излучением становится невозможной. Снизить теплоотдачу организма излучением можно за счет уменьшения площади поверхности излучения («сворачивания тела в клубок»). Если температура окружающей среды превышает среднюю температуру кожи, тело человека, поглощая инфракрасные лучи, излучаемые окружающими предметами, согревается.

Рис. 13.4. Виды теплоотдачи . Пути отдачи тепла организмом во внешнюю среду можно условно подразделить на «влажную» теплоотдачу, связанную с испарением пота и влаги с кожи и слизистых оболочек, и на «сухую» теплоотдачу, которая не связана с потерей жидкости.

Теплопроведение - способ отдачи тепла, имеющий место при контакте, соприкосновении тела человека с другими физическими телами. Количество тепла, отдаваемого организмом в окружающую среду этим способом, пропорционально разнице средних температур контактирующих тел, площади контактирующих поверхностей, времени теплового контакта и теплопроводности контактирующего тела. Сухой воздух, жировая ткань характеризуются низкой теплопроводностью и являются теплоизоляторами. Использование одежды из тканей, содержащих большое число маленьких неподвижных «пузырьков» воздуха между волокнами (например, шерстяные ткани), дает возможность организму человека уменьшить рассеяние тепла путем теплопроводности. Влажный, насыщенный водяными парами воздух, вода характеризуются высокой теплопроводностью. Поэтому пребывание человека в среде с высокой влажностью при низкой температуре сопровождается усилением теплопотерь организма. Влажная одежда также теряет свои теплоизолирующие свойства.

Конвекция - способ теплоотдачи организма, осуществляемый путем переноса тепла движущимися частицами воздуха (воды). Для рассеяния тепла конвекцией требуется обтекание поверхности тела потоком воздуха с более низкой температурой, чем температура кожи. При этом контактирующий с кожей слой воздуха нагревается, снижает свою плотность, поднимается и замещается более холодным и более плотным воздухом. В условиях, когда температура воздуха равна 20 °С, а относительная влажность - 40-60 %, тело взрослого человека рассеивает в окружающую среду путем теплопро-ведения и конвекции около 25-30 % тепла (базисная конвекция). При увеличении скорости движения воздушных потоков (ветер, вентиляция) значительно возрастает и интенсивность теплоотдачи (форсированная конвекция).

Отдача тепла организмом путем теплопроведения , конвекции и излу чения, называемых вместе «сухой» теплоотдачей , становится неэффективной при выравнивании средних температур поверхности тела и окружающей среды.


Теплоотдача путем испарения - это способ рассеяния организмом тепла в окружающую среду за счет его затраты на испарение пота или влаги с поверхности кожи и влаги со слизистых оболочек дыхательных путей («влажная» теплоотдача). У человека постоянно осуществляется выделение пота потовыми железами кожи («ощутимая», или железистая, потеря воды), увлажняются слизистые оболочки дыхательных путей («неощутимая» потеря воды) (рис. 13.4). При этом «ощутимая» потеря воды организмом оказывает более существенное влияние на общее количество отдаваемого путем испарения тепла, чем «неощутимая».

При температуре внешней среды около 20 "С испарение влаги составляет около 36 г/ч. Поскольку на испарение 1 г воды у человека затрачивается 0,58 ккал тепловой энергии, нетрудно подсчитать, что путем испарения организм взрослого человека отдает в этих условиях в окружающую среду около 20 % всего рассеиваемого тепла. Повышение внешней температуры, выполнение физической работы, длительное пребывание в теплоизолирующей одежде усиливают потоотделение и оно может возрасти до 500- 2000 г/ч. Если внешняя температура превышает среднее значение температуры кожи, то организм не может отдавать во внешнюю среду тепло излучением, конвекцией и теплопроведением. Организм в этих условиях начинает поглощать тепло извне, и единственным способом рассеяния тепла становится усиление испарения влаги с поверхности тела. Такое испарение возможно до тех пор, пока влажность воздуха окружающей среды остается меньше 100 %. При интенсивном потоотделении, высокой влажности и малой скорости движения воздуха, когда капли пота, не успевая испариться, сливаются и стекают с поверхности тела, теплоотдача путем испарения становится менее эффективной.

Для уменьшения расхода теплоты необходим строгий учет тепловых потерь в технологическом оборудовании и тепловых сетях . Тепловые потери зависят от типа оборудования и трубопроводов, правильной их эксплуатации и вида изоляции.

Тепловые потери (Вт) рассчитывают по формуле

В зависимости от типа оборудования и трубопровода суммарное термическое сопротивление составляет:

для изолированного трубопровода с одним слоем изоляции:

для изолированного трубопровода с двумя слоями изоляции:

для технологических аппаратов с многослойными плоскими или цилиндрическими стенками диаметром более 2 м:

для технологических аппаратов с многослойными плоскими или цилиндрическими стенками диаметром менее 2 м:

сителя к внутренней стенке трубопровода или аппарата и от наружной поверхности стенки в окружающую среду, Вт/(м 2 - К); Х тр, ?. ст, Xj — теплопроводность соответственно материала трубопровода, изоляции, стенок аппарата, /-го слоя стенки, Вт/(м. К); 5 СТ. — толщина стенки аппарата, м.

Коэффициент теплоотдачи определяют по формуле

или по эмпирическому уравнению

Перенос теплоты от стенок трубопровода или аппарата в окружающую среду характеризуется коэффициентом а н [Вт/(м 2 К)], который определяют по критериальным или эмпирическим уравнениям:

по критериальным уравнениям:

Коэффициенты теплоотдачи а в и а н рассчитывают по критериальным или эмпирическим уравнениям. Если горячим теплоносителем является горячая вода или конденсирующийся пар, то а в > а н, т. е. R B < R H , и величиной R B можно пренебречь. Если горячим теплоносителем является воздух или перегретый пар, то а в [Вт/(м 2 - К)] рассчитывают по критериальным уравнениям:

по эмпирическим уравнениям:

Тепловая изоляция аппаратов и трубопроводов изготовлена из материалов с малой теплопроводностью. Хорошо подобранная тепловая изоляция позволяет снизить потери теплоты в окружающее пространство на 70 % и более. Кроме того, она повышает производительность тепловых установок, улучшает условия труда.

Тепловая изоляция трубопровода состоит в основном из одного слоя, покрытого сверху для прочности слоем листового металла (кровельная сталь, алюминий и др.), сухой штукатурки из цементных растворов и пр. В случае использования покровного слоя из металла его термическим сопротивлением можно пренебречь. Если покровным слоем является штукатурка, то ее теплопроводность незначительно отличается от теплопроводности теплоизоляции. В этом случае толщина покровного слоя составляет, мм: для труб с диаметром менее 100 мм — 10; для труб с диаметром 100—1000 мм — 15; для труб с большим диаметром — 20.

Толщина тепловой изоляции и покровного слоя не должна превышать предельной толщины, зависящей от массовых нагрузок на трубопровод и его габаритных размеров. В табл. 23 приведены значения предельной толщины изоляции паропроводов, рекомендуемые нормами проектирования тепловой изоляции.

Тепловая изоляция технологических аппаратов может быть однослойной или многослойной. Потери теплоты через тепловую

изоляцию зависят от вида материала. Теплопотери в трубопроводах рассчитывают на 1 и 100 м длины трубопроводов, в технологическом оборудовании — на 1 м 2 поверхности аппарата.

Слой загрязнений на внутренних стенках трубопроводов создает дополнительное термическое сопротивление переносу теплоты в окружающее пространство. Термические сопротивления R (м. К/Вт) при движении некоторых теплоносителей имеют следующие значения:

В трубопроводах, подающих технологические растворы к аппаратам и горячие теплоносители к теплообменным установкам, имеются фасонные части, в которых теряется часть теплоты потока. Местные потери теплоты (Вт/м) определяют по формуле

Коэффициенты местных сопротивлений фасонных частей трубопроводов имеют следующие значения:

При составлении табл. 24 расчет удельных тепловых потерь проводился для стальных бесшовных трубопроводов (давление < 3,93 МПа). При расчете тепловых потерь исходили из следующих данных: тем-

пература воздуха в помещении была принята равной 20 °С; скорость его при свободной конвекции — 0,2 м/с; давление пара — 1x10 5 Па; температура воды — 50 и 70 °С; теплоизоляция выполнена в один слой из асбестового шнура, = 0,15 Вт/(м. К); коэффициент теплоотдачи а„ = 15 Вт/(м 2 - К).

Пример 1. Расчет удельных тепловых потерь в паропроводе.

Пример 2. Расчет удельных тепловых потерь в неизолированном трубопроводе.

Заданные условия

Трубопровод стальной диаметром 108 мм. Диаметр условного прохода d y = 100 мм. Температура пара 110°С, окружающей среды 18 °С. Теплопроводность стали X = 45 Вт/(м. К).

Полученные данные свидетельствуют о том, что использование тепловой изоляции сокращает тепловые потери на 1 м длины трубопровода в 2,2 раза.

Удельные тепловые потери, Вт/м 2 , в технологических аппаратах кожевенного и валяльно-войлочного производства составляют:

Пример 3. Расчет удельных тепловых потерь в технологических аппаратах.

1. Барабан «Гигант» изготовлен из лиственницы.

2. Сушилка фирмы «Хирако Кинзоку».

3. Баркас для крашения беретов. Изготовлен из нержавеющей стали [к = 17,5 Вт/(м-К)]; теплоизоляции нет. Габаритные размеры баркаса 1,5 х 1,4 х 1,4 м. Толщина стенки 8 СТ = 4 мм. Температура процесса t = = 90 °С; воздуха в цехе / ср = 20 °С. Скорость воздуха в цехе v = 0,2 м/с.

Коэффициент теплоотдачи а может бьггь рассчитан следующим образом: а = 9,74 + 0,07 At. При / ср = 20 °С а составляет 10—17 Вт/(м 2 . К).

Если поверхность теплоносителя аппарата открыта, удельные тепловые потери от этой поверхности (Вт/м 2) рассчитывают по формуле

Индустриальная служба «Каприкорн» (Великобритания) предлагает использовать систему «Алплас» для уменьшения тепловых потерь с открытых поверхностей теплоносителей. Система основана на применении полых полипропиленовых плавающих шариков, почти полностью покрывающих поверхность жидкости. Опыты показали, что при температуре воды в открытом резервуаре 90 °С тепловые потери при использовании слоя шариков снижаются на 69,5 %, двух слоев — на 75,5 %.

Пример 4. Расчет удельных тепловых потерь через стенки сушильной установки.

Стенки сушильной установки могут быть изготовлены из различных материалов. Рассмотрим следующие конструкции стенок:

1. Два слоя стали толщиной 5 СТ = 3 мм с расположенной между ними изоляцией в виде асбестовой плиты толщиной 5 И = 3 см и теплопроводностью Х и = 0,08 Вт/(м. К).

В . А . Виноградов - Салтыков , Национальный университет пищевых технологий (г . Киев ), В . Г . Федоров , Открытый международный университет развития человека «Украина» (г . Киев ), В . П . Марценко , Филиал Киевэнерго «Жилтеплоэнерго» (г . Киев )

В показано, что фактические потери тепла от наружных поверхностей водогрейных котлов q 5 существенно меньше нормативных потерь, которые определялись по графикам или таблицам, составленным для паровых котлов большой производительности экстраполяцией в область малой тепловой производительности котлов. Такое снижение q 5 объясняется меньшими температурами наружных поверхностей обмуровки. Так, при переводе парового котла ДКВр на водогрейный режим происходит изменение температурных режимов всех элементов котла, что приводит к снижению потерь теплоты в окружающую среду .

Для определения q 5 производили прямые измерения плотности теплового потока q от наружных поверхностей котла с помощью малогабаритных малоинерционных тепломеров. Распределение потерь теплоты по отдельным поверхностям паровых и водогрейных котлов оказалось неравномерным , поэтому для расчета q 5 измеряли локальные значения q в пределах каждой поверхности, комбинируя градиентный метод поиска максимума тепловых потерь и метод сканирования, а также используя статистические методы усреднения опытных данных по поверхности и во времени .

Усреднение таким образом значения q (Вт/м 2) по каждому элементу F (м 2) наружной поверхности котла использовали для расчета q 5:

где QhР - низшая теплота сгорания газа на рабочую массу, Дж/м 3 ; В - расход газа, м 3 /с.

Опыты проводили, как правило, в условиях производственной эксплуатации котлов, т.е. их производительность отличалась от номинальной. Поэтому подвергли проверке принятую для паровых котлов обратную зависимость тепловых потерь от фактической теплопроизводительности котла:

где D и q 5 - фактическая производительность котла и потери тепла от наружных поверхностей, D H и q 5 H - то же для номинальных условий.

Для проверки (2) проводили опыты на котле КВГ-6,5, передняя и боковые стенки которого после разборки кирпичной обмуровки были заменены шамотно-волокнистыми плитами ШПГТ-450. Для изменения тепловой производительности котла изменяли расход газа и соответственно прирост температуры воды в котле, поддерживая расход воды постоянным. В диапазоне изменения D, максимально возможном для условий эксплуатации котла, формула (2) оказалась справедливой: пересчет по ней для всех фактических D дал практически одинаковую величину q 5 H = 0,185%. Для котла КВГ-6,5 с традиционной обмуровкой испытания показали потери теплоты q 5 H = 0,252%. При полной замене обмуровки на плиты ШПГТ-450 и тщательном уплотнении стыков между ними можно рассчитывать на снижение q 5 и расхода газа на 0,10-0,15%. При массовой замене обмуровки во время ремонтов это может внести существенный вклад в энерго- и ресурсосбережение, поскольку снижение расхода газа на 0,1% в системе филиала Киевэнерго «Жилтеплоэнерго» приводит к экономии газа 1300 м З /сут. .

Были подтверждены выводы из о том, что фактические потери тепла от наружных поверхностей водогрейных котлов в несколько раз ниже нормативных. Так, разработчики компактных котлов ТВГ, сотрудники Института газа НАН Украины, при проведении приемо-сдаточных испытаний измеряли поверхностными термометрами среднюю температуру наружных поверхностей стенок котлов и по известным формулам рассчитывали q 5 . Для котлов ТВГ-4 и ТВГ-8 нормативные потери составляют 2%, а расчетные повышались при снижении нагрузки от номинальной до минимально целесообразной для ТВГ-4 от 0,54 до 1 %, для ТВГ-8 от 0,33 до 0,94%. Поэтому Институт рекомендовал в 2000 г. организациям, эксплуатирующим котлы этого типа, принимать среднее значение q 5 = 0,75%.

К подобным выводам пришли в при исследовании котлов КВГ, разработанных в Институте газа НАН Украины. Для определения q 5 здесь также использовали формулу (1), Но вместо 2(cjF) подставляли qF K , где F K - суммарная наружная площадь термоизоляции котла. Среднюю величину q рассчитывали по формуле:

Здесь плотность теплового потока от наружной поверхности изоляции к воздуху q o и от внутренней поверхности к воздуху q T определяется из формул:

где а - суммарный коэффициент теплоотдачи в окружающую среду; t 0 , t T , t B - температуры наружной, внутренней поверхности и воздуха; R - суммарное термическое сопротивление слоев обмуровки; R 0 = 1/а 0 .

Значения t T и t 0 рекомендуется определять прямыми измерениями или расчетным методом , R - рассчитывать в зависимости от толщины и теплопроводности слоев изоляции, а а 0 - по известным формулам Каммерера для плоских и цилиндрических поверхностей.

При расчетах q 0 и q T их значения существенно различались, хотя при стационарной работе котла они почти одинаковы. Причину того, что в получалось q T >q 0 , можно объяснить тем, что вследствие неизбежной вынужденной циркуляции воздуха в помещении котельной фактические значения а 0 на 12-15% больше расчетных, как это было показано прямыми измерениями q 0 и (t 0 -t B на паровом котле ТГМП-314А . Из-за этой разницы в q 0 и q T в (3) введен К К - коэффициент коррекции погрешности измерений и расчетов q 0 и q T , который рекомендуют брать в пределах 0,3-0,7. Видимо, при одинаковом доверии к обеим величинам нужно брать их полусумму.

Для учета дополнительной потери тепла через тепловые мостики вводится коэффициент К М = 0,2-0,4.

Кроме введения К К и К М, в предлагается увеличивать q 5 на 10-20% для учета потерь тепла через нижнюю (подовую) труднодоступную поверхность котла, а также учитывать долю потерь от наружных поверхностей, которая возвращается в топку и газоходы котла вместе с воздухом из котельной.

Несмотря на значительные различия методики определения q 5 в и , результаты получились схожими, что дает основания к обобщению этих результатов и их использованию при составлении нормативных документов. На рисунке представлена зависимость q 5 от номинальной теплопроизводительности водогрейных котлов НИИСТУ-5, НИИСТУ-5х2, ТВГ-4, ТВГ-8 , КВГ-4, КВГ-6,5 , а также КВГ-4, КВГ-6,5, КВГМ-10 и КВГМ-50 . Данные из и лежат несколько ниже соответствующих данных из , однако такое различие вполне оправдано разными методиками исследований.

Литература

1. Федоров В . Г ., Виноградов - Салтыков В . А ., Марценко В . П . Измерение потерь тепла от наружных поверхностей водогрейных котлов // Экотехнологии и ресурсосбережение . 1997. 3. С . 66-68.

2. Марценко В . П ., Федоров В . Г . Эффективность изоляционных ограждений водогрейных котлов // Пром . теплотехника . 2000. Т . 22, 2. С . 78-80.

3. Федор i в В . Г ., Виноградов - Салтиков В . А ., Марценко В . П . Розпод i л тепловтрат по огородженнях водогр i йних тапарових котл i в / УДУХТ . К ., 1998. 16 с . Деп . в ДНТБ Ук - ра i ни 23.03.98, 142.

4. Федоров В . Г ., Плесконос А . К . Планирование и реализация экспериментов в пищевой промышленности . М .: Пищ . пром - сть , 1980. 240 с .

5. МарчакИ . И ., ГолышевЛ . В ., МысакИ . С . Методика определения потери тепла паровым котлом в окружающуюсреду // Теплоэнергетика . 2001. 10. С . 67-70.

6. Залкинд Е . М . Материалы обмуровки и расчет ограждений паровых котлов . М .: Энергия , 1972. 184 с .

7. CammererJ.S. Erleuchtungen zu den VDI - Rechtlinien fuerWaerme - und Kalteschutz - Brennstoff - Waerme - Kraft.1958. Bd. 10, 3. S. 119-121.

8. Федоров В . Г ., Виноградов - Салтыков В . А ., Новик М . И . Теплометрия наружных поверхностей котла ТГМП -314 А // Экотехнологии и ресурсосбережение . 1999. 4. С . 77-79.

Тепловой поток Q п через поверхность S ст стенок сушилки вычисляют по уравнению теплопередачи:

Q п = к*Δt ср *S ст,

Коэффициент теплопередачи к рассчитывается по формуле для многослойной стенки:

где δ и λ – соответственно толщина и коэффициент теплопроводности различных слоев футеровки и теплоизоляции.

Найдем значение критерия Re:

Re=v*l/υ=2,5 м/с*1,65 м/29*10 -6 м 2 /с=142241

Nu=0,66*Re 0,5 *Pr 0,33 =0,66*142241 0,5 *1,17 0,33 =262,2.

Коэффициент теплоотдачи α от сушильного агента к внутренней поверхности стенок:

α 1 =Nu* λ/l=262,2*3,53*10 -2 Вт/(м*К)/1,65 м=5,61 Вт/м 2 *К.

Суммарный коэффициент теплопередачи конвекций и излучением от наружной стенки к окружающему воздуху:

α 2 =9,74+0,07*(t ст -t в),

где t ср – температура наружной стенки, t ст =40 0 С,

t в – температура окружающего воздуха, t в =20 0 С,

α 2 =9,74+0,07*(40 0 С-20 0 С)=11,14 Вт/ м 2 *К.

По температуре газов выбираем толщину футеровки (таб. 3.1)

футеровки –

шамота – 125 мм

стали – 20 мм

шамота – 1,05 Вт/м*К

стали - 46,5 Вт/м*К

Находим коэффициент теплопередачи:

Определяем поверхность стенки S ст:

S ст =π*d*l=3,14*1,6 м*8 м=40,2 м 2 ,

Q п =2,581 Вт/(м 2 *К)*89 0 С*40,2 м 2 =9234 Вт.

Удельную потерю теплоты в окружающую среду определяют по формуле:

где W – масса влаги, удаляемая из высушенного материала за 1 с.

q п =9234 Вт/0,061 кг/с=151377,05 Вт*с/кг.

2.3. Расчет калорифера при сушке воздухом

Общее количество теплоты Q 0 рассчитывают по формуле:

Q 0 =L*(I 1 -I 0)

Q 0 =2,46 кг/с *(159 кДж/кг +3,35 кДж/кг)=399,381кВт

Вычислим средний температурный напор по формуле логарифмического уравнения:

где Δt м =t 1 -t 2н

Δt б =t 1 -t 2к

t 1 - температура греющего пара (равное температуре насыщения пара при заданном давлении).

При давлении 5,5 атм. t 1 =154,6 0 С (ст 550)

t 2н, t 2к - температура воздуха на входе в калориметр и выходе из него, t 2к =150 0 С; t 2н =-7,7 0 С.

Δt б =154,6 0 С+7,7 0 С=162,3 0 С,

Δt м =154,6 0 С-150 0 С=4,6 0 С,

Поверхность теплообмена S т калориметра определяют по уравнению теплоотдачи:

S т =Q 0 /к Δt ср.,

где к- коэффициент теплоотдачи, который для оребренных калориферов применяется в зависимости от массовой скорости воздуха ρ*v. Пусть ρ*v =3 кг/м 2 *с; тогда к=30 Вт/ м 2 *к.

Находим необходимое число n к. секций калорифера:

n к. =S т / S с,

где S с – поверхность теплообмена секции.

Примем оребренный калорифер:

Т. к. фактическое число секций выбирают с 15-20 %-ним запасом, то n к. =6,23+6,23*0,15=7,2≈8 секции.

Массовую скорость воздуха в калорифере рассчитывают:

где L-расход абсолютно сухого воздуха,