Равна равнодействующая этих сил. Модуль равнодействующей силы

Это векторная сумма всех сил, действующих на тело.


Велосипедист наклоняется в сторону поворота. Сила тяжести и сила реакции опоры со стороны земли дают равнодействующую силу, сообщающую центростремительное ускорение, необходимое для движения по окружности

Взаимосвязь со вторым законом Ньютона

Вспомним закон Ньютона:

Равнодействующая сила может быть равна нулю в том случае, когда одна сила компенсируется другой, такой же силой, но противоположной по направлению. В этом случае тело находится в покое или движется равномерно.


Если равнодействующая сила НЕ равна нулю, то тело движется равноускоренно . Собственно именно эта сила является причиной неравномерного движения. Направление равнодействующей силы всегда совпадает по направлению с вектором ускорения.

Когда требуется изобразить силы, действующие на тело, при этом тело движется равноускоренно, значит в направлении ускорения действующая сила длиннее противоположной. Если тело движется равномерно или покоится длина векторов сил одинаковая.


Нахождение равнодействующей силы

Для того, чтобы найти равнодействующую силу, необходимо: во-первых, верно обозначить все силы , действующие на тело; затем изобразить координатные оси , выбрать их направления; на третьем шаге необходимо определить проекции векторов на оси; записать уравнения. Кратко: 1) обозначить силы; 2) выбрать оси, их направления; 3) найти проекции сил на оси; 4) записать уравнения.

Как записать уравнения? Если в некотором направлении тело двигается равномерно или покоится, то алгебраическая сумма (с учетом знаков) проекций сил равна нулю. Если в некотором направлении тело движется равноускоренно, то алгебраическая сумма проекций сил равна произведению массы на ускорение, согласно второму закону Ньютона.

Примеры

На движущееся равномерно по горизонтальной поверхности тело, действуют сила тяжести, сила реакции опоры, сила трения и сила, под действием которой тело движется.

Обозначим силы, выберем координатные оси

Найдем проекции

Записываем уравнения

Тело, которое прижимают к вертикальной стенке, равноускоренно движется вниз. На тело действуют сила тяжести, сила трения, реакция опоры и сила, с которой прижимают тело. Вектор ускорения направлен вертикально вниз. Равнодействующая сила направлена вертикально вниз.



Тело равноускоренно движется по клину, наклон которого альфа. На тело действуют сила тяжести, сила реакции опоры, сила трения.



Главное запомнить

1) Если тело покоится или движется равномерно, то равнодействующая сила равна нулю и ускорение равно нулю;
2) Если тело движется равноускоренно, значит равнодействующая сила не нулевая;
3) Направление вектора равнодействующей силы всегда совпадает с направлением ускорения;
4) Уметь записывать уравнения проекций действующих на тело сил

Блок - механическое устройство, колесо, вращающееся вокруг своей оси. Блоки могут быть подвижными и неподвижными.

Неподвижный блок используется лишь для изменения направления силы.

Тела, связанные нерастяжимой нитью, имеют одинаковые по величине ускорения.

Подвижный блок предназначен для изменения величины прилагаемых усилий. Если концы веревки, обхватывающей блок, составляют с горизонтом равные между собой углы, то для подъёма груза потребуется сила вдвое меньше, чем вес груза. Действующая на груз сила относится к его весу, как радиус блока к хорде дуги, обхваченной канатом.

Ускорение тела А в два раза меньше ускорения тела В.

Фактически, любой блок представляет собой рычаг , в случае неподвижного блока - равноплечий, в случае подвижного - с соотношением плеч 1 к 2. Как и для всякого другого рычага, для блока справедливо правило: во сколько раз выигрываем в усилии, во столько же раз проигрываем в расстоянии

Также используется система, состоящая из комбинации нескольких подвижных и неподвижных блоков. Такая система называется полиспаст.


Если на твердое тело действует много сил, то движение тела зависит только от суммы всех этих сил и от суммы их моментов. Это обстоятельство позволяет иногда заменить совокупность всех действующих на тело сил одной силой, которую называют в таком случае равнодействующей. Очевидно, что по величине и направлению равнодействующая сила равна сумме всех сил, а ее точка приложения должна быть выбрана таким образом, чтобы ее момент был равен суммарному моменту всех сил.

Наиболее важный случай такого рода - сложение параллельных сил. Сюда относится, в частности, сложение сил тяжести, действующих на отдельные части твердого тела.

Рассмотрим какое-либо тело и определим полный момент сил тяжести относительно произвольно выбранной горизонтальной оси (ось Z на рис. 5). Сила тяжести, действующая на элемент m i тела, равна m i g, а ее плечо есть координата x i этого элемента. Поэтому суммарный момент всех сил равен

Равнодействующая сила по величине равна полному весу тела и если обозначить координату ее точки приложения через X, то тот же момент N z запишется в виде (24)

Приравняв оба выражения, найдем (25)

Но это есть не что иное, как х-координата центра инерции тела.

Таким образом, мы видим, что всю совокупность действующих на тело сил тяжести можно заменить одной силой, равной полному весу тела и приложенной к его центру инерции. В связи с этим центр инерции тела часто называют также его центром тяжести.

Сведение системы параллельных сил к одной равнодействующей силе, однако, невозможно, если сумма сил равна нулю. Действие такой совокупности сил может быть сведено к действию, как говорят, пары сил: двух сил, равных по величине и противоположных по направлению. Легко сообразить, что сумма N z моментов таких двух сил относительно любой оси Z, перпендикулярной плоскости их действия, одинакова и равна произведению величины F на расстояние h между направлениями действия обеих сил (плечо пары ): N z =Fh .

Действие пары сил, оказываемое ею на движение тела, зависит только от этого, как говорят, момента пары .

Методика проведения эксперимента и описание установки

Задачи работы : экспериментальное исследование закономерностей гироскопического эффекта, опытное определение полного момента инерции гироскопа.

Приборы и принадлежности: гироскоп ФМ-18, электронный блок, штангенциркуль.

Гироскопом называет массивное тело, вращающееся с большой скоростью вокруг неподвижной оси симметрии. В экспериментальной установке, показанной на рис. 6, гироскопом служит металлический диск 1 с горизонтально расположенной осью 2, который приводится во вращение электродвигателем 3. Ось гироскопа опирается на шарнир 4, закреплённый на подставке 5. Горизонтальное положение оси обеспечивается противовесом 6. Смещая противовес вдоль градуированной шкалы 7, можно создавать дополнительный момент силы тяжести, действующий на гироскоп при его вращении.


Установка работает от блока управления. Левое табло показывает частоту вращения маховика гироскопа – после включения индуцирует начальную частоту. Правое табло индуцирует время поворота гироскопа вокруг вертикальной оси на 90 0 .

Установка позволяет наблюдать так называемый гироскопический эффект, заключающийся в том, что попытка повернуть ось гироскопа в определённой плоскости Х приводит на самой деле к повороту в плоскости, перпендикулярной плоскости Х. Допустим, что в первоначальном положения противовес 6 уравновешивает гироскоп так, что полный момент сил, действующих на гироскоп, . В этих условиях согласно закону сохранения момента импульса должно выполняться равенство и ось гироскопа остаётся горизонтальной и неподвижной.

Попытаемся теперь повернуть ось гироскопа в вертикальной плоскости по часовой стрелке. Для этого сдвинем противовес от положения равновесия на некоторое расстояние (см. рис. 7). При этом на гироскоп будет действовать момент силы тяжести N, направленный вдоль оси Oу и по величине равный (26)

Согласно уравнению динамики вращательного движения твердого тела

Поэтому момент силы вызовет за время изменение момента импульса , равное (28)

Важно отметить, что вектор направлен, как вектор , по оси Oy, т.е. перпендикулярно первоначальному направлению вектора . В результате вектор момента импульса гироскопа займет в пространстве новое положение

что соответствует повороту оси гироскопа в горизонтальной плоскости на некоторый угол . При постоянно действующем моменте силы гироскопический эффект приведет к равномерному горизонтальному вращению оси гироскопа с относительно малой угловой скоростью

Установим связь между и другими параметрами гироскопа. Из рис. 2 следует, что

Для малых углов , тогда, подставляя (29) в (30), получаем.

Хорошо, если в школе ученик старается понять учителя, не пропускает занятия, дома выполняет все задания. Тогда ему проще в жизни применить свои знания, не приходится в далеко не школьном возрасте снова возвращаться к предметам. Физика для многих – непростая наука. А для работы просто необходимая дисциплина. В частности она изучает такие физические величины, как силы, которые действуют на тело. Нас интересует равнодействующая всех сил, давайте дальше подробно рассмотрим, как её найти.

Эта сила, впрочем, как и любая другая – векторная величина, имеет исходную точку, направление, измеряется в Ньютонах. В ИСО (Инерциальной Системе Отсчета) равнодействующая направлена в ту же сторону, что и ускорение. Модуль силы эквивалентен геометрической сумме всех других сил, которые действуют на тело. По второму закону Ньютона: Fp=ma, где а – ускорение, m – масса равно-ускоренно двигающегося тела. Когда предмет не движется, интересующая нас сила приравнивается к нулю. К примеру, на наклонной поверхности лежит линейка. Благодаря , силе трения на неё не влияет ускорение. Сумма всех трех сил равна 0. Линейка находится в покое. Рассчитаем значение Fр для предмета, который толкают в одном направлении с F1=15 Н, F2=25 H. Рисунок будет выглядеть так:

Отсюда: Fр = F1 + F2 = 15 + 25 = 40 H, силы, применяемые к телу, имеют одно и то же направление, равнодействующая равняется их сумме.

Если к предмету приложить силы, направленные в противоположных направлениях, то Fp – равнодействующая будет приравниваться к их разности. Пример: один учащийся забирает ручку у другого. Первый прикладывает силу F1=0,1 H, второй – 0,3 Н, Fp = 0,3 – 0,1 = 0,2 H. Как решить простейшие задачи, вы можете посмотреть здесь: . Мы проанализировали только простые примеры решения заданий по физике. В задачах посложнее потребуются знания из геометрии. Там, чтобы найти вектор силы, надо помнить теоремы, уметь найти гипотенузу, треугольника по заданному и углу, знать, что такое синус, косинус угла, как найти диагонали прямоугольника. Скачайте у нас на портале . Итак, для решения сложных задачек на равнодействующую силу первым делом напишите “Дано”, все величины переведите в положенные единицы измерения: кН в Ньютоны, граммы в килограммы и т.д. Нарисуйте рисунок, укажите, какие силы влияют на объекты, верно начертите направления векторов. Следующим шагом составьте уравнения, решайте их, вспоминая все правила из математики, теоремы (как выше говорилось) из геометрии.

Решив поступать в университет, где понадобится результат ЕГЭ по физике, как можно чаще делайте задачи разного уровня сложности. Для облегчения на черновике чертите рисунки, обсчитывайте все варианты решения. Учитесь правильно мыслить, не стесняйтесь обращаться к преподавателю с вопросами. Не забывайте о Законах Ньютона, их часто используют для нахождения значений. Практикуя такой подход, в будущем вы справитесь с заданием любой сложности.

>> Равнодействующая сила

Отослано читателями из интернет-сайтов

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Мы рассматривали до сих пор сличай, когда на тело действуют две (или больше) силы, векторная сумма которых равна нулю. В этом случае тело может либо покоиться, либо двигаться равномерно. Если тело покоится, то общая работа всех приложенных к нему сил равна нулю. Равна нулю и работа каждой отдельной силы. Если же тело движется равномерно, то общая работа всех сил по-прежнему равна нулю. Но каждая сила в отдельности, если она не перпендикулярна направлению движения, совершает определенную работу - положительную или отрицательную.

Рассмотрим теперь случай, когда равнодействующая всех сил, приложенных к телу, не равна нулю или когда на тело действует только одна сила. В этом случае, как это следует из второго закона Ньютона, тело будет двигаться с ускорением. Скорость тела будет меняться, и работа, совершенная силами в этом случае, не равна нулю, она может быть положительной или отрицательной. Можно ожидать, что между изменением скорости тела и работой, совершенной силами, приложенными к телу, существует какая-то связь. Попытаемся ее установить. Представим себе для простоты рассуждения, что тело движется вдоль прямой линии и равнодействующая сил, приложенных к нему, постоянна по абсолютному значению; и направлена по той же прямой. Обозначим эту равнодействующую силу через а проекцию перемещения на направление силы через Направим координатную ось вдоль направления силы. Тогда , как было показано в § 75, совершаемая работа равна Направим координатную ось вдоль перемещения тела. Тогда, как было показано в § 75, работа А, совершаемая равнодействующей, равна: Если направления силы и перемещения совпадают, то положительна и работа положительна. Если равнодействующая направлена противоположно направлению движения тела, то ее работа отрицательна. Сила сообщает телу ускорение а. По второму закону Ньютона . С другой стороны, во второй главе мы нашли, что при прямолинейном равномерно ускоренном движении

Отсюда следует, что

Здесь - начальная скорость тела, т. е. его скорость в начале перемещения - его скорость в конце этого участка.

Мы получили формулу, связывающую работу, совершенную силой с изменением скорости (точнее, квадрата скорости) тела, вызванным этой силой.

Половина произведения массы тела на квадрат его скорости носит специальное название - кинетическая энергия тела, и часто формулу (1) называют теоремой о кинетической энергии.

Работа силы равна изменению кинетической энергии тела.

Можно показать, что формула (1), выведенная нами для силы, постоянной по величине и направленной вдоль движения, справедлива и в тех случаях, когда сила изменяется, а ее направление не совпадает с направлением перемещения.

Формула (1) замечательна во многих отношениях.

Во-первых, из нее следует, что работа силы, действующей на тело, зависит только от начального и конечного значений скорости тела и не зависит от того, с какой скоростью оно двигалось в других точках.

Во-вторых, из формулы (1) видно, что ее правая часть может быть как положительной, так и отрицательной в зависимости от того, возрастает или убывает скорость тела. Если скорость тела возрастает то правая часть формулы (1) положительна, следовательно, и работа Так и должно быть потому, что для увеличения скорости тела (по абсолютной величине) действующая на него сила должна быть направлена в ту же сторону, что и перемещение. Наоборот, когда скорость тела уменьшается правая часть формулы (1) принимает отрицательное значение (сила направлена противоположно перемещению).

Если в начальной точке скорость тела равна нулю, выражение для работы принимает вид:

Формула (2) позволяет вычислить работу, которую нужно совершить, чтобы покоящемуся телу сообщить скорость, равную

Очевидно обратное: для остановки тела, движущегося со скоростью необходимо совершить работу

очень напомннагт формулу, полученную в предыдущей главе (см. § 59), устанавливающую между импульсом силы и изменением импульса тела

Действительно, левая часть формулы (3) отличается от левой части формулы (1) тем, что в ней сила умножается не на перемещение, совершаемое телом, а на время действия силы. В правой части формулы (3) стоит произведение массы тела на его скорость (импульс) вместо половины произведения массы тела на квадрат его скорости, фигурирующее в правой части формулы (1). Обе эти формулы являются следствием законов Ньютона (из которых они были выведены), а величины являются характеристиками движения.

Но между формулами (1) и (3) имеется и принципиальное различие: формула О) устанавливает связь между скалярными величинами, тогда как формула (3) - это векторная формула.

Задача I. Какую работу надо произвести, чтобы поезд, движущийся со скоростью увеличил свою скорость Масса поезда . Какая сила должна быть приложена к поезду, если это увеличение скорости должно произойти на участке длиной 2 км? Движение считать равноускоренным.

Решение. Работу А можно найти по формуле

Подставив сюда приведенные в задаче данные, получим:

Но определению следовательно,

Задача 2, Какой высоты достигнет тело, брошенное вверх о начальной скоростью

Решение. Тело будет подниматься вверх до тех пор, пока его скорость не станет равной нулю. На тело действует только сила тяжести где - масса тела и - ускорение свободного падения (силой сопротивления воздуха и архимедовой силой пренебрегаем).

Применив формулу

Это выражение мы уже получили ранее (см. стр. 60) более сложным путем.

Упражнение 48

1. Как связана работа силы с кинетической энергией тела?

2 Как изменяется кинетическая энергия тела, если сила, приложенная к нему, совершает положительную работу?

3. Как изменяется кинетическая энергия тела, если приложенная к нему сила совершает отрицательную работу.

4. Тело движется равномерно по окружности радиусом 0,5 м, обладая кинетической энергией в 10 дж. Какова сила, действующая на тело? Как она направлена? Чему равна работа этой силы?

5. К покоящемуся телу массой 3 кг приложена сила в 40 н. После этого тело проходит по гладкой горизонтальной плоскости без трения 3 м. Затем сила уменьшается до 20 н, и тело проходит еще 3 м. Найдите кинетическую энергию тела в конечной точке его движения.

6. Какая работа должна быть совершена для остановки поезда массой 1 000 т, движущегося со скоростью 108 км/ч?

7. На тело массой 5 кг, движущееся со скоростью 6 м/сек, действует сила в 8 н, направленная в сторону, противоположную движению. В результате скорость тела уменьшается до 2 м/сек. Какую работу по величине и по знаку совершила сила? Какое расстояние прошло тело?

8. На тело, первоначально находившееся в покое, начинает действовать сила в 4 н, направленная под углом 60° к горизонту. Тело движется по гладкой горизонтальной поверхности без трения. Вычислите работу силы, если тело прошло расстояние в 1 м.

9. В чем состоит теорема о кинетической энергии?