Солнечная радиация или ионизирующее излучение солнца.

Источником тепловой и световой энергии для Земли является солнечная радиациия. Ее величина зависит от широты места, так как от экватора к полюсам угол падения солнечных лучей уменьшается. Чем меньше угол падения солнечных лучей, тем на большую поверхность распределяется пучок солнечных лучей одинакового сечения, а следовательно на единицу площади приходится меньше энергии.

Благодаря тому, что в течение года Земля совершает 1 оборот вокруг Солнца, перемещаясь, сохраняя постоянство угла наклона своей оси к плоскости орбиты (эклиптики) появляются сезоны года, характеризующиеся разными условиями нагрева поверхности.

21 марта и 23 сентября Солнце стоит в зените под экватором (Дни равноденствия). 22 июня Солнце в зените над Северным Тропиком, 22 декабря – над Южным. На земной поверхности выделяют пояса освещенности и тепловые пояса (по среднегодовой изотерме +20 о С проходит граница теплого (жаркий) пояса; между среднегодовыми изотермами +20 о С и изотермой +10 о С расположен умеренный пояс; по изотерме +10 о С – границы холодного пояса.

Солнечные лучи проходят через прозрачную атмосферу, не нагревая ее, они достигают земной поверхности, нагревают ее, а от нее за счет длинноволнового излучения нагревается воздух. Степень нагрева поверхности, а значит и воздуха, зависят, прежде всего, от широты местности, а также от 1) высоты над уровнем моря (с подъемом вверх температура воздуха уменьшается в среднем на 0,6ºС на 100 м.; 2) особенностей подстилающей поверхности которая может быть разной по цвету и иметь различное альбедо – отражающую способность горных пород. Также разные поверхности имеют разную теплоемкость и теплоотдачу. Вода из-за высокой теплоемкости медленно нагревается и медленно, а суша наоборот. 3) от побережий в глубь материков количество водного пара в воздухе уменьшается, а чем прозрачнее атмосфера, тем меньше рассеивается в ней солнечных лучей каплями воды, и больше солнечных лучей достигает поверхности Земли.

Вся совокупность солнечной материи и энергии, поступающая на землю называется Солнечная радиация . Она делится на прямую и рассеянную. Прямая радиация – это совокупность прямых солнечных лучей, пронизывающих атмосферу при безоблачном небе. Рассеянная радиация – часть радиации, рассеивающаяся в атмосфере, лучи при этом идут во всех направлениях. П + Р = Суммарная радиация . Часть суммарной радиации отраженная от поверхности Земли называется отраженная радиация. Часть суммарной радиации поглощенная поверхностью Земли – поглощенная радиация. Тепловая энергия, движущаяся от нагретой атмосферы к поверхности Земли, навстречу потоку тепла от Земли называется встречное излучение атмосферы.

Годовое количество суммарной солнечной радиации в ккал/см 2 год (по Т.В. Власовой).

Эффективное излучение – величина, выражающая фактический переход тепла от поверхности Земли к атмосфере. Разница между излучением Земли и встречным излучением атмосферы определяет прогрев поверхности. От эффективного излучения напрямую зависит радиационный баланс – результат взаимодействия двух процессов прихода и расхода солнечной радиации. На величину баланса во многом влияет облачность. Там где она значительная в ночное время она перехватывает длинноволновое излучение Земли не давая ему уйти в космос.

От поступления солнечной радиации напрямую зависят температуры подстилающей поверхности и приземных слоев воздуха и тепловой баланс.

Тепловой баланс определяет температуру, ее величину и изменение на той поверхности, которая непосредственно нагревается солнечными лучами. Нагреваясь, эта поверхность, передает тепло (в длинноволновом диапазоне) как ниже лежащим слоям, так и атмосфере. Саму поверхность называют деятельной поверхностью.

Основные составляющие теплового баланса атмосферы и поверхности Земли как целого

Показатель

Величина в %

Энергия поступающая к поверхности Земли от Солнца

Радиация, отражаемая атмосферой в межпланетное пространство, в том числе

1) отражается облаками

2) рассеивается

Радиация, поглощаемая атмосферой, в том числе:

1) поглощается облаками

2) поглощается озоном

3) поглощается водяным паром

Радиация, достигающая подстилающей поверхности (прямая + рассеянная)

Из неё: 1) отражается подстилающей поверхностью за пределы атмосферы

2) поглощается подстилающей поверхностью.

Из неё: 1) эффективное излучение

2) турбулентный теплообмен с атмосферой

3) затраты тепла на испарение

В суточном ходе температуры поверхности, сухой и лишенной растительности, в ясный день максимум наступает после 14 часов, а минимум – около момента восхода Солнца. Нарушать суточный ход температуры может облачность, влажность и растительность поверхности.

Дневные максимумы температуры поверхности суши могут составлять +80 о С и более. Суточные колебания достигают 40 о. Величины экстремальных значений и амплитуды температур зависят от широты места, времени года, облачности, тепловых свойств поверхности, ее цвета, шероховатости, характера растительного покрова, ориентировки склонов (экспозиции).

Нагреваясь, поверхность передает тепло почвогрунтам. На передачу тепла от слоя к слою затрачивается время, и моменты наступления максимальных и минимальных значений температуры в течение суток запаздывает на каждые 10 см примерно на 3 часа. Чем глубже слой, тем меньше тепла он получает и тем слабее в нем колебания температур. На глубине в среднем около 1 м суточные колебания температуры почвы «затухают». Слой в котором они прекращаются называется слоем постоянной суточной температуры.

На глубине 5- 10 м в тропических широтах и 25 м в высоких широтах находится слой постоянной годовой температуры, где температура близка к средней годовой температуре воздуха над поверхностью.

Вода медленнее нагревается и медленнее отдает тепло. К тому же солнечные лучи могут проникать на большую глубину, непосредственно нагревая более глубокие слои. Перенос тепла на глубину идет не столько за счет молекулярной теплопроводности, а в большей мере за счет перемешивания вод турбулентным путем или течениями. При остывании поверхностных слоев воды возникает тепловая конвекция, также сопровождающаяся перемешиванием.

В отличие от суши суточные колебания температуры на поверхности океана меньше. В высоких широтах в среднем всего 0,1ºС, в умеренных – 0,4ºС, в тропических – 0,5ºС, Глубина проникновения этих колебаний 15- 20 м.

Годовые амплитуды температуры на поверхности океана от 1ºС в экваториальных широтах до 10,2ºС в умеренных. Годовые колебания температуры проникают на глубину 200- 300 м.

Моменты максимумов температуры водоемов запаздывают по сравнению с сушей. Максимум наступает около 15-16 часов, минимум – через 2-3 часа после восхода Солнца. Годовой максимум температуры на поверхности океана в северном полушарии приходится на август, минимум – на февраль.

Солнечная радиация - ведущий климатообразующий фактор и практически единственный источник энергии для всех физических процессов, происходящих на земной поверхности и в ее атмосфере. Она обусловливает жизнедеятельность организмов, создавая тот или иной температурный режим; приводит к возникновению облаков и выпадению осадков; является основополагающей причиной общей циркуляции атмосферы, тем самым оказывая огромное влияние на жизнь людей во всех ее проявлениях. В строительстве и архитектуре солнечная радиация является важнейшим средовым фактором - от нее зависит ориентация зданий, их конструктивные, объемно-планировочные, колористические, пластические решения и многие другие особенности.

Согласно ГОСТ Р 55912-2013 «Климатология строительная» приняты следующие определения и понятия, связанные с солнечной радиацией:

  • прямая радиация - часть суммарной солнечной радиации, поступающей на поверхности в виде пучка параллельных лучей, приходящих непосредственно от видимого диска солнца;
  • рассеянная солнечная радиация - часть суммарной солнечной радиации, поступающей на поверхности со всего небосвода после рассеяния в атмосфере;
  • отраженная радиация - часть суммарной солнечной радиации, отраженной от подстилающей поверхности (в том числе от фасадов, кровель зданий);
  • интенсивность солнечной радиации - количество солнечной радиации, проходящее за единицу времени через единичную площадку, расположенную перпендикулярно лучам.

Все величины солнечной радиации в современных отечественных ГОСТах, СП (СНиПах) и других нормативных документах, связанных со строительством и архитектурой, измеряются в киловаттах в час на 1 м 2 (кВт ч/м 2). За единицу времени, как правило, принимается месяц. Чтобы получить мгновенное (секундное) значение мощности потока солнечной радиации (кВт/м 2), приведенную за месяц величину следует разделить на количество дней в месяце, количестве часов в сутках и секунд в часах.

Во многих ранних изданиях нормативных документов по строительству и во многих современных справочниках по климатологии значения солнечной радиации приводятся в мегаджоулях или килокалориях на м 2 (МДж/м 2 , Ккал/м 2). Коэффициенты перевода этих величин из одной в другую приведены в приложении 1.

Физическая сущность. Солнечная радиация приходит к Земле от Солнца. Солнце - ближайшая к нам звезда, которая в среднем отстоит от Земли на 149 450 000 км. В начале июля, когда Земля наиболее удалена от Солнца («афелий»), это расстояние увеличивается до 152 млн км, а в начале января оно уменьшается до 147 млн км («перигелий»).

Внутри солнечного ядра температура превышает 5 млн К, а давление больше земного в несколько миллиардов раз, вследствие чего водород превращается в гелий. В ходе этой термоядерной реакции и рождается лучистая энергия, которая распространяется от Солнца по всем направлениям в виде электромагнитных волн. При этом к Земле приходит целый спектр длин волн, который в метеорологии принято делить на коротковолновый и длинноволновый участки. Коротковолновой называют радиацию в диапазоне длин волн от 0,1 до 4 мкм (1 мкм = 10~ 6 м). Радиацию с большими длинами (от 4 до 120 мкм) относят к длинноволновой. Солнечная радиация является преимущественно коротковолновой - на указанный диапазон длин волн приходится 99% всей энергии солнечного излучения, в то время как земная поверхность и атмосфера излучают длинноволновую радиацию, а коротковолновую могут только отражать.

Солнце является источником не только энергии, но и света. Видимый свет занимает узкий интервал длин волн, всего от 0,40 до 0,76 мкм, однако в этом интервале заключается 47% всей солнечной лучистой энергии. Свет с длиной волны около 0,40 мкм воспринимается как фиолетовый, с длиной волны около 0,76 мкм - как красный. Все остальные длины волн человеческий глаз не воспринимает, т.е. они невидимы для нас 1 . На инфракрасное излучение (от 0,76 до 4 мкм) приходится 44%, а на ультрафиолетовое (от 0,01 до 0,39 мкм) - 9% всей энергии. Максимум энергии в спектре солнечной радиации на верхней границе атмосферы лежит в сине-голубой области спектра, а у поверхности земли - в желто-зеленой.

Количественной мерой солнечной радиации, поступающей на некоторую поверхность, служит энергетическая освещенность, или поток солнечной радиации, - количество лучистой энергии, падающей на единицу площади в единицу времени. Максимальное количество солнечной радиации поступает на верхнюю границу атмосферы и характеризуется величиной солнечной постоянной. Солнечная постоянная - это поток солнечной радиации на верхней границе земной атмосферы через площадку, перпендикулярную солнечным лучам, при среднем расстоянии Земли от Солнца. По последним данным, утвержденным Всемирной Метеорологической Организацией (ВМО) в 2007 г., эта величина составляет 1,366 кВт/м 2 (1366 Вт/м 2).

До земной поверхности доходит значительно меньшее количество солнечной радиации, поскольку по мере движения солнечных лучей через атмосферу радиация претерпевает ряд существенных изменений. Часть ее поглощается атмосферными газами и аэрозолями и переходит в теплоту, т.е. идет на нагревание атмосферы, а часть рассеивается и переходит в особую форму рассеянной радиации.

Процесс поглощения радиации в атмосфере носит селективный характер - разные газы поглощают ее в разных участках спектра и в разной степени. Основными газами, поглощающими солнечную радиацию, являются водяной пар (Н 2 0), озон (0 3) и углекислый газ (С0 2). Например, как было сказано выше, стратосферный озон полностью поглощает вредную для живых организмов радиацию с длинами волн короче 0,29 мкм, именно поэтому озоновый слой является естественным щитом существования жизни на Земле. В среднем озоном поглощается около 3% солнечного излучения. В красной и инфракрасной областях спектра наиболее существенно солнечную радиацию поглощает водяной пар. В этой же области спектра находятся полосы поглощения углекислого газа, однако

Более подробно о свете и цвете говорится в других разделах дисциплины «Архитектурная физика».

в целом поглощение им прямой радиации невелико. Поглощение солнечной радиации происходит и аэрозолями естественного и антропогенного происхождения, особенно сильно - частицами сажи. Всего водяным паром и аэрозолями поглощается около 15% солнечной радиации, облаками - примерно 5%.

Рассеяние радиации представляет собой физический процесс взаимодействия электромагнитного излучения и вещества, в ходе которого молекулы и атомы поглощают часть радиации, а потом переизлучают ее во всех направлениях. Это очень важный процесс, который зависит от соотношения величины рассеивающих частиц и длины волны падающего излучения. В абсолютно чистом воздухе, где рассеяние производится только молекулами газов, оно подчиняется закону Рэлея , т.е. обратно пропорционально четвертой степени длины волны рассеиваемых лучей. Таким образом, голубой цвет неба - это цвет самого воздуха, обусловленный рассеянием в нем солнечных лучей, поскольку фиолетовые и голубые лучи рассеиваются воздухом гораздо лучше, чем оранжевые и красные.

Если в воздухе присутствуют частицы, размеры которых сравнимы с длиной волны излучения - аэрозоли, капельки воды, кристаллы льда, - то рассеяние не будет подчиняться закону Рэлея, и рассеянная радиация окажется не так богата коротковолновыми лучами. На частицах же диаметром больше 1-2 мкм будет происходить не рассеяние, а диффузное отражение, что определяет белесый цвет неба.

Рассеяние играет огромную роль в формировании естественной освещенности: в отсутствие Солнца в дневное время оно создает рассеянный (диффузный) свет. Если бы не было рассеяния, светло было бы только там, куда попадали бы прямые солнечные лучи. Сумерки и заря, цвет облаков на восходе и закате также связаны с этим явлением.

Итак, к земной поверхности солнечная радиация поступает в виде двух потоков: прямой и рассеянной радиации.

Прямая радиация (5) приходит к земной поверхности непосредственно от солнечного диска. При этом максимально возможное количество радиации получит единичная площадка, расположенная перпендикулярно к солнечным лучам (5). На единицу горизонтальной поверхности придется меньшее количество лучистой энергии У, называемое также инсоляцией :

У = ?-8шА 0 , (1.1)

где И 0 - высота Солнца над горизонтом, определяющая угол падения солнечных лучей на горизонтальную поверхность.

Рассеянная радиация (/)) поступает на земную поверхность от всех точек небесного свода, за исключением солнечного диска.

Всю солнечную радиацию, приходящую на земную поверхность, называют суммарной солнечной радиацией (0:

  • (1.2)
  • 0 = + /) = И 0 + /).

Приход этих видов радиации существенно зависит не только от астрономических причин, но и от облачности. Поэтому в метеорологии принято различать возможные суммы радиации , наблюдающиеся при безоблачных условиях, и действительные суммы радиации , имеющие место при реальных условиях облачности.

Не вся падающая на земную поверхность солнечная радиация поглощается ею и превращается в тепло. Часть ее отражается и, следовательно, теряется подстилающей поверхностью. Эта часть называется отраженной радиацией (/? к), а ее величина зависит от альбедо земной поверхности (Л к):

А к = - 100%.

Величина альбедо измеряется в долях единицы или в процентах. В строительстве и архитектуре чаще используются доли единицы. В них также измеряются отражательная способность строительных и отделочных материалов, светлота окраски фасадов и т.д. В климатологии принято измерение альбедо в процентах.

Альбедо оказывает значительное влияние на процессы формирования климата Земли, так как является интегральным показателем отражательной способности подстилающей поверхности. Оно зависит от состояния этой поверхности (шероховатости, цвета, увлажненности) и меняется в очень широких пределах. Самые высокие значения альбедо (до 75%) характерны для свежевыпавшего снега, а самые низкие - для водной поверхности при отвесном падении солнечных лучей («3%). Альбедо поверхности почвы и растительности в среднем меняется от 10 до 30%.

Если рассматривать всю Землю в целом, то ее альбедо составляет 30%. Эта величина носит название планетарного альбедо Земли и представляет собой отношение уходящей в космос отраженной и рассеянной солнечной радиации к общему количеству радиации, поступающей к атмосфере.

На территории городов альбедо, как правило, ниже, чем в естественных, ненарушенных ландшафтах. Характерное значение альбедо для территории крупных городов умеренного климата составляет 15-18%. В южных городах альбедо, как правило, выше за счет применения более светлых тонов в окраске фасадов и кровель, в северных городах с плотной застройкой и темными колористическими решениями зданий альбедо ниже. Это позволяет в южных жарких странах уменьшать количество поглощенной солнечной радиации, снижая тем самым тепловой фон застройки, а в северных холодных районах, наоборот, увеличивать долю поглощенной солнечной радиации, повышая общий тепловой фон.

Поглощенная радиация (*У П0ГЛ) называется также балансом коротковолновой радиации (В к) и представляет собой разность суммарной и отраженной радиации (двух коротковолновых потоков):

^погл = 5 к = 0~ Я К- (1.4)

Она нагревает верхние слои земной поверхности и все, что на ней расположено (растительный покров, дороги, здания, сооружения и т.д.), вследствие чего они излучают длинноволновую радиацию, невидимую человеческим глазом. Эту радиацию чаще называют собственным излучением земной поверхности (? 3). Величина ее, согласно закону Стефана - Больцмана, пропорциональна четвертой степени абсолютной температуры.

Атмосфера также излучает длинноволновую радиацию, большая часть которой приходит к земной поверхности и почти полностью поглощается ею. Эту радиацию называют встречным излучением атмосферы (Е а). Встречное излучение атмосферы возрастает с увеличением облачности и влажности воздуха и является очень важным источником тепла для земной поверхности. Тем не менее длинноволновое излучение атмосферы всегда немного меньше земного, за счет чего земная поверхность теряет тепло, а разница между этими значениями называется эффективным излучением Земли (Е эф).

В среднем в умеренных широтах земная поверхность через эффективное излучение теряет примерно половину того количества тепла, которое она получает от поглощенной солнечной радиации. Поглощая земное излучение и посылая встречное излучение к земной поверхности, атмосфера уменьшает охлаждение этой поверхности в ночное время суток. Днем же она мало препятствует нагреванию поверхности Земли. Это влияние земной атмосферы на тепловой режим земной поверхности и носит название парникового эффекта. Таким образом, явление парникового эффекта состоит в удерживании тепла вблизи поверхности Земли. Большую роль в этом процессе играют газы техногенного происхождения, прежде всего - углекислый газ, концентрация которого на территории городов особенно высока. Но главная роль все же принадлежит газам естественного происхождения.

Основной субстанцией в атмосфере, поглощающей длинноволновое излучение Земли и посылающей встречное излучение, является водяной пар. Он поглощает практически всю длинноволновую радиацию за исключением интервала длин волн от 8,5 до 12 мкм, который называется «окном прозрачности» водяного пара. Только в этом интервале земное излучение проходит в мировое пространство сквозь атмосферу. Кроме водяного пара сильно поглощает длинноволновое излучение углекислый газ, причем именно в окне прозрачности водяного пара, гораздо слабее - озон, а также метан, оксид азота, хлорфторуглероды (фреоны) и некоторые другие газовые примеси.

Удержание тепла вблизи земной поверхности - очень важный процесс для поддержания жизни. Не будь его, средняя температура у Земли была бы на 33°С ниже существующей, и на Земле вряд ли могли бы обитать живые организмы. Поэтому дело не в парниковом эффекте как таковом (ведь он возник с момента образования атмосферы), а в том, что под влиянием антропогенной деятельности происходит усиление этого эффекта. Причина - в быстром росте концентрации парниковых газов техногенного происхождения, в основном - С0 2 , выбрасываемого при сжигании органического топлива. Это может привести к тому, что при той же поступающей радиации доля остающегося на планете тепла увеличится, а следовательно, увеличится и температура земной поверхности и атмосферы. За последние 100 лет температура воздуха нашей планеты в среднем увеличилась на 0,6°С.

Считается, что при удвоении концентрации С0 2 относительно ее доиндустриального значения глобальное потепление составит около 3°С (по разным оценкам - от 1,5 до 5,5°С). При этом наибольшие изменения должны произойти в тропосфере высоких широт в осенне-зимний период. Как следствие, начнет таять лед в Арктике и Антарктиде и уровень Мирового океана начнет повышаться. Это повышение может составить от 25 до 165 см, а значит, многие города, расположенные в прибрежных зонах морей и океанов, будут затоплены.

Таким образом, это очень важная проблема, касающаяся жизни миллионов людей. Учитывая это в 1988 г. в Торонто состоялась первая Международная конференция по проблеме антропогенного изменения климата. Ученые пришли к выводу, что последствия усиления парникового эффекта из-за роста содержания в атмосфере углекислого газа уступают лишь последствиям мировой ядерной войны. Тогда же при Организации Объединенных Наций (ООН) была образована Межправительственная группа экспертов по проблемам изменения климата - МГЭИК (IPCC - Intergovernmental Panel on Climate Change ), которая изучает влияние повышения приземной температуры на климат, экосистему Мирового океана, биосферу в целом, в том числе на жизнь и здоровье населения планеты.

В 1992 г. в Нью-Йорке была принята Рамочная конвенция об изменении климата (РКИК), главной целью которой провозглашено обеспечение стабилизации концентраций парниковых газов в атмосфере на уровнях, позволяющих предотвратить опасные последствия вмешательства человека в климатическую систему. Для практической реализации конвенции в декабре 1997 г. в г. Киото (Япония) на международной конференции был принят Киотский протокол. В нем определены конкретные квоты на выброс парниковых газов странами-участницами, в том числе и Россией, ратифицировавшей этот Протокол в 2005 г.

К моменту написания данной книги одной из последних конференций, посвященных климатическим изменениям, является Конференция по климату в Париже, проходившая с 30 ноября по 12 декабря 2015 г. Цель этой конференции - подписание международного соглашения по сдерживанию увеличения средней температуры планеты к 2100 г. не выше 2°С.

Итак, в результате взаимодействия разнообразных потоков коротковолновой и длинноволновой радиации земная поверхность непрерывно получает и теряет тепло. Результирующей величиной прихода и расхода радиации является радиационный баланс (В ), который и определяет тепловое состояние земной поверхности и приземного слоя воздуха, а именно их нагревание или охлаждение:

В = Q -« к - ?эф = 60 - А )-? эф =

= (5"sin/^ > + D)(l-А)-Е^ф = В к +В а. (

Данные о радиационном балансе необходимы для оценки степени нагревания и охлаждения различных поверхностей как в естественных условиях, так и в архитектурной среде, расчета теплового режима зданий и сооружений, определения испарения, теплоза-пасов в почве, нормирования орошения сельскохозяйственных полей и других народно-хозяйственных целей.

Методы измерения. Ключевое значение исследований радиационного баланса Земли для понимания закономерностей климата и формирования микроклиматических условий определяет основополагающую роль данных наблюдений за его составляющими - актинометрических наблюдений.

На метеорологических станциях России применяется термоэлектрический метод измерения радиационных потоков. Измеряемая радиация поглощается черной приемной поверхностью приборов, превращается в тепло и нагревает активные спаи термобатареи, тогда как пассивные спаи не нагреваются радиацией и имеют более низкую температуру. Вследствие различия температур активных и пассивных спаев на выводе термобатареи возникает термоэлектродвижущая сила, пропорциональная интенсивности измеряемой радиации. Таким образом, большинство актинометрических приборов являются относительными - они измеряют не сами потоки радиации, а пропорциональные им величины - силу тока или напряжение. Для этого приборы присоединяются, например, к цифровым мультиметрам, а ранее - к стрелочным гальванометрам. При этом в паспорте каждого прибора приводится так называемый «переводной множитель» - цена деления электроизмерительного прибора (Вт/м 2). Этот множитель рассчитывается путем сравнения показаний того или иного относительного прибора с показаниями абсолютных приборов - пиргелиометров.

Принцип действия абсолютных приборов иной. Так, в компенсационном пиргелиометре Ангстрема зачерненная металлическая пластинка выставляется на солнце, а другая такая же пластинка остается в тени. Между ними возникает разность температур, которая передается спаям термоэлемента, прикрепленным к пластинам, и таким образом возбуждается термоэлектрический ток. При этом через затененную пластину пропускается ток от батареи до тех пор, пока она не нагреется до той же температуры, что и пластина, находящаяся на солнце, после чего термоэлектрический ток исчезает. По силе пропущенного «компенсирующего» тока можно определить количество тепла, полученного зачерненной пластиной, которое, в свою очередь, будет равно количеству тепла, полученному от Солнца первой пластиной. Таким образом, можно определить величину солнечной радиации.

На метеостанциях России (а ранее - СССР), проводящих наблюдения за составляющими радиационного баланса, однородность рядов актинометрических данных обеспечивается использованием однотипных приборов и их тщательной градуировкой, а также одинаковой методикой измерений и обработки данных. В качестве приемников интегральной солнечной радиации (

В термоэлектрическом актинометре Савинова - Янишевского, внешний вид которого показан на рис. 1.6, приемная часть представляет собой тонкий металлический зачерненный диск из серебряной фольги, к которому через изоляцию приклеены нечетные (активные) спаи термобатареи. При измерениях этот диск поглощает солнечную радиацию, вследствие чего температура диска и активных спаев повышается. Четные же (пассивные) спаи через изоляцию приклеены к медному кольцу в корпусе прибора и имеют температуру, близкую к температуре наружного воздуха. Эта разность температур при замыкании внешней цепи термобатареи и создает термоэлектрический ток, сила которого пропорциональна интенсивности солнечной радиации.

Рис. 1.6.

В пиранометре (рис. 1.7) приемная часть чаще всего представляет собой батарею термоэлементов, например из манганина и кон-стантана, с зачерненными и белыми спаями, которые неодинаково нагреваются под действием приходящей радиации. Приемная часть прибора должна иметь горизонтальное положение, чтобы воспринимать рассеянную радиацию со всего небесного свода. От прямой радиации пиранометр затеняется экраном, а от встречного излучения атмосферы защищен стеклянным колпаком. При измерениях суммарной радиации пиранометр от прямых лучей не затеняют.

Рис. 1.7.

Специальное устройство (откидная плита) позволяет придавать головке пиранометра два положения: приемником вверх и приемником вниз. В последнем случае пиранометр измеряет отраженную от земной поверхности коротковолновую радиацию. В маршрутных наблюдениях для этого применяют так называемый походный алъбе-дометр, представляющий собой головку пиранометра, соединенную с опрокидывающимся кардановым подвесом с рукояткой.

Термоэлектрический балансомер состоит из корпуса с термобатареей, двух приемных пластинок и рукоятки (рис. 1.8). В дискообразном корпусе (/) имеется квадратный вырез, где укреплена термобатарея (2). Рукоять (3 ), припаянная к корпусу, служит для установки балансомера на стойке.

Рис. 1.8.

Одна зачерненная приемная пластинка балансомера направлена вверх, другая - вниз, к земной поверхности. Принцип действия незатененного балансомера основан на том, что все виды радиации, приходящей к деятельной поверхности (У, /) и Е а), поглощаются зачерненной приемной поверхностью прибора, обращенной вверх, а все виды радиации, уходящей от деятельной поверхности (/? к, /? л и Е 3), поглощаются пластиной, направленной вниз. Каждая приемная пластинка сама также излучает длинноволновую радиацию, кроме того, происходит теплообмен с окружающим воздухом и корпусом прибора. Однако благодаря высокой теплопроводности корпуса происходит большая отдача тепла, что не позволяет образовываться существенной разности температур приемных пластинок. По этой причине собственным излучением обоих пластин можно пренебречь, а по разности их нагрева - определить величину радиационного баланса любой поверхности, в плоскости которой расположен балансомер.

Поскольку приемные поверхности балансомера не закрыты стеклянным колпаком (иначе было бы невозможно измерить длинноволновую радиацию), показания этого прибора зависят от скорости ветра, уменьшающего разность температур приемных поверхностей. По этой причине показания балансомера приводят к штилевым условиям, предварительно измерив скорость ветра на уровне прибора.

Для автоматической регистрации измерений термоэлектрический ток, возникающий в описанных выше приборах, подводят на самопишущий электронный потенциометр. Изменения силы тока записываются на движущейся бумажной ленте, при этом актинометр должен автоматически вращаться так, чтобы его приемная часть следовала за Солнцем, а пиранометр должен быть всегда затенен от прямой радиации особой кольцевой защитой.

Актинометрические наблюдения, в отличие от основных метеонаблюдений, проводятся шесть раз в сутки в сроки: 00 ч 30 мин, 06 ч 30 мин, 09 ч 30 мин, 12 ч 30 мин, 15 ч 30 мин и 18 ч 30 мин. Поскольку интенсивность всех видов коротковолновой радиации зависит от высоты Солнца над горизонтом, сроки наблюдений устанавливаются по среднему солнечному времени станции.

Характерные значения. Величины потоков прямой и суммарной радиации играют одну из важнейших ролей в архитектурно-климатическом анализе. Именно с их учетом связаны ориентация зданий по сторонам горизонта, их объемно-планировочное и колористическое решение, внутренняя планировка, размеры светопроемов и ряд других архитектурных особенностей. Поэтому суточный и годовой ход характерных значений будет рассмотрен именно для этих величин солнечной радиации.

Энергетическая освещенность прямой солнечной радиации в условиях безоблачного неба зависит от высоты солнца, свойств атмосферы на пути солнечного луча, характеризуемой коэффициентом прозрачности (величиной, показывающей, какая доля солнечной радиации доходит до земной поверхности при отвесном падении солнечных лучей) и от длины этого пути.

Прямая солнечная радиация при безоблачном небе имеет довольно простой суточный ход с максимумом в околополуденные часы (рис. 1.9). Как следует из рисунка, в течение дня поток солнечной радиации сначала быстро, потом медленнее нарастает от восхода Солнца до полудня и сначала медленно, потом быстро убывает от полудня до захода Солнца. Различия в энергетической освещенности в полдень при ясном небе в январе и июле в первую очередь связаны с различиями в полуденной высоте Солнца, которая зимой меньше, чем летом. В то же время в континентальных районах часто наблюдается асимметричность суточного хода, обусловленная различием прозрачности атмосферы в до- и послеполуденные часы. Влияет прозрачность атмосферы и на годовой ход среднемесячных значений прямой солнечной радиации. Максимум радиации при безоблачном небе может смещаться на весенние месяцы, поскольку весной запыленность и влагосодержание атмосферы ниже, чем осенью.

5 1 , кВт/м 2

б", кВт/м 2

Рис. 1.9.

и при средних условиях облачности (б):

7 - на перпендикулярную к лучам поверхность в июле; 2 - на горизонтальную поверхность в июле; 3 - на перпендикулярную поверхность в январе; 4 - на горизонтальную поверхность в январе

Облачность снижает приход солнечной радиации и может существенно изменить ее суточный ход, что проявляется в соотношении до- и послеполуденных часовых сумм. Так, в большей части континентальных районов России в весенне-летние месяцы часовые суммы прямой радиации в дополуденные часы больше, чем в послеполуденные (рис. 1.9, б). Это в основном определяется суточным ходом облачности, которая начинает развиваться в 9-10 часов утра и достигает максимума в послеполуденные часы, уменьшая, таким образом, радиацию. Общее же снижение притока прямой солнечной радиации при действительных условиях облачности может быть очень существенным. Например, во Владивостоке с его муссонным климатом эти потери летом составляют 75%, а в Санкт-Петербурге даже в среднем за год облака не пропускают к земной поверхности 65% прямой радиации, в Москве - около половины.

Распределение годовых сумм прямой солнечной радиации при средних условиях облачности по территории России показано на рис. 1.10. В значительной степени этот фактор, снижающий количество солнечной радиации, зависит от циркуляции атмосферы, что приводит к нарушению широтного распределения радиации.

Как видно из рисунка, в целом годовые суммы прямой радиации, приходящей на горизонтальную поверхность, увеличиваются от высоких широт к более низким от 800 до почти 3000 МДж/м 2 . Большое количество облаков в европейской части России приводит к уменьшению годовых сумм по сравнению с районами Восточной Сибири, где в основном за счет влияния азиатского антициклона в зимний период годовые суммы возрастают. В то же время летний муссон приводит к уменьшению годового прихода радиации в прибрежных районах на Дальнем Востоке. Диапазон изменения полуденной интенсивности прямой солнечной радиации на территории России изменяется от 0,54-0,91 кВт/м 2 летом до 0,02-0,43 кВт/м 2 зимой.

Рассеянная радиация, поступающая на горизонтальную поверхность, также изменяется в течение дня, возрастая до полудня и убывая после него (рис. 1.11).

Как и в случае с прямой солнечной радиацией, на приход рассеянной радиации влияет не только высота солнца и продолжительность дня, но и прозрачность атмосферы. Однако уменьшение последней ведет к увеличению рассеянной радиации (в отличие от прямой). Кроме того, рассеянная радиация в очень широких пределах зависит от облачности: при средних условиях облачности ее приход более чем в два раза превосходит значения, наблюдающиеся при ясном небе. В отдельные же дни облачность увеличивает этот показатель в 3-4 раза. Таким образом, рассеянная радиация может существенно дополнять прямую, особенно при низком положении Солнца.


Рис. 1.10. Прямая солнечная радиация, поступающая на горизонтальную поверхность при средних условиях облачности, МДж/м 2 в год (1 МДж/м 2 = 0,278 кВт? ч/м 2)

/), кВт/м 2 0,3 г

  • 0,2 -
  • 0,1 -

4 6 8 10 12 14 16 18 20 22 Часы

Рис. 1.11.

и при средних условиях облачности (б)

Величина рассеянной солнечной радиации в тропиках составляет от 50 до 75% прямой; под 50-60° широты она близка к прямой, а в высоких широтах почти весь год превышает прямую солнечную радиацию.

Очень важным фактором, влияющим на поток рассеянной радиации, является альбедо подстилающей поверхности. Если альбедо достаточно велико, то отраженная от подстилающей поверхности радиация, рассеиваемая атмосферой в обратном направлении, может обусловить значительное увеличение прихода рассеянной радиации. Наиболее сильно эффект проявляется при наличии снежного покрова, обладающего наибольшей отражательной способностью.

Суммарная радиация при безоблачном небе (возможная радиация) зависит от широты места, высоты солнца, оптических свойств атмосферы и характера подстилающей поверхности. В условиях ясного неба она имеет простой суточный ход с максимумом в полдень. Асимметрия суточного хода, характерная для прямой радиации, в суммарной радиации проявляется мало, так как уменьшение прямой радиации в связи с ростом замутнения атмосферы во второй половине дня компенсируется увеличением рассеянной благодаря тому же фактору. В годовом ходе максимальная интенсивность суммарной радиации при безоблачном небе на большей части тер-

ритории России наблюдается в июне в связи с максимальной полуденной высотой солнца. Однако в некоторых районах это влияние перекрывается влиянием прозрачности атмосферы, и максимум смещается на май (например, в Забайкалье, Приморье, на Сахалине и в ряде районов Восточной Сибири). Распределение месячных и годовых сумм суммарной солнечной радиации при безоблачном небе приведено в табл. 1.9 и на рис. 1.12 в виде осредненных по широтам значений.

Из приведенных таблицы и рисунка видно, что во все сезоны года как интенсивность, так и суммы радиации возрастают с севера на юг в соответствии с изменением высоты солнца. Исключение составляет период с мая по июль, когда сочетание большой продолжительности дня и высоты солнца обеспечивает довольно высокие значения суммарной радиации на севере и в целом на территории России поле радиации размыто, т.е. не имеет выраженных градиентов.

Таблица 1.9

Суммарная солнечная радиация на горизонтальную поверхность

при безоблачном небе (кВт ч/м 2)

Географическая широта, ° с.ш.

Сентябрь

Рис. 1.12. Суммарная солнечная радиация на горизонтальную поверхность при безоблачном небе на различных широтах (1 МДж/м 2 = 0,278 кВт ч/м 2)

При наличии облачности суммарная солнечная радиация определяется не только количеством и формой облаков, но и состоянием солнечного диска. При просвечивающем сквозь облака солнечном диске суммарная радиация по сравнению с безоблачными условиями может даже увеличиваться вследствие роста рассеянной радиации.

Для средних условий облачности наблюдается вполне закономерный суточный ход суммарной радиации: постепенное нарастание от восхода солнца до полудня и убывание от полудня до захода. В то же время суточный ход облачности нарушает симметрию хода относительно полудня, характерную для безоблачного неба. Так, в большинстве районов России в теплый период дополуденные значения суммарной радиации на 3-8% превышают послеполуденные, за исключением муссонных областей Дальнего Востока, где соотношение обратное. В годовом ходе средних многолетних месячных сумм суммарной радиации наряду с определяющим астрономическим фактором проявляется циркуляционный (через влияние облачности), поэтому максимум может смещаться с июня на июль и даже на май (рис. 1.13).

  • 600 -
  • 500 -
  • 400 -
  • 300 -
  • 200 -

м. Челюскин

Салехард

Архангельск

С.-Петербург

Петропавловск

Камчатский

Хабаровск

Астрахань

Рис. 1.13. Суммарная солнечная радиация на горизонтальную поверхность в отдельных городах России при реальных условиях облачности (1 МДж/м 2 = 0,278 кВт ч/м 2)

5", МДж/м 2 700

Итак, реальный месячный и годовой приход суммарной радиации составляет лишь часть возможного. Самые большие отклонения реальных сумм от возможных летом отмечаются на Дальнем Востоке, где облачность снижает суммарную радиацию на 40-60%. В целом же общий годовой приход суммарной радиации изменяется по территории России в широтном направлении, увеличиваясь от 2800 МДж/м 2 на побережьях северных морей до 4800- 5000 МДж/м 2 в южных районах России - Северном Кавказе, Нижнем Поволжье, Забайкалье и Приморском крае (рис. 1.14).


Рис. 1.14. Суммарная радиация, поступающая на горизонтальную поверхность, МДж/м 2 в год

Летом различия в суммарной солнечной радиации при реальных условиях облачности между городами, расположенными на разных широтах, не такие «драматичные», как это может показаться с первого взгляда. Для европейской части России от Астрахани до мыса Челюскин эти значения лежат в пределах 550-650 МДж/м 2 . Зимой в большинстве городов, за исключением Заполярья, где наступает полярная ночь, суммарная радиация составляет 50-150 МДж/м 2 в месяц.

Для сравнения: средние за январь показатели теплотности 1 городской застройки (рассчитанные по фактическим данным для Москвы), составляют от 220 МДж/м 2 в месяц в городских градостроительных узлах до 120-150 МДж/м 2 на межмагистральных территориях с низкоплотной жилой застройкой. На территориях производственных и коммунально-складских зон показатели теплотности в январе составляют 140 МДж/м 2 . Суммарная солнечная радиация в Москве составляет в январе 62 МДж/м 2 . Таким образом, в зимнее время за счет использования солнечной радиации возможно покрыть не более 10-15% (с учетом эффективности солнечных батарей 40%) расчетной теплотности застройки средней плотности даже в известных своей солнечной зимней погодой Иркутске и Якутске, даже если полностью покрыть их территорию фотоэлектрическими панелями.

Летом суммарная солнечная радиация возрастает в 6-9 раз, а те-плопотребление сокращается в 5-7 раз по сравнению с зимой. Показатели теплотности в июле снижаются до значений 35 МДж/м 2 и менее - на жилых территориях и 15 МДж/м 2 и менее - на территориях производственного назначения, т.е. до величин, составляющих не более 3-5% от суммарной солнечной радиации. Поэтому летом, когда потребности в отоплении и освещении минимальны, по всей территории России наблюдается избыток этого возобновляемого природного ресурса, который невозможно утилизировать, что еще раз ставит под сомнение целесообразность применения фотоэлектрических панелей, по крайней мере, в городах и многоквартирных зданиях.

Потребление электроэнергии (без отопления и горячего водоснабжения), также связанное с неравномерностью распределения общей площади застройки, плотности населения и функциональным назначением различных территорий, находится в пре-

Теплотность - усредненный показатель потребления всех видов энергии (электричество, отопление, горячее водоснабжение) на 1 м 2 территории застройки.

делах от 37 МДж/м 2 в месяц (рассчитано как 1/12 годовой суммы) в плотно застроенных районах и до 10-15 МДж/м 2 в месяц в районах с низкой плотностью застройки. В дневные часы и летом потребление электроэнергии, естественно, падает. Плотность потребления электроэнергии в июле в большинстве районов жилой и смешанной застройки составляет 8-12 МДж/м 2 при суммарной солнечной радиации в реальных условиях облачности в Москве около 600 МДж/м 2 . Таким образом, для покрытия нужд в электроснабжении городской застройки (на примере Москвы) требуется утилизировать лишь около 1,5-2% солнечной радиации. Остальная радиация, в случае ее утилизации, будет избыточной. При этом еще предстоит решить вопрос о накоплении и сохранении дневной солнечной радиации для освещения в вечернее и ночное время, когда нагрузки на системы электроснабжения максимальны, а солнце почти или совсем не светит. Для этого потребуется передача электроэнергии на большие расстояния между районами, где Солнце еще достаточно высоко, и теми, где Солнце уже зашло за горизонт. При этом потери электроэнергии в сетях будут сопоставимы с ее экономией за счет использования фотоэлектрических панелей. Либо потребуется использование аккумуляторных батарей большой емкости, производство, установка и последующая утилизация которых потребует энергозатрат, которые вряд ли покроются за счет экономии электроэнергии, накопленной за весь период их эксплуатации.

Другим, не менее важным фактором, делающим сомнительной целесообразность перехода на солнечные батареи как альтернативный источник электроснабжения в масштабах города, является то, что в конечном счете работа фотоэлементов приведет к значительному увеличению поглощенной на территории города солнечной радиации, а следовательно, к повышению температуры воздуха в городе в летнее время. Таким образом, одновременно с охлаждением за счет фотопанелей и запитываемых от них кондиционеров воздуха внутренней среды будет происходить общее повышение температуры воздуха в городе, что в конечном счете сведет к нулю всю выгоду экономическую и экологическую от экономии электроэнергии за счет использования пока еще очень дорогих фотоэлектрических панелей.

Отсюда следует, что установка оборудования для преобразования солнечной радиации в электричество оправдывает себя в весьма ограниченном перечне случаев: только летом, только в климатических районах с сухой жаркой малооблачной погодой, только в малых городах или отдельных коттеджных поселках и только если эта электроэнергия используется для работы установок по кондиционированию и вентиляции внутренней среды зданий. В иных случаях - других районах, других градостроительных условиях и в другое время года - применение фотоэлектрических панелей и солнечных коллекторов для нужд электро-и теплоснабжения рядовой застройки в средних и крупных городах, расположенных в умеренном климате, неэффективно.

Биоклиматическое значение солнечной радиации. Определяющая роль воздействия солнечной радиации на живые организмы сводится к участию в формировании их радиационного и теплового балансов за счет тепловой энергии в видимой и инфракрасной части солнечного спектра.

Видимые лучи имеют особенно большое значение для организмов. Большинство животных, как и человек, хорошо различают спектральный состав света, а некоторые насекомые видят даже в ультрафиолетовом диапазоне. Наличие светового зрения и световой ориентации является важным фактором выживания. Например, у человека наличие цветового зрения - один из наиболее психоэмоциональных и оптимизирующих факторов жизни. Пребывание в темноте оказывает противоположное действие.

Как известно, зеленые растения синтезируют органическое вещество и, следовательно, производят пищу для всех остальных организмов, в том числе человека. Этот важнейший для жизни процесс происходит при ассимиляции солнечного излучения, причем растениями используется определенный диапазон спектра в интервале длин волн 0,38-0,71 мкм. Эта радиация называется фотосинтетически активной радиацией (ФАР) и имеет очень большое значение для продуктивности растений.

Видимая часть света создает естественную освещенность. По отношению к ней все растения делятся на светолюбивые и теневыносливые. Недостаточная освещенность обусловливает слабость стебля, ослабляет образование колосьев и початков на растениях, снижает содержание сахара и количества масел в культурных растениях, затрудняет использование ими минерального питания и удобрений.

Биологическое действие инфракрасных лучей состоит в тепловом эффекте при их поглощении тканями растений и животных. При этом изменяется кинетическая энергия молекул, происходит ускорение электрических и химических процессов. За счет инфракрасной радиации компенсируется недостаток тепла (особенно в высокогорных районах и в высоких широтах), получаемого растениями и животными из окружающего пространства.

Ультрафиолетовое излучение по биологическим свойствам и воздействию на человека принято делить на три области: область А - с длинами волн от 0,32 до 0,39 мкм; область В - от 0,28 до 0,32 мкм и область С - от 0,01 до 0,28 мкм. Область А характеризуется сравнительно слабо выраженным биологическим действием. Она вызывает лишь флюоресценцию ряда органических веществ, у человека способствует образованию пигмента в коже и слабой эритемы (покраснение кожи).

Значительно более активными являются лучи области В. Многообразные реакции организмов на ультрафиолетовое облучение, изменения в коже, крови и т.д. в основном обусловлены ими. Известное витаминообразующее действие ультрафиолета заключается в том, что эргостерон питательных веществ переходит в витамин О, оказывающий сильное возбуждающее влияние на рост и обмен веществ.

Самое мощное биологическое действие на живые клетки оказывают лучи области С. Бактерицидное действие солнечного света в основном обусловлено ими. В небольших дозах ультрафиолетовые лучи необходимы растениям, животным и человеку, особенно детям. Однако в большом количестве лучи области С губительны для всего живого, и жизнь на Земле возможна лишь потому, что это коротковолновое излучение практически полностью задерживается озоновым слоем атмосферы. Особенно актуальным решение вопроса о воздействии избыточных доз ультрафиолетовой радиации на биосферу и человека стало в последние десятилетия в связи с истощением озонового слоя атмосферы Земли.

Действие ультрафиолетовой радиации (УФР), достигающей земной поверхности, на живой организм весьма разнообразно. Как было указано выше, в умеренных дозах она оказывает благотворное влияние: повышает жизненный тонус, усиливает стойкость организма к инфекционным заболеваниям. Недостаток УФР приводит к патологическим явлениям, которые получили название УФ недостаточности или УФ голодания и проявляются в недостатке витамина Э, что ведет к нарушению фосфорно-кальциевого обмена в организме.

Избыток УФР может привести к очень серьезным последствиям: образованию рака кожи, развитию других онкологических образований, появлению фотокератита («снежная слепота»), фотоконъюнктивита и даже катаракты; нарушению иммунной системы живых организмов, а также мутагенным процессам в растениях; изменению свойств и разрушению полимерных материалов, широко использующихся в строительстве и архитектуре. Например, УФР может обесцвечивать фасадные краски или приводить к механическому разрушению полимерных отделочных и конструктивных строительных изделий.

Архитектурно-строительное значение солнечной радиации. Данные о солнечной энергии используются при расчете теплового баланса зданий и систем отопления и кондиционирования воздуха, при анализе процессов старения различных материалов, учете влияния радиации на тепловое состояние человека, выборе оптимального породного состава зеленых насаждений для озеленения конкретного района и многих других целей. Солнечная радиация определяет режим естественной освещенности земной поверхности, знание которого необходимо при планировании расхода электроэнергии, проектировании различных сооружений и организации работы транспорта. Таким образом, радиационный режим является одним из ведущих градостроительных и архитектурно-строительных факторов.

Инсоляция зданий - одно из важнейших условий гигиеничности застройки, поэтому облучению поверхностей прямыми солнечными лучами уделяют особое внимание как важному экологическому фактору. При этом Солнце оказывает не только гигиеническое воздействие на внутреннюю среду, убивая болезнетворные организмы, но и психологически влияет на человека. Эффект такого облучения зависит от длительности процесса воздействия солнечных лучей, поэтому инсоляцию измеряют в часах, а ее продолжительность нормируют соответствующими документами Минздрава России.

Необходимый минимум солнечной радиации, обеспечивающий комфортные условия внутренней среды зданий, условия для труда и отдыха человека, складывается из требуемой освещенности жилых и рабочих помещений, количества требуемой для организма человека ультрафиолетовой радиации, количества поглощенного наружными ограждениями и переданного внутрь зданий тепла, обеспечивающего тепловой комфорт внутренней среды. Исходя из этих требований принимаются архитектурно-планировочные решения, определяется ориентация жилых комнат, кухонь, подсобных и рабочих помещений. При избытке солнечной радиации предусматривается устройство лоджий, жалюзи, ставень и других солнцезащитных устройств.

Анализ сумм солнечной радиации (прямой и рассеянной), поступающей на различно ориентированные поверхности (вертикальные и горизонтальную), рекомендуется проводить по следующей шкале:

  • менее 50 кВт ч/м 2 в мес - незначительная радиация;
  • 50-100 кВт ч/м 2 в мес - средняя радиация;
  • 100-200 кВт ч/м 2 в мес - высокая радиация;
  • более 200 кВт ч/м 2 в мес - избыточная радиация.

При незначительной радиации, наблюдающейся в умеренных широтах в основном в зимние месяцы, ее вклад в тепловой баланс зданий настолько мал, что им можно пренебречь. При средней радиации в умеренных широтах происходит переход в область отрицательных значений радиационного баланса земной поверхности и расположенных на ней зданий, сооружений, искусственных покрытий и т.д. В связи с этим они в суточном ходе начинают терять больше тепловой энергии, чем получают тепла от солнца днем. Эти потери в тепловом балансе зданий не покрываются за счет внутренних источников тепла (электроприборов, труб горячего водоснабжения, метаболического тепловыделения людей И Т.Д.), и их необходимо компенсировать за счет работы отопительных систем - начинается отопительный период.

При высокой радиации и при реальных условиях облачности тепловой фон территории городской застройки и внутренней среды зданий находится в зоне комфорта без использования искусственных систем обогрева и охлаждения.

При избыточной радиации в городах умеренных широт, особенно тех, которые расположены в умеренном континентальном и резко континентальном климате, летом может наблюдаться перегрев зданий, их внутренней и наружной среды. В связи с этим перед архитекторами встает задача по защите архитектурной среды от избыточной инсоляции. Применяют соответствующие объемно-планировочные решения, выбирают оптимальную ориентацию зданий по сторонам горизонта, архитектурные солнцезащитные элементы фасадов и светопроемов. Если архитектурных средств по защите от перегрева оказывается недостаточно, то возникает необходимость искусственного кондиционирования внутренней среды зданий.

Радиационный режим также влияет на выбор ориентации и размеров светопроемов. При низкой радиации размер светопроемов может быть увеличен до любых размеров при условии сохранения теплопотерь через наружные ограждения на уровне не выше нормативного. При избыточной радиации светопроемы делаются минимальными по размерам, обеспечивающими требования по инсоляции и естественной освещенности помещений.

Светлота фасадов, определяющая их отражательную способность (альбедо), также выбирается исходя из требований солнцезащиты или, наоборот, с учетом возможности максимального поглощения солнечной радиации в районах с прохладным и холодным влажным климатом и со средним или незначительным уровнем солнечной радиации в летние месяцы. Для выбора облицовочных материалов, исходя из их отражающей способности, необходимо знать, какое количество солнечной радиации поступает к стенам зданий различной ориентации и какова способность различных материалов поглощать эту радиацию. Поскольку приход радиации к стене зависит от широты места и того, как ориентирована стена по отношению к сторонам горизонта, то от этого и будет зависеть нагрев стены и температура внутри примыкающих к ней помещений.

Поглощающая способность различных материалов отделки фасадов зависит от их цвета и состояния (табл. 1.10). Если известны месячные суммы солнечной радиации, поступающей на стены различной ориентации 1 и альбедо этих стен, то можно определить количество поглощенного ими тепла.

Таблица 1.10

Поглощающая способность строительных материалов

Данные о количестве приходящей солнечной радиации (прямой и рассеянной) при безоблачном небе на вертикальные поверхности различной ориентации приводятся в СП «Строительная климатология».

Наименование материала и обработка

Характеристика

поверхности

поверхности

Поглощенная радиация,%

Бетонная ошту-катуренная

Шероховатая

Светло-голубой

Темно-серый

Голубоватый

Отесанная

Желтовато-

коричневый

Полированная

Чисто отесанная

Светло-серый

Отесанная

Кровля

Рубероид

коричневый

Оцинкованная сталь

Светло-серый

Черепица

Подбирая соответствующие материалы и цвета для ограждающих конструкций зданий, т.е. меняя альбедо стен, можно изменять величину радиации, поглощаемую стеной и, таким образом, уменьшать или увеличивать нагрев стен солнечным теплом. Этот прием активно используется в традиционной архитектуре различных стран. Всем известно, что южные города отличаются общей светлой (белой с цветным декором) окраской большинства жилых домов, в то время как, например, скандинавские города - это в основном города, построенные из темного кирпича или с использованием для обшивки зданий теса с темной окраской.

Подсчитано, что 100 кВт ч/м 2 поглощенной радиации повышают температуру наружной поверхности примерно на 4°С. Такое количество радиации в среднем за час получают стены зданий в большинстве районов России, если они ориентированы на юг и восток, а также западные, юго-западные и юго-восточные, если они сделаны из темного кирпича и не оштукатурены или имеют штукатурку темного цвета.

Для перехода от средней за месяц температуры стены без учета радиации к наиболее часто употребляемой в теплотехнических расчетах характеристике - температуре наружного воздуха вводится дополнительная температурная добавка At, зависящая от месячного количества поглощаемой стеной солнечной радиации В к (рис. 1.15). Таким образом, зная интенсивность суммарной солнечной радиации, приходящей к стене, и альбедо поверхности этой стены, можно рассчитать ее температуру, вводя соответствующую поправку к температуре воздуха.

В к, кВт ч/м 2

Рис. 1.15. Увеличение температуры наружной поверхности стены за счет поглощения солнечной радиации

В общем случае температурная добавка за счет поглощенной радиации определяется при прочих равных условиях, т.е. при той же температуре воздуха, его влажности и термическом сопротивлении ограждающей конструкции, независимо от скорости ветра.

При ясной погоде в полуденные часы южные, до полудня - юго-восточные и после полудня - юго-западные стены могут поглощать до 350-400 кВт ч/м 2 солнечного тепла и нагреваются так, что их температура на 15-20°С может превышать температуру наружного воздуха. При этом создаются большие температурные кон-

трасты между стенами одного и того же здания. Эти контрасты в некоторых районах оказываются существенными не только летом, но и в холодное время года при солнечной маловетреной погоде, даже при очень низкой температуре воздуха. Особенно сильному перегреву подвергаются металлические конструкции. Так, по имеющимся наблюдениям, в Якутии, расположенной в умеренном резко континентальном климате, характеризующимся малооблачной погодой зимой и летом, в полуденные часы при ясном небе алюминиевые части ограждающих конструкций и кровля Якутской ГЭС нагреваются на 40-50°С выше температуры воздуха, даже при низких значениях последней.

Перегрев инсолируемых стен за счет поглощения солнечной радиации необходимо предусматривать уже на стадии архитектурного проектирования. Этот эффект требует не только защиты стен от избыточной инсоляции архитектурными методами, но и соответствующих планировочных решений зданий, применения различных по мощности систем отопления для различно ориентированных фасадов, закладки в проект швов для снятия напряжения в конструкциях и нарушения герметичности стыков из-за их температурных деформаций и т.д.

В табл. 1.11 в качестве примера приводятся месячные суммы поглощенной солнечной радиации в июне для нескольких географических объектов бывшего СССР при заданных значениях альбедо. Из этой таблицы видно, что если альбедо северной стены здания 30%, а южной - 50%, то в Одессе, Тбилиси и Ташкенте они будут нагреваться в одинаковой степени. Если в северных районах альбедо северной стены снизить до 10%, то она получит тепла почти в 1,5 раза больше, чем стена с альбедо 30%.

Таблица 1.11

Месячные суммы солнечной радиации, поглощаемой стенами зданий в июне при различных значениях альбедо (кВт ч/м 2)

В приведенных выше примерах, основанных на данных о суммарной (прямой и рассеянной) солнечной радиации, содержащихся в СП «Строительная климатология» и климатических справочниках, не учтена отраженная от земной поверхности и окружающих предметов (например, существующей застройки) солнечная радиация, поступающая на различные стены зданий. Она меньше зависит от их ориентации, поэтому в нормативных документах по строительству и не приводится. Однако эта отраженная радиация может быть достаточно интенсивной и по мощности сопоставимой с прямой или рассеянной радиацией. Поэтому при архитектурном проектировании ее необходимо учитывать, рассчитывая для каждого конкретного случая.

Солнечная радиация - излучение, свойственное светилу нашей планетной системы. Солнце - главная звезда, вокруг которой обращается Земля, а также соседние планеты. Фактически это огромный раскаленный газовый шар, постоянно испускающий в пространство вокруг себя потоки энергии. Именно их и называют радиацией. Смертельная, одновременно именно эта энергия - один из основных факторов, делающих возможной жизнь на нашей планете. Как и все в этом мире, польза и вред солнечной радиации для органической жизни тесно взаимосвязаны.

Общее представление

Чтобы понять, что представляет собой солнечная радиация, необходимо сперва разобраться, что же такое Солнце. Основной источник тепла, обеспечивающий условия для органического существования на нашей планете, во вселенских просторах представляет собой лишь небольшую звездочку на галактических окраинах Млечного Пути. А вот для землян Солнце - это центр мини-вселенной. Ведь именно вокруг этого газового сгустка обращается наша планета. Солнце дает нам тепло и освещение, то есть поставляет формы энергии, без которых наше существование было бы невозможно.

В древности источник солнечной радиации - Солнце - было божеством, объектом, достойным поклонения. Солнечная траектория по небу людям казалась очевидным доказательством божьей воли. Попытки вникнуть в суть явления, объяснить, что представляет собой это светило, предпринимались с давних пор, и особенно значимый вклад в них внес Коперник, сформировав идею гелиоцентризма, разительно отличавшуюся от общепринятого в ту эпоху геоцентризма. Впрочем, доподлинно известно, что и в древности ученые не раз задумывались над тем, что же такое Солнце, почему оно столь важно для любых форм жизни на нашей планете, почему передвижение этого светила именно таково, каким мы его видим.

Прогресс технологий позволил глубже понять, что представляет собой Солнце, какие процессы происходят внутри звезды, на ее поверхности. Ученые познали, что представляет собой солнечная радиация, каким образом газовый объект воздействует на планеты в своей зоне влияния, в частности, на земной климат. Сейчас человечество располагает достаточно объемной базой знаний, чтобы с уверенностью говорить: удалось выяснить, что такое по своей сути радиация, излучаемая Солнцем, как измерить этот энергетической поток и как сформулировать особенности его воздействия на разные формы органической жизни на Земле.

О терминах

Наиболее важный шаг в освоении сути понятия был сделан в прошлом столетии. Именно тогда именитый астроном А. Эддингтон сформулировал предположение: в солнечных глубинах происходит термоядерный синтез, что позволяет выделяться огромному количеству энергии, излучаемому в пространство вокруг звезды. Пытаясь оценить величину солнечной радиации, были предприняты усилия для определения фактических параметров среды на светиле. Так, температура ядра, по расчетам ученых, достигает 15 миллионов градусов. Этого достаточного, чтобы справиться со взаимным отталкивающим влиянием протонов. Столкновение единиц приводит к формированию гелиевых ядер.

Новые сведения привлекли внимание многих видных ученых, включая А. Эйнштейна. В попытках оценить величину солнечной радиации научные деятели выяснили, что гелиевые ядра по своей массе уступают суммарной величине 4 протонов, необходимых для формирования новой структуры. Так была выявлена особенность реакций, получившая название «дефект масс». Но ведь в природе ничто не может пропасть бесследно! В попытке отыскать «сбежавшие» величины ученые сравнили энергетическое излечение и специфику изменения массы. Именно тогда удалось выявить, что разность излучается гамма-квантами.

Излучаемые объекты пробиваются от ядра нашей звезды к ее поверхности сквозь многочисленные газовые атмосферные слои, что приводит к дроблению элементов и формированию на их основе электромагнитного излучения. Среди прочих видов солнечной радиации - свет, воспринимаемый человеческим глазом. Приблизительные оценки позволили предположить, что процесс прохождения гамма-квантов занимает около 10 миллионов лет. Еще восемь минут - и излученная энергия достигает поверхности нашей планеты.

Как и что?

Солнечной радиацией называют суммарный комплекс электромагнитного излучения, которому свойственен довольно обширный диапазон. Сюда входит так называемый солнечный ветер, то есть энергетический поток, сформированный электронами, легкими частицами. На пограничном слое атмосферы нашей планеты постоянно наблюдается одинаковая интенсивности излучения Солнца. Энергия звезды дискретна, ее перенос осуществляется через кванты, при этом корпускулярный нюанс настолько малозначим, что можно рассматривать лучи в качестве электромагнитных волн. А их распространение, как выяснили физики, происходит равномерно и по прямой линии. Таким образом, чтобы описать солнечную радиацию, необходимо определить свойственную ей длину волны. На основании этого параметра принято выделять несколько типов излучения:

  • тепло;
  • радиоволна;
  • белый свет;
  • ультрафиолет;
  • гамма;
  • рентген.

Соотношение инфракрасных, видимых, ультрафиолетовых лучшей оценивается следующим образом: 52%, 43%, 5%.

Для количественной радиационной оценки необходимо рассчитать плотность потока энергии, то есть количество энергии, которое в заданный временной промежуток достигает ограниченного участка поверхности.

Как показали исследования, солнечная радиация преимущественно поглощается планетарной атмосферой. Благодаря этому происходит нагрев до температуры, комфортной для органической жизни, свойственной Земле. Имеющаяся оболочка из озона позволяет пройти лишь одной сотой ультрафиолетового излучения. При этом полностью блокируются волны короткой длины, опасные для живых существ. Атмосферные слои способны рассеять почти треть лучей Солнца, еще 20% поглощаются. Следовательно, поверхности планеты достигает не более половины всей энергии. Именно этот «остаток» в науке назвали прямой солнечной радиацией.

А если поподробнее?

Известно несколько аспектов, от которых зависит, насколько интенсивным будет прямое излучение. Наиболее значимыми считаются угол падения, зависящий от широты (географическая характеристика местности на земном шаре), время года, определяющее, как велико расстояние до конкретной точки от источника излучения. Многое зависит от особенностей атмосферы - насколько она загрязнена, как много в заданный момент облаков. Наконец, играет роль характер поверхности, на которую падает луч, а именно, ее способности отражать поступившие волны.

Суммарной солнечной радиацией называют величину, объединяющую рассеянные объемы и прямое излучение. Параметр, используемый для оценки интенсивности, оценивается в калориях в расчете на единицу территории. При этом помнят, что в разное время суток значения, свойственные излучению, отличаются. Кроме того, энергия не может распределяться по поверхности планеты равномерно. Чем ближе к полюсу, тем интенсивность выше, при этом снежные покровы обладают высокой отражающей способностью, а значит, воздух не получает возможности прогреться. Следовательно, чем дальше от экватора, тем суммарные показатели солнечного волнового излучения будут меньше.

Как удалось выявить ученым, энергия солнечной радиации оказывает серьезное воздействие на планетарный климат, подчиняет себе жизнедеятельность разнообразных организмов, существующих на Земле. В нашей стране, а также на территории ближайших соседей, как и в прочих странах, расположенных в северном полушарии, зимой преимущественная доля принадлежит рассеянному излучению, а вот летом доминирует прямое.

Инфракрасные волны

Из общего количества суммарной солнечной радиации внушительный процент принадлежит именно инфракрасному спектру, не воспринимаемому глазом человека. За счет таких волн нагревается поверхность планеты, постепенно передающая тепловую энергию воздушным массам. Это помогает сохранять комфортный климат, поддерживать условия для существования органической жизни. Если не происходит каких-то серьезных сбоев, климат остается условно неизменным, а значит, все существа могут обитать в привычных им условиях.

Наше светило - не единственный источник волн инфракрасного спектра. Аналогичное излучение свойственно любому нагретому объекту, включая обычную батарею в человеческом доме. Именно на принципе восприятия инфракрасного излучения работают многочисленные приборы, дающие возможность видеть в темноте, иных некомфортных для глаз условиях нагретые тела. Кстати говоря, по аналогичному принципу работают ставшие столь популярными в последнее время компактные приборы для оценки, через какие участки здания происходят наибольшие теплопотери. Эти механизмы особенно широко распространены в среде строителей, а также владельцев частных домов, поскольку помогают выявить, через какие участки тепло теряется, организовать их защиту и предупредить лишний расход энергии.

Не стоит недооценивать влияние солнечной радиации инфракрасного спектра на человеческий организм только по причине того, что наши глаза не могут воспринимать такие волны. В частности, излучение активно используется в медицине, поскольку позволяет повысить концентрацию лейкоцитов в кровеносной системе, а также привести в норму кровоток за счет увеличения просветов кровеносных сосудов. Приборы, основанные на ИК-спектре, применяются в качестве профилактических против кожных патологий, терапевтических при воспалительных процессах в острой и хронической форме. Наиболее современные препараты помогают справиться с коллоидными рубцами и трофическими ранами.

Это любопытно

На основе изучения факторов солнечной радиации удалось создать поистине уникальные приборы, называемые термографами. Они дают возможность своевременно обнаружить различные болезни, не доступные для выявления иными способами. Именно так можно найти рак или тромб. ИК в некоторой степени защищает от ультрафиолета, опасного для органической жизни, что позволило использовать волны такого спектра для восстановления здоровья продолжительное время находившихся в космосе астронавтов.

Природа вокруг нас и по сей день загадочна, касается это и излучения различных длин волн. В частности, инфракрасный свет все еще исследован не досконально. Ученые знают, что его неправильное применение может стать причиной вреда здоровью. Так, недопустимо использовать оборудование, формирующее такой свет, для терапии гнойных воспаленных участков, кровотечений и злокачественных новообразований. Инфракрасный спектр противопоказан людям, страдающим нарушениями функционирования сердца, сосудов, включая расположенные в мозге.

Видимый свет

Один из элементов суммарной солнечной радиации - видимый человеческому глазу свет. Волновые пучки распространяются по прямым линиям, поэтому не происходит наложения друг на друга. В свое время это стало темой немалого количества научных работ: ученые задались целью понять, по какой причине вокруг нас так много оттенков. Оказалось, что свою роль играют ключевые параметры света:

  • преломление;
  • отражение;
  • поглощение.

Как выяснили ученые, объекты не способны сами по себе быть источниками видимого света, но могут поглощать излучение и отражать его. Варьируются углы отражения, частота волн. На протяжении многих веков способность человека видеть постепенно совершенствовалась, но определенные ограничения обусловлены биологическим строением глаза: сетчатка такова, что может воспринять лишь определенные лучи отраженных световых волн. Это излучение - небольшой промежуток между ультрафиолетом и инфракрасными волнами.

Многочисленные любопытные и загадочные световые особенности не только стали темой множества работ, но и были основанием для зарождения новой физической дисциплины. Одновременно появились ненаучные практики, теории, приверженцы которых считают, что цвет способен повлиять на физическое состояние человека, психику. На основании таких предположений люди окружают себя предметами, наиболее приятными для их глаза, делая бытовую повседневность комфортнее.

Ультрафиолет

Не менее важный аспект суммарной солнечной радиации - ультрафиолетовое изучение, сформированное волнами большой, средней и малой длины. Они отличны друг от друга как по физическим параметрам, так и по особенностям влияния на формы органической жизни. Длинные ультрафиолетовые волны, к примеру, в атмосферных слоях в основном рассеиваются, а до земной поверхности добирается лишь незначительный процент. Чем короче длина волны, тем глубже такое излучение может проникнуть в человеческую (и не только) кожу.

С одной стороны, ультрафиолет опасен, но без него невозможно существование многообразной органической жизни. Такое излучение отвечает за формирование кальциферола в организме, а этот элемент необходим для строительства костной ткани. УФ-спектр - это мощная профилактика рахита, остеохондроза, что особенно важно в детском возрасте. Кроме того, такое излучение:

  • приводит в норму метаболизм;
  • активизирует производство незаменимых ферментов;
  • усиливает регенеративные процессы;
  • стимулирует кровоток;
  • расширяет кровеносные сосуды;
  • стимулирует иммунную систему;
  • приводит к формированию эндорфина, а значит, уменьшается нервное перевозбуждение.

Обратная сторона медали

Выше было указано, что суммарной солнечной радиацией называют количество излучения, достигшего поверхности планеты и рассеянного в атмосфере. Соответственно, элементом этого объема является ультрафиолет всех длин. Нужно помнить, что этот фактор имеет как положительные, так и отрицательные стороны влияния на органическую жизнь. Солнечные ванны, зачастую полезные, могут быть источником опасности для здоровья. Слишком продолжительное нахождение под прямым солнечным светом, особенно в условиях повышенной активности светила, вредно и опасно. Продолжительное влияние на организм, а также слишком высокая активность облучения становятся причиной:

  • ожогов, покраснений;
  • отеков;
  • гиперемии;
  • жара;
  • тошноты;
  • рвоты.

Продолжительное ультрафиолетовое облучение провоцирует нарушение аппетита, функционирования ЦНС, иммунной системы. Кроме того, начинает болеть голова. Описанные признаки - классические проявления солнечного удара. Сам человек не всегда может осознать, что происходит - состояние ухудшается постепенно. Если заметно, что кому-то поблизости стало плохо, следует оказать первую помощь. Схема следующая:

  • помочь перейти из-под прямого света в прохладное затененное место;
  • положить больного на спину так, чтобы ноги были выше головы (это поможет привести в норму кровоток);
  • охладить водой шею, лицо, а на лоб положить холодный компресс;
  • расстегнуть галстук, ремень, снять тесную одежду;
  • через полчаса после приступа дать выпить прохладной воды (небольшое количество).

Если пострадавший потерял сознание, важно сразу обратиться за помощью к доктору. Бригада скорой помощи переместит человека в безопасное место и сделает инъекцию глюкозы или витамина С. Лекарство вводят в вену.

Как загорать правильно?

Чтобы не узнать на своем опыте, каким неприятным может быть излишнее количество солнечной радиации, получаемое при загаре, важно соблюдать правила безопасного времяпрепровождения на солнце. Ультрафиолет инициирует выработку меланина - гормона, помогающего кожным покровам защититься от негативного влияния волн. Под воздействием этого вещества кожа становится темнее, а оттенок переходит в бронзовый. И по сей день не стихают споры о том, насколько это полезно и вредно для человека.

С одной стороны, загар - попытка организма защититься от излишнего воздействия излучения. При этом повышается вероятность формирования злокачественных новообразований. С другой стороны, загар считается модным и красивым. Чтобы минимизировать для себя риски, разумно перед началом пляжных процедур разобрать, чем опасно количество солнечной радиации, получаемое во время солнечных ванн, как минимизировать риски для себя. Чтобы впечатления были максимально приятными, любители загорать должны:

  • пить много воды;
  • пользоваться защищающими кожу средствами;
  • загорать вечером или утром;
  • проводить под прямыми лучами солнышка не больше часа;
  • не употреблять спиртное;
  • включить в меню богатые селеном, токоферолом, тирозином продукты. Не стоит забывать и о бета-каротине.

Значение солнечной радиации для человеческого организма исключительно велико, не стоит упускать из внимания и положительные, и отрицательные аспекты. Следует осознавать, что у разных людей биохимические реакции происходят с индивидуальными особенностями, поэтому для кого-то и получасовые солнечные ванны могут быть опасны. Разумно перед пляжным сезоном проконсультироваться с доктором, оценить тип, состояние кожных покровов. Это поможет предупредить вред здоровью.

По возможности следует избегать загара в преклонном возрасте, в период вынашивания малыша. Не сочетаются с солнечными ваннами раковые заболевания, нарушения психики, кожные патологии и недостаточность функционирования сердца.

Суммарная радиация: где недостача?

Довольно интересным для рассмотрения является процесс распределения солнечной радиации. Как выше было упомянуто, лишь около половины всех волн могут достигнуть поверхности планеты. Куда же пропадают остальные? Свою роль играют разные слои атмосферы и микроскопические частицы, из которых они сформированы. Внушительная часть, как было указано, поглощается озоновым слоем - это все волны, длина которых менее 0,36 мкм. Дополнительно озон способен поглотить некоторые типы волн из видимого человеческому глазу спектра, то есть промежутка 0,44-1,18 мкм.

Ультрафиолет в некоторой степени поглощается кислородным слоем. Это свойственно излучению с длиной волны 0,13-0,24 мкм. Углекислый газ, пар воды могут поглотить небольшой процент инфракрасного спектра. Аэрозоль атмосферы поглощает некоторую часть (ИК-спектр) от общего количества солнечной радиации.

Волны из категории коротких рассеиваются в атмосфере из-за наличия здесь микроскопических неоднородных частиц, аэрозоля, облаков. Неоднородные элементы, частицы, чьи габариты уступают длине волны, провоцируют молекулярное рассеивание, а для более крупных свойственно явление, описываемое индикатрисой, то есть аэрозольное.

Прочее количество солнечной радиации достигает земной поверхности. Оно сочетает прямое излучение, рассеянное.

Суммарная радиация: важные аспекты

Суммарная величина - это количество солнечной радиации, получаемое территорией, а также поглощенное в атмосфере. Если на небе нет облаков, суммарная величина излучения зависит от широты местности, высоты положения небесного тела, типа поверхности земли на этом участке, а также уровня прозрачности воздуха. Чем больше в атмосфере рассеяно аэрозольных частиц, тем ниже прямое излучение, зато возрастает доля рассеянного. В норме при отсутствии облачности в суммарной радиации рассеянная - это одна четвертая часть.

Наша страна принадлежит к числу северных, поэтому большую часть года в южных регионах излучение существенно больше, чем в северных. Это обусловлено положением светила на небе. А вот короткий временной промежуток май-июль - это уникальный период, когда даже на севере суммарная радиация довольно внушительная, поскольку солнце находится высоко в небе, а продолжительность светового дня больше, чем в прочие месяцы года. При этом в среднем на азиатской половине страны при отсутствии облачности суммарная радиация существеннее, нежели на западе. Максимальная сила волнового излучения наблюдается в полдень, а годовой максимум приходится на июнь, когда солнце выше всего в небе.

Суммарной солнечной радиацией называют количество солнечной энергии, достигающей нашей планеты. При этом нужно помнить, что разные атмосферные факторы приводят к тому, что годовой приход суммарной радиации меньше, нежели мог бы быть. Самая большая разница между реально наблюдаемым и максимально возможным характерна для дальневосточных регионов в летний период. Муссоны провоцируют исключительно плотную облачность, поэтому суммарная радиация уменьшается приблизительно вполовину.

Любопытно знать

Наибольший процент от максимально возможного облучения солнечной энергией в реальности наблюдается (в расчете на 12 месяцев) на юге страны. Показатель достигает 80%.

Облачность не всегда приводит к одинаковому показателю рассеивания солнечного излучения. Играет роль форма облаков, особенности солнечного диска в конкретный момент времени. Если таковой открыт, тогда облачность становится причиной уменьшения прямого излучения, одновременно рассеянное резко возрастает.

Возможны и такие дни, когда прямое излучение по своей силе приблизительно такое же, как рассеянное. Суточная суммарная величина может быть даже больше, нежели излучение, свойственное совсем безоблачному дню.

В расчете на 12 месяцев особенное внимание необходимо уделять астрономическим явлениям как определяющим общие численные показатели. При этом облачность приводит к тому, что реально радиационный максимум может наблюдаться не в июне, а месяцем раньше или позже.

Радиация в космосе

С границы магнитосферы нашей планеты и дальше в космические пространства солнечная радиация становится фактором, сопряженным со смертельной опасностью для человека. Еще в 1964 был выпущен важный научно-популярный труд, посвященный методам защиты. Его авторами выступили советские ученые Каманин, Бубнов. Известно, что для человека доза облучения в расчете на неделю должна быть не более 0,3 рентгена, при этом за год - в пределах 15 Р. При кратковременном облучении пределом для человека обозначено 600 Р. Полеты в космос, особенно в условиях непредсказуемой солнечной активности, могут сопровождаться значительным облучением астронавтов, что обязывает принимать дополнительные меры защиты от волн разной длины.

После миссий "Аполлон", в ходе которых тестировались способы защиты, исследовались факторы, влияющие на человеческое здоровье, прошло не одно десятилетие, но и по сей день ученые не могут найти результативные, надежные методы прогнозирования геомагнитных бурь. Можно составить прогноз в расчете на часы, иногда - на несколько дней, но даже для недельного предположения шансы реализации - не более 5%. Солнечный ветер - еще более непредсказуемое явление. С вероятностью один к трем космонавты, отправляясь в новую миссию, могут попасть в мощные потоки излучений. Это делает еще более важным вопрос как исследования и прогнозирования радиационных особенностей, так и разработки методов защиты от него.

Солнце – источник тепла и света, дарящий силы и здоровье. Однако не всегда его воздействие является положительным. Нехватка энергии или ее переизбыток могут расстроить естественные процессы жизнедеятельности и спровоцировать различные проблемы. Многие уверены, что загорелая кожа выглядит намного красивее, чем бледная, однако если долгое время провести под прямыми лучами, можно получить сильный ожог. Солнечная радиация – это поток поступающей энергии, распространяющийся в виде электромагнитных волн, проходящих через атмосферу . Измеряется мощностью переносимой ею энергии на единицу площади поверхности (ватт/м 2). Зная, как влияет солнце на человека, можно предотвратить его отрицательное воздействие.

Что представляет собой солнечная радиация

О Солнце и его энергии написано множество книг. Солнце является главным источником энергии всех физико-географических явлений на Земле . Одна двухмиллиардная доля света проникает в верхние слои атмосферы планеты, большая же часть оседает в мировом пространстве.

Лучи света – первоисточники других видов энергии. Попадая на поверхность земли и в воду, они формируются в тепло, воздействуют на климатические особенности и погоду.

Степень воздействия световых лучей на человека зависит от уровня радиации, а также периода, проведенного под солнцем. Многие типы волн люди применяют себе на пользу, пользуясь рентгеновским облучением, инфракрасными лучами, а также ультрафиолетом. Однако солнечные волны в чистом виде в большом количестве могут негативно отразиться на здоровье человека.

Количество радиации зависит от:

  • положения Солнца. Наибольшее количество облучения приходится на равнины и пустыни, где солнцестояние довольно высокое, а погода безоблачная . Полярные области получают минимальное количество света, так как облачность поглощает значительную часть светового потока;
  • длительности дня. Чем ближе к экватору, тем продолжительнее день. Именно там люди получают больше тепла;
  • свойств атмосферы: облачности и влажности. На экваторе повышенная облачность и влажность, что является препятствием для прохождения света. Именно поэтому количество светового потока там меньше, чем в тропических зонах.

Распределение

Распределение солнечного света по земной поверхности неравномерное и имеет зависимость от:

  • плотности и влажности атмосферы. Чем они больше, тем уменьшается облучение;
  • географической широты местности. Количество получаемого света повышается от полюсов к экватору ;
  • движения Земли. Объем излучения меняется в зависимости от времени года;
  • характеристик земной поверхности. Большое количество светового потока отражается в светлых поверхностях, например, снеге. Наиболее слабо отражает световую энергию чернозем.

Из-за протяженности своей территории уровень излучения в России значительно варьируется. Солнечное облучение в северных регионах примерно такое — 810 кВт-час/м 2 за 365 дней, в южных – более 4100 кВт-час/м 2 .

Немаловажное значение имеет длительность часов, на протяжении которых светит солнце . Эти показатели разнообразны в различных регионах, на что влияет не только географическая широта, но и наличие гор. На карте солнечной радиации России хорошо заметно, что в некоторых регионах не целесообразно устанавливать линии электроснабжения, так как естественный свет вполне способен обеспечить потребности жителей в электричестве и тепле.

Виды

Световые потоки достигают Земли различными путями. Именно от этого зависят виды солнечной радиации:

  • Исходящие от солнца лучи называются прямой радиацией . Их сила имеет зависимость от высоты расположения солнца над уровнем горизонта. Максимальный уровень наблюдается в 12 часов дня, минимальный – в утреннее и вечернее время. Кроме того, интенсивность воздействия имеет связь с временем года: наибольшая возникает летом, наименьшая – зимой. Характерно, что в горах уровень радиации больше, чем на равнинных поверхностях. Также грязный воздух снижает прямые световые потоки. Чем ниже солнце над уровнем горизонта, тем меньше ультрафиолета.
  • Отраженная радиация – это излучение, которое отражается водой или поверхностью земли.
  • Рассеянная солнечная радиация формируется при рассеивании светового потока. Именно от нее зависит голубая окраска неба при безоблачной погоде.

Поглощенная солнечная радиация имеет зависимость от отражательной способности земной поверхности – альбедо.

Спектральный состав излучения многообразен:

  • цветные или видимые лучи дают освещенность и имеют большое значение в жизни растений;
  • ультрафиолет должен проникать в тело человека умеренно, так как его переизбыток или нехватка могут нанести вред;
  • инфракрасное облучение дает ощущение тепла и воздействует на рост растительности.

Суммарная солнечная радиация – это проникающие на землю прямые и рассеянные лучи . При отсутствии облачности, примерно около 12 часов дня, а также в летнее время года она достигает своего максимума.

Истории наших читателей

Владимир
61 год

Как происходит воздействие

Электромагнитные волны состоят из различных частей. Есть невидимые, инфракрасные и видимые, ультрафиолетовые лучи. Характерно, что радиационные потоки имеют разную структуру энергии и по-разному влияют на людей.


Световой поток может оказывать благотворное, целебное воздействие на состояние человеческого тела
. Проходя через зрительные органы, свет регулирует метаболизм, режим сна, влияет на общее самочувствие человека. Кроме того, световая энергия способна вызывать ощущение тепла. При облучении кожи в организме происходят фотохимические реакции, способствующие правильному обмену веществ.

Высокой биологической способностью обладает ультрафиолет, имеющий длину волны от 290 до 315 нм. Эти волны синтезируют витамин D в организме, а также способны уничтожать вирус туберкулеза за несколько минут, стафилококк – в течение четверти часа, палочки брюшного тифа – за 1 час.

Характерно, что безоблачная погода снижает длительность возникающих эпидемий гриппа и других заболеваний, например, дифтерии, имеющих способность передаваться воздушно-капельным путем.

Естественные силы организма защищают человека от внезапных атмосферных колебаний: температуры воздуха, влажности, давления. Однако иногда подобная защита ослабевает, что под воздействием сильной влажности совместно с повышенной температурой приводит к тепловому удару.

Воздействие облучения имеет связь от степени его проникновения в организм. Чем длиннее волны, тем сильнее сила излучения . Инфракрасные волны способны проникать до 23 см под кожу, видимые потоки – до 1 см, ультрафиолет – до 0,5-1 мм.

Все виды лучей люди получают во время активности солнца, когда пребывают на открытых пространствах. Световые волны позволяют человеку адаптироваться в мире, именно поэтому для обеспечения комфортного самочувствия в помещениях необходимо создать условия оптимального уровня освещения.

Воздействие на человека

Влияние солнечного излучения на здоровье человека определяется различными факторами. Имеет значение место жительства человека, климат, а также количество времени, проведенного под прямыми лучами.

При нехватке солнца у жителей Крайнего Севера, а также у людей, чья деятельность связана с работой под землей, например у шахтеров, наблюдаются различные расстройства жизнедеятельности, снижается прочность костей, возникают нервные нарушения.

Дети, недополучающие света, страдают рахитом чаще, чем остальные . Кроме того, они более подвержены заболеваниям зубов, а также имеют более длительное протекание туберкулеза.

Однако слишком продолжительное воздействие световых волн без периодической смены дня и ночи может пагубно отразиться на состоянии здоровья. Например, жители Заполярья часто страдают раздражительностью, утомлением, бессонницей, депрессиями, снижением трудоспособности.

Радиация в Российской Федерации имеет меньшую активность, чем, к примеру, в Австралии.

Таким образом, люди, которые находятся под длительным излучением:

  • подвержены высокой вероятности возникновения рака кожных покровов;
  • имеют повышенную склонность к сухости кожи, что, в свою очередь, ускоряет процесс старения и появление пигментации и ранних морщин;
  • могут страдать ухудшением зрительных способностей, катарактой, конъюнктивитом;
  • обладают ослабленным иммунитетом.

Нехватка витамина D у человека является одной из причин злокачественных новообразований, нарушений обмена веществ , что приводит к излишней массе тела, эндокринным нарушениям, расстройству сна, физическому истощению, плохому настроению.

Человек, который систематически получает свет солнца и не злоупотребляет солнечными ванными, как правило, не испытывает проблем со здоровьем:

  • имеет стабильную работу сердца и сосудов;
  • не страдает нервными заболеваниями;
  • обладает хорошим настроением;
  • имеет нормальный обмен веществ;
  • редко болеет.

Таким образом, только дозированное поступление излучения способно положительно отразиться на здоровье человека.

Как защититься


Переизбыток облучения может спровоцировать перегрев организма, ожоги, а также обострение некоторых хронических болезней
. Любителям принимать солнечные ванны необходимо позаботиться о выполнении нехитрых правил:

  • с осторожностью загорать на открытых пространствах;
  • во время жаркой погоды скрываться в тени под рассеянными лучами. В особенности это касается маленьких детей и пожилых людей, страдающих туберкулезом и заболеваниями сердца.

Следует помнить, что загорать необходимо в безопасное время суток, а также не находиться длительное время под палящим солнцем. Кроме того, стоит оберегать от теплового удара голову, нося головной убор, солнцезащитные очки, закрытую одежду, а также использовать различные средства от загара.

Солнечная радиация в медицине

Световые потоки активно применяют в медицине:

  • при рентгене используется способность волн проходить через мягкие ткани и костную систему;
  • введение изотопов позволяет зафиксировать их концентрацию во внутренних органах, обнаружить многие патологии и очаги воспаления;
  • лучевая терапия способна разрушать рост и развитие злокачественных новообразований .

Свойства волн успешно используют во многих физиотерапевтических аппаратах:

  • Приборы с инфракрасным излучением применяют для теплолечения внутренних воспалительных процессов, заболеваний костей, остеохондроза, ревматизма, благодаря способности волн восстанавливать клеточные структуры.
  • Ультрафиолетовые лучи могут отрицательно сказываться на живых существах, угнетать рост растений, подавлять микроорганизмы и вирусы.

Гигиеническое значение солнечной радиации велико. Аппараты с ультрафиолетовым излучением используют в терапии:

  • различных травм кожных покровов: ран, ожогов;
  • инфекций;
  • болезней ротовой полости;
  • онкологических новообразований.

Кроме того, радиация имеет положительное влияние на организм человека в целом: способна придать сил, укрепить иммунную систему, восполнить нехватку витаминов .

Солнечный свет является важным источником полноценной жизни человека. Достаточное его поступление приводит к благоприятному существованию всех живых существ на планете. Человек не может снизить степень радиации, однако в силах оградить себя от его отрицательного воздействия.

Солнце - источник света и тепла, в котором нуждается все живое на Земле. Но помимо фотонов света, оно излучает жесткую ионизирующую радиацию, состоящую из ядер и протонов гелия. Почему так происходит?

Причины возникновения солнечного излучения

Солнечная радиация образуется в дневные часы во время хромосферных вспышек - гигантских взрывов, происходящих в атмосфере Солнца. Часть солнечного вещества выбрасывается в космическое пространство, образуя космические лучи, главным образом состоящие из протонов и небольшого количеств ядер гелия. Эти заряженные частицы спустя 15-20 минут после того, как солнечная вспышка становится видимой, достигают поверхности земли.

Воздух отсекает первичное космическое излучение, порождая каскадный ядерный ливень, который затухает с понижением высоты. При этом рождаются новые частицы - пионы, которые распадаются и превращаются в мюоны. Они проникают в нижние слои атмосферы и попадают на землю, зарываясь вглубь до 1500 метров. Именно мюоны отвечают за образование вторичного космического излучения и естественной радиации, воздействующей на человека.

Спектр солнечного излучения

Спектр солнечного излучения включает как коротковолновые, так длинноволновые области:

  • гамма-лучи;
  • рентгеновское излучение;
  • УФ-радиацию;
  • видимый свет;
  • инфракрасную радиацию.

Свыше 95% излучения Солнца приходится на область «оптического окна» - видимого участка спектра с прилегающими областями ультрафиолетовых и инфракрасных волн. По мере прохождения через слои атмосферы действие солнечных лучей ослабляется - вся ионизирующая радиация, рентгеновские лучи и почти 98% ультрафиолета задерживаются земной атмосферой. Практически без потерь до земли доходит видимый свет и инфракрасное излучение, хотя и они частично поглощаются молекулами газов и частицами пыли, находящимися в воздухе.

В связи с этим, солнечное излучение не приводит к заметному повышению радиоактивного излучения на поверхности Земли. Вклад Солнца вместе с космическими лучами в формирование общей годовой дозы облучения составляет всего 0,3 мЗв/год. Но это усредненное значение, на самом деле уровень падающего на землю излучения различен и зависит от географического положения местности.

Где солнечное ионизирующее облучение сильнее?

Наибольшая мощность космических лучей фиксируется на полюсах, а меньше всего - на экваторе. Связано это с тем, что магнитное поле Земли отклоняет к полюсам заряженные частицы, падающие из космоса. Кроме этого, излучение усиливается с высотой - на высоте 10 километров над уровнем моря его показатель возрастает в 20-25 раз. Активному воздействию более высоких доз солнечной радиации подвергаются жители высокогорий, поскольку атмосфера в горах тоньше и легче простреливается идущими от солнца потоками гамма-квантов и элементарных частиц.

Важно. Серьезного воздействия радиационный уровень до 0,3 мЗв/ч не оказывает, но при дозе 1,2 мкЗ/ч рекомендуется покинуть район, а случае крайней необходимости находится на его территории не более полугода. При превышении показаний вдвое следует ограничить пребывание в этой местности до трех месяцев.

Если над уровнем моря годовая доза космического облучения составляет 0,3 мЗв/год, то при повышении высоты через каждые сто метров этот показатель увеличивается на 0,03 мЗв/год. После проведения небольших расчетов можно сделать вывод, что недельный отпуск в горах на высоте 2000 метров даст облучение 1мЗв/год и обеспечит почти половину общей годовой нормы (2,4 мЗв/год).

Получается, что жители гор получают годовую дозу радиации, в разы превышающую норму, и должны чаще болеть лейкозом и раком, чем люди, живущие на равнинах. На самом деле, это не так. Наоборот, в горных районах фиксируется более низкая смертность от этих заболеваний, а часть населения - долгожители. Это подтверждает тот факт, что длительное нахождение в местах высокой радиационной активности не оказывает негативного влияния на организм человека.

Солнечные вспышки - высокая радиационная опасность

Вспышки на Солнце - большая опасность для человека и всего живого на Земле, поскольку плотность потока солнечного излучения может превышать обычный уровень космического излучения в тысячу раз. Так, выдающийся советский ученый А. Л. Чижевский связал периоды образования солнечных пятен с эпидемиями тифа (1883-1917 г) и холеры (1823-1923 г) в России. На основании сделанных графиков он еще в 1930 году предсказал возникновение обширной пандемии холеры в 1960-1962 годах, которая и началась в Индонезии в 1961 году, затем быстро распространилась на другие страны Азии, Африки и Европы.

Сегодня получено множество данных, свидетельствующих о связи одиннадцатилетних циклов солнечной активности со вспышками заболеваний, а также с массовыми миграциями и сезонами бурного размножения насекомых, млекопитающих и вирусов. Гематологи установили увеличение количество инфарктов и инсультов в периоды максимальной солнечной активности. Такая статистика связана с тем, что в это время у людей повышается свертываемость крови, а так как у больных с заболеваниями сердца компенсаторная деятельность угнетена, возникают сбои в его работе вплоть до некрозов сердечной ткани и кровоизлияний в мозг.

Большие солнечные вспышки происходят не так часто - раз в 4 года. В это время увеличивается количество и размер пятен, в солнечной короне образуются мощные коронарные лучи, состоящие из протонов и небольшого количества альфа-частиц. Самый мощный их поток астрологи зарегистрировали в 1956 году, когда плотность космического излучения на поверхности земли увеличилась в 4 раза. Еще одним последствием подобной солнечной активности стало полярное сияние, зафиксированное в Москве и Подмосковье в 2000 году.

Как себя обезопасить?

Конечно, повышенный радиационный фон в горах - не повод отказываться от поездок в горы. Правда, стоит подумать о мерах безопасности и отправиться в путешествие вместе с портативным радиометром, который поможет контролировать уровень радиации и при необходимости ограничить время пребывания в опасных районах. В местности, где показании счетчика показывают величину ионизирующего облучения в 7 мкЗв/ч, не стоит находиться больше одного месяца.