Угловая симметрия. Что такое ось симметрии

разнообразие красит и тешит вкус .

Определение слова «Симметрия» по БСЭ:

Симметрия — Симметрия (от греч. symmetria — соразмерность)
в математике,
1) симметрия (в узком смысле), или отражение (зеркальное) относительно плоскости &alpha. в пространстве (относительно прямой а на плоскости), — преобразование пространства (плоскости), при котором каждая точка М переходит в точку M такую, что отрезок MM перпендикулярен плоскости &alpha. (прямой а) и делится ею пополам.
Плоскость &alpha. (прямая а) называется плоскостью (осью) С.
Отражение — пример ортогонального преобразования, изменяющего ориентацию (в отличие от собственного движения) . Любое ортогональное преобразование можно осуществить последовательным выполнением конечного числа отражений — этот факт играет существенную роль в исследовании С. геометрических фигур.
2) Симметрия (в широком смысле) — свойство геометрической фигуры Ф, характеризующее некоторую правильность формы Ф, неизменность её при действии движений и отражений. Точнее, фигура Ф обладает С. (симметрична), если существует нетождественное ортогональное преобразование, переводящее эту фигуру в себя. Совокупность всех ортогональных преобразований, совмещающих фигуру Ф с самой собой, является группой, называемой группой симметрии этой фигуры (иногда сами эти преобразования называются симметриями).
Так, плоская фигура, преобразующаяся в себя при отражении, симметрична относительно прямой — оси С. (рис. 1). группа симметрии состоит из двух элементов. Если фигура Ф на плоскости такова, что повороты относительно какой-либо точки О на угол 360°/n, n — целое число &ge. 2, переводят её в себя, то Ф обладает С. n-го порядка относительно точки O — центра С.
Примером таких фигур являются правильные многоугольники (рис. 2). группа С. здесь — т. н. циклическая группа n-го порядка. Окружность обладает С. бесконечного порядка (поскольку совмещается с собой поворотом на любой угол).
Простейшими видами пространственной С., помимо С., порожденной отражениями, являются центральная С., осевая С. и С. переноса.
а) В случае центральной симметрии (инверсии) относительно точки О фигура Ф совмещается сама с собой после последовательных отражений от трёх взаимно перпендикулярных плоскостей, другими словами, точка О — середина отрезка, соединяющего симметричные точки Ф (рис. 3). б) В случае осевой симметрии, или С. относительно прямой n-го порядка, фигура накладывается на себя вращением вокруг некоторой прямой (оси С.) на угол 360°/n. Например, куб имеет прямую AB осью С. третьего порядка, а прямую CD — осью С. четвёртого порядка (рис. 3). вообще, правильные и полуправильные многогранники симметричны относительно ряда прямых.
Расположение, количество и порядок осей С. играют важную роль в кристаллографии (см. Симметрия кристаллов), в) Фигура, накладывающаяся на себя последовательным вращением на угол 360°/2k вокруг прямой AB и отражением в плоскости, перпендикулярной к ней, имеет зеркально-осевую С. Прямая AB, называется зеркально-поворотной осью С. порядка 2k, является осью С. порядка k (рис. 4). Зеркально-осевая С. порядка 2 равносильна центральной С. г) В случае симметрии переноса фигура накладывается на себя переносом вдоль некоторой прямой (оси переноса) на какой-либо отрезок. Например, фигура с единственной осью переноса обладает бесконечным множеством плоскостей С. (поскольку любой перенос можно осуществить двумя последовательными отражениями от плоскостей, перпендикулярных оси переноса) (рис. 5). Фигуры, имеющие несколько осей переноса, играют важную роль при исследовании кристаллических решёток.
В искусстве С. получила распространение как один из видов гармоничной композиции . Она свойственна произведениям архитектуры (являясь непременным качеством если не всего сооружения в целом, то его частей и деталей — плана, фасада, колонн, капителей и т. д.) и декоративно-прикладного искусства. С. используется в качестве основного приёма построения бордюров и Орнаментов (плоских фигур, обладающих соответственно одной или несколькими С. переноса в сочетании с отражениями) (рис. 6, 7).
Комбинации С., порожденные отражениями и вращениями (исчерпывающие все виды С. геометрических фигур), а также переносами, представляют интерес и являются предметом исследования в различных областях естествознания . Например, винтовая С., осуществляемая поворотом на некоторый угол вокруг оси, дополненным переносом вдоль той же оси, наблюдается в расположении листьев у растений (рис. 8) (подробнее см. в ст. Симметрия в биологии). С. конфигурации молекул, сказывающаяся на их физических и химических характеристиках, имеет значение при теоретическом анализе строения соединений, их свойств и поведения в различных реакциях (см. Симметрия в химии). Наконец, в физических науках вообще, помимо уже указанной геометрической С. кристаллов и решёток, приобретают важное значение представления о С. в общем смысле (см. ниже) . Так, симметричность физического пространства-времени, выражающаяся в его однородности и изотропности (см. Относительности теория), позволяет установить т. н. Сохранения законы. обобщённая С. играет существенную роль в образовании атомных спектров и в классификации элементарных частиц (см. Симметрия в физике).
3) Симметрия (в общем смысле) означает инвариантность структуры математического (или физического) объекта относительно его преобразований. Например, С. законов теории относительности определяется инвариантностью их относительно Лоренца преобразований. Определение совокупности преобразований, оставляющих без изменения все структурные соотношения объекта, т. е. определение группы G его автоморфизмов, стало руководящим принципом современной математики и физики, позволяющим глубоко проникнуть во внутреннее строение объекта в целом и его частей.
Поскольку такой объект можно представить элементами некоторого пространства P, наделённого соответствующей характерной для него структурой, постольку преобразования объекта являются преобразованиями P. Т. о. получается представление группы G в группе преобразований P (или просто в P), а исследование С. объекта сводится к исследованию действия G на P и отысканию инвариантов этого действия. Точно так же С. физических законов, управляющих исследуемым объектом и обычно описывающихся уравнениями, которым удовлетворяют элементы пространства P, определяется действием G на такие уравнения.
Так, например, если некоторое уравнение линейно на линейном же пространстве P и остаётся инвариантным при преобразованиях некоторой группы G, то каждому элементу g из G соответствует линейное преобразование T g в линейном пространстве R решений этого уравнения. Соответствие g
&rarr. T g является линейным представлением G и знание всех таких её представлений позволяет устанавливать различные свойства решений, а также помогает находить во многих случаях (из «соображений симметрии») и сами решения . Этим, в частности, объясняется необходимость для математики и физики развитой теории линейных представлений групп. Конкретные примеры см. в ст. Симметрия в физике.
Лит.: Шубников А. В., Симметрия. (Законы симметрии и их применение в науке, технике и прикладном искусстве), М. — Л., 1940. Кокстер Г. С. М., Введение в геометрию, пер. с англ., М., 1966. Вейль Г., Симметрия, пер. с англ., М., 1968. Вигнер Е., Этюды о симметрии, пер. с англ., М., 1971.
М. И. Войцеховский.
Рис. 1. Плоская фигура, симметричная относительно прямой АВ. точка М преобразуется в М&rsquo. при отражении (зеркальном) относительно АВ.
Рис. 2. Звездчатый правильный многоугольник, обладающий симметрией восьмого порядка относительно своего центра.
Рис. 3. Куб, имеющий прямую AB осью симметрии третьего порядка, прямую CD — осью симметрии четвёртого порядка, точку О — центром симметрии. Точки М и M куба симметричны как относительно осей AB и CD, так и относительно центра О.
Рис. 4. Многогранник, обладающий зеркально-осевой симметрией. прямая AB — зеркально-поворотная ось четвёртого порядка.
Рис. 5. Фигуры, обладающие симметрией переноса: верхняя фигура имеет также бесконечное множество вертикальных осей симметрии (второго порядка), т. е. плоскостей отражения
Рис. 6. Бордюр, накладывающийся на себя или переносом на некоторый отрезок вдоль горизонтальной оси, или отражением (зеркальным) относительно той же оси и переносом вдоль неё на отрезок, вдвое меньший.
Рис. 7. Орнамент. осью переноса является любая прямая, соединяющая центры двух каких-либо завитков.
Рис. 8. Фигура, обладающая винтовой симметрией, которая осуществляется переносом вдоль вертикальной оси, дополненным вращением вокруг неё на 90°.

Симметрия — в физике. Если законы, устанавливающие соотношения между величинами, характеризующими физическую систему, или определяющие изменение этих величин со временем, не меняются при определённых операциях (преобразованиях), которым может быть подвергнута система, то говорят, что эти законы обладают С. (или инвариантны) относительно данных преобразований. В математическом отношении преобразования С. составляют группу.
Опыт показывает, что физические законы симметричны относительно следующих наиболее общих преобразований.
Непрерывные преобразования
1) Перенос (сдвиг) системы как целого в пространстве. Это и последующие пространственно-временные преобразования можно понимать в двух смыслах: как активное преобразование — реальный перенос физической системы относительно выбранной системы отсчёта или как пассивное преобразование — параллельный перенос системы отсчёта. С. физических законов относительно сдвигов в пространстве означает эквивалентность всех точек пространства, т. е. отсутствие в пространстве каких-либо выделенных точек (однородность пространства).
2) Поворот системы как целого в пространстве. С. физических законов относительно этого преобразования означает эквивалентность всех направлений в пространстве (изотропию пространства).
3) Изменение начала отсчёта времени (сдвиг во времени). С. относительно этого преобразования означает, что физические законы не меняются со временем.
4) Переход к системе отсчёта, движущейся относительно данной системы с постоянной (по направлению и величине) скоростью . С. относительно этого преобразования означает, в частности, эквивалентность всех инерциальных систем отсчёта (см. Относительности теория).
5) Калибровочные преобразования. Законы, описывающие взаимодействия частиц, обладающих каким-либо зарядом (электрическим зарядом, барионным зарядом, лептонным зарядом, гиперзарядом), симметричны относительно калибровочных преобразований 1-го рода. Эти преобразования заключаются в том, что волновые функции всех частиц могут быть одновременно умножены на произвольный фазовый множитель:


&psi. j &rarr. e iz j &beta. &psi. j , &psi. * j &rarr. e &minus.iz j &beta. &psi. * j ,
(1)

где &psi. j — волновая функция частицы j, &psi. * j — комплексно сопряжённая ей функция, z j — соответствующий частице заряд, выраженный в единицах элементарного заряда (например, элементарного электрического заряда e), &beta. — произвольный числовой множитель.
Наряду с этим Электромагнитные взаимодействия симметричны относительно калибровочных (градиентных) преобразований 2-го рода для потенциалов электромагнитного поля (A, &phi.):
A &rarr. А + grad f, 23/2302744.tif, (2)
где &fnof.(x, y, z, t) — произвольная функция координат (x, y, z) и времени (t), c — скорость света. Чтобы преобразования (1) и (2) в случае электромагнитных полей выполнялись одновременно, следует обобщить калибровочные преобразования 1-го рода: необходимо потребовать, чтобы законы взаимодействия были симметричны относительно преобразований (1) с величиной &beta., являющейся произвольной функцией координат и времени: 23/2302745.tif, где &eta. — Планка постоянная.
Связь калибровочных преобразований 1-го и 2-го рода для электромагнитных взаимодействий обусловлена двоякой ролью электрического заряда: с одной стороны, электрический заряд является сохраняющейся величиной, а с другой — он выступает как константа взаимодействия, характеризующая связь электромагнитного поля с заряженными частицами.
Преобразования (1) отвечают законам сохранения различных зарядов (см. ниже), а также некоторым внутренним С. взаимодействия. Если заряды являются не только сохраняющимися величинами, но и источниками полей (как электрический заряд), то соответствующие им поля должны быть также калибровочными полями (аналогично электромагнитным полям), а преобразования (1) обобщаются на случай, когда величины &beta. являются произвольными функциями координат и времени (и даже операторами, преобразующими состояния внутренней С.).
Такой подход в теории взаимодействующих полей приводит к различным калибровочным теориям сильных и слабых взаимодействий (т. н. Янга — Милса теория).
6) Изотопическая инвариантность сильных взаимодействий. Сильные взаимодействия симметричны относительно поворотов в особом «изотоническом пространстве». Одним из проявлений этой С. является зарядовая независимость ядерных сил, заключающаяся в равенстве сильных взаимодействий нейтронов с нейтронами, протонов с протонами и нейтронов с протонами (если они находятся соответственно в одинаковых состояниях). Изотопическая инвариантность является приближённой С., нарушаемой электромагнитными взаимодействиями. Она представляет собой часть более широкой приближённой С. сильных взаимодействий — SU (3)-C. (см. Сильные взаимодействия).
Дискретные преобразования
Перечисленные выше типы С. характеризуются параметрами, которые могут непрерывно изменяться в некоторой области значений (например, сдвиг в пространстве характеризуется тремя параметрами смещения вдоль каждой из координатных осей, поворот — тремя углами вращения вокруг этих осей и т. д.). Наряду с непрерывными С. большое значение в физике имеют дискретные С. Основные из них следующие.
1) Пространственная инверсия (P). Относительно этого преобразования симметричны процессы, вызванные сильным и электромагнитным взаимодействиями. Указанные процессы одинаково описываются в двух различных декартовых системах координат, получаемых одна из другой изменением направлений осей координат на противоположные (т. н. переход от «правой» к «левой» системе координат).
Это преобразование может быть получено также зеркальным отражением относительно трёх взаимно перпендикулярных плоскостей. поэтому С. по отношению к пространственной инверсии называемой обычно зеркальной С. Наличие зеркальной С. означает, что если в природе осуществляется какой-либо процесс, обусловленный сильным или электромагнитным взаимодействием, то может осуществиться и другой процесс, протекающий с той же вероятностью и являющийся как бы
«зеркальным изображением» первого. При этом физические величины, характеризующие оба процесса, будут связаны определённым образом. Например, скорости частиц и напряжённости электрического поля изменят направления на противоположные, а направления напряжённости магнитного поля и момента количества движения не изменятся.
Нарушением такой С. представляются явления (например, правое или левое вращение плоскости поляризации света), происходящие в веществах-изомерах (оптическая Изомерия). В действительности, однако, зеркальная С. в таких явлениях не нарушена: она проявляется в том, что для любого, например левовращающего, вещества существует аналогичное по химическому составу вещество, молекулы которого являются
«зеркальным изображением» молекул первого и которое будет правовращающим.
Нарушение зеркальной С. наблюдается в процессах, вызванных слабым взаимодействием.
2) Преобразование замены всех частиц на античастицы (Зарядовое сопряжение, С). С. относительно этого преобразования также имеет место для процессов, происходящих в результате сильного и электромагнитного взаимодействий, и нарушается в процессах слабого взаимодействия. При преобразовании зарядового сопряжения меняются на противоположные значения заряды частиц, напряжённости электрического и магнитного полей.
3) Последовательное проведение (произведение) преобразований инверсии и зарядового сопряжения (Комбинированная инверсия, СР). Поскольку сильные и электромагнитные взаимодействия симметричны относительно каждого из этих преобразований, они симметричны и относительно комбинированной инверсии. Однако относительно этого преобразования оказываются симметричными и слабые взаимодействия, которые не обладают С. по отношению к преобразованию инверсии и зарядовому сопряжению в отдельности . С. процессов слабого взаимодействия относительно комбинированной инверсии может быть указанием на то, что отсутствие зеркальной С. в них связано со структурой элементарных частиц и что античастицы по своей структуре являются как бы
«зеркальным изображением» соответствующих частиц. В этом смысле процессы слабого взаимодействия, происходящие с какими-либо частицами, и соответствующие процессы с их античастицами связаны между собой так же, как явления в оптических изомерах.
Открытие распадов долгоживущих K 0 L -мезонов на 2 &pi.-мезона и наличие зарядовой асимметрии в распадах K 0 L &rarr. &pi. + + e &minus. + &nu. e (&pi. + + &mu. &minus. + &nu. &mu.) и K 0 L &rarr. &pi. &minus. + е + + &nu. е (&pi. &minus. + &mu. + + &nu. &mu.) (см. К-мезоны) указывают на существование сил, несимметричных относительно комбинированной инверсии.
Пока не установлено, являются ли эти силы малыми добавками к известным фундаментальным взаимодействиям (сильному, электромагнитному, слабому) или же имеют особую природу. Нельзя также исключить возможность того, что нарушение СР-С. связано с особыми геометрическими свойствами пространства-времени на малых интервалах.
4) Преобразование изменения знака времени (Обращение времени, T). По отношению к этому преобразованию симметричны все элементарные процессы, протекающие в результате сильного, электромагнитного и слабого взаимодействий (за исключением распадов K 0 L -meзонов).
5) Произведение трёх преобразований: зарядового сопряжения С, инверсии Р и обращения времени Т (СРТ-симметрия. см. СРТ-теорема) . СРТ-С. вытекает из общих принципов квантовой теории поля. Она связана главным образом с С. относительно Лоренца преобразований и локальностью взаимодействия (т. е. с взаимодействием полей в одной точке). Эта С. должна была бы выполняться, даже если бы взаимодействия были несимметричны относительно каждого из преобразований C, P и T в отдельности. Следствием СРТ-инвариантности является т. н. перекрёстная (кроссинг) С. в описании процессов, происходящих с частицами и античастицами. Так, например, три реакции — упругое рассеяние какой-либо частицы a на частице b: a + b
&rarr. a + b, упругое рассеяние античастицы a на частице b: a + b &rarr. a + b и аннигиляция частицы а и её античастицы a в пару частиц b, b: а + a &rarr. b + b описываются единой аналитической функцией (зависящей от квадрата полной энергии системы и квадрата переданного импульса), которая в различных областях изменения этих переменных даёт амплитуду каждого из указанных процессов.
6) Преобразование перестановки одинаковых частиц. Волновая функция системы, содержащей одинаковые частицы, симметрична относительно перестановки любой пары одинаковых частиц (т. е. их координат и Спинов) с целым, в частности нулевым, спином и антисимметрична относительно такой перестановки для частиц с полуцелым спином (см. Квантовая механика).
Симметрия и законы сохранения
Согласно Нётер теореме, каждому преобразованию С., характеризуемому одним непрерывно изменяющимся параметром, соответствует величина, которая сохраняется (не меняется со временем) для системы, обладающей этой С. Из С. физических законов относительно сдвига замкнутой системы в пространстве, поворота её как целого и изменения начала отсчёта времени следуют соответственно законы сохранения импульса, момента количества движения и энергии. Из С. относительно калибровочных преобразований 1-го рода — законы сохранения зарядов (электрического, барионного и др.), из изотопической инвариантности — сохранение изотопического спина в процессах сильного взаимодействия. Что касается дискретных С., то в классической механике они не приводят к каким-либо законам сохранения. Однако в квантовой механике, в которой состояние системы описывается волновой функцией, или для волновых полей (например, электромагнитного поля), где справедлив Суперпозиции принцип, из существования дискретных С. следуют законы сохранения некоторых специфических величин, не имеющих аналогов в классической механике. Существование таких величин можно продемонстрировать на примере пространственной чётности, сохранение которой вытекает из С. относительно пространственной инверсии. Действительно, пусть
&psi. 1 — волновая функция, описывающая какое-либо состояние системы, а &psi. 2 — волновая функция системы, получающаяся в результате пространств. инверсии (символически: &psi. 2 = P&psi. 1 , где P — оператор пространств. инверсии). Тогда, если существует С. относительно пространственной инверсии,
&psi. 2 является одним из возможных состояний системы и, согласно принципу суперпозиции, возможными состояниями системы являются суперпозиции &psi. 1 и &psi. 2: симметричная комбинация &psi. s = &psi. 1 +
&psi. 2 и антисимметричная &psi. а = &psi. 1 — &psi. 2 . При преобразованиях инверсии состояние &psi. 2 не меняется (т. к. P&psi. s = P&psi. 1 + P&psi. 2 = &psi. 2 + &psi. 1 = &psi. s),
а состояние &psi. a меняет знак (P&psi. a = P&psi. 1 — P&psi. 2 = &psi. 2 — &psi. 1 = — &psi. a). В первом случае говорят, что пространственная чётность системы положительна (+1), во втором — отрицательна (-1). Если волновая функция системы задаётся с помощью величин, которые не меняются при пространственной инверсии (таких, например, как момент количества движения и энергия), то вполне определённое значение будет иметь и чётность системы. Система будет находиться в состоянии либо с положительной, либо с отрицательной чётностью (причём переходы из одного состояния в другое под действием сил, симметричных относительно пространственной инверсии, абсолютно запрещены).
Аналогично, из С. относительно зарядового сопряжения и комбинированной инверсии следует существование зарядовой чётности (C-чётности) и комбинированной чётности (СР-чётности). Эти величины, однако, могут служить характеристикой только для абсолютно нейтральных (обладающих нулевыми значениями всех зарядов) частиц или систем. Действительно, система с отличным от нуля зарядом при зарядовом сопряжении переходит в систему с противоположным знаком заряда, и поэтому невозможно составить суперпозицию этих двух состояний, не нарушая закона сохранения заряда. Вместе с тем для характеристики системы сильно взаимодействующих частиц (адронов) с нулевыми барионным зарядом и Странностью (или гиперзарядом), но отличным от нуля электрическим зарядом, можно ввести т. н. G-чётность. Эта характеристика возникает из изотопической инвариантности сильных взаимодействий (которую можно трактовать как С. относительно преобразования поворота в «изотопическом пространстве»)
и зарядового сопряжения. Примером такой системы может служить пи-мезон. См. также ст. Сохранения законы.
Симметрия квантово-механических систем и стационарные состояния. Вырождение
Сохранение величин, отвечающих различным С. квантово-механические системы, является следствием того, что соответствующие им операторы коммутируют с гамильтонианом системы, если он не зависит явно от времени (см. Квантовая механика, Перестановочные соотношения). Это означает, что указанные величины измеримы одновременно с энергией системы, т. е. могут принимать вполне определённые значения при заданном значении энергии. Поэтому из них можно составить т. н. полный набор величин, определяющих состояние системы. Т. о., стационарные состояния (состояния с заданной энергией) системы определяются величинами, отвечающими С. рассматриваемой системы.
Наличие С. приводит к тому, что различные состояния движения квантовомеханической системы, которые получаются друг из друга преобразованием С., обладают одинаковыми значениями физических величин, не меняющихся при этих преобразованиях. Т. о., С. системы, как правило, ведёт к вырождению . Например, определённому значению энергии системы может отвечать несколько различных состояний, преобразующихся друг друга при преобразованиях С. В математическом отношении эти состояния представляют базис неприводимого представления группы С. системы (см. Группа) . Это обусловливает плодотворность применения методов теории групп в квантовой механике.
Помимо вырождения уровней энергии, связанного с явной С. системы (например, относительно поворотов системы как целого), в ряде задач существует дополнительное вырождение, связанное с т. н. скрытой С. взаимодействия. Такие скрытые С. существуют, например, для кулоновского взаимодействия и для изотропного Осциллятора.
Если система, обладающая какой-либо С., находится в поле сил, нарушающих эту С. (но достаточно слабых, чтобы их можно было рассматривать как малое возмущение), происходит расщепление вырожденных уровней энергии исходной системы: различные состояния, которые в силу С. системы имели одинаковую энергию, под действием
«несимметричного» возмущения приобретают различные энергетические смещения. В случаях, когда возмущающее поле обладает некоторой С., составляющей часть С. исходной системы, вырождение уровней энергии снимается не полностью: часть уровней остаётся вырожденной в соответствии с С. взаимодействия,
«включающего» возмущающее поле.
Наличие в системе вырожденных по энергии состояний, в свою указывает на существование С. взаимодействия и позволяет в принципе найти эту С., когда она заранее не известна. Последнее обстоятельство играет важнейшую роль, например, в физике элементарных частиц. Существование групп частиц с близкими массами и одинаковыми др. характеристиками, но различными электрическими зарядами (т. н. изотопических мультиплетов) позволило установить изотопическую инвариантность сильных взаимодействий, а возможность объединения частиц с одинаковыми свойствами в более широкие группы привело к открытию SU (3)-C. сильного взаимодействия и взаимодействий, нарушающих эту С. (см. Сильные взаимодействия). Существуют указания, что сильное взаимодействие обладает ещё более широкой группой С.
Весьма плодотворно понятие т. н. динамической С. системы, которое возникает, когда рассматриваются преобразования, включающие переходы между состояниями системы с различными энергиями. Неприводимым представлением группы динамической С. будет весь спектр стационарных состояний системы. Понятие динамической С. можно распространить и на случаи, когда гамильтониан системы зависит явно от времени, причём в одно неприводимое представление динамической группы С. объединяются в этом случае все состояния квантово-механической системы, не являющиеся стационарными (т. е. не обладающие заданной энергией).
Лит.: Вигнер Е., Этюды о симметрии, пер. с англ., М., 1971.
С. С. Герштейн . Симметрия — в химии проявляется в геометрической конфигурации молекул, что сказывается на специфике физических и химических свойств молекул в изолированном состоянии, во внешнем поле и при взаимодействии с другими атомами и молекулами.
Большинство простых молекул обладает элементами пространственной симметрии равновесной конфигурации: осями симметрии, плоскостями симметрии и т. д. (см. Симметрия в математике). Так, молекула аммиака NH 3 обладает симметрией правильной треугольной пирамиды, молекула метана CH 4 — симметрией тетраэдра. У сложных молекул симметрия равновесной конфигурации в целом, как правило, отсутствует, однако приближённо сохраняется симметрия отдельных её фрагментов (локальная симметрия). Наиболее полное описание симметрии как равновесных, так и неравновесных конфигураций молекул достигается на основе представлений о т. н. динамических группах симметрии — группах, включающих не только операции пространственной симметрии ядерной конфигурации, но и операции перестановки тождественных ядер в различных конфигурациях. Например, динамическая группа симметрии для молекулы NH 3 включает также и операцию инверсии этой молекулы: переход атома N с одной стороны плоскости, образованной атомами Н, на другую её сторону.
Симметрия равновесной конфигурации ядер в молекуле влечёт за собой определённую симметрию волновых функций различных состояний этой молекулы, что позволяет проводить классификацию состояний по типам симметрии. Переход между двумя состояниями, связанный с поглощением или испусканием света, в зависимости от типов симметрии состояний может либо проявляться в молекулярном спектре, либо быть запрещенным, так что соответствующая этому переходу линия или полоса будет отсутствовать в спектре. Типы симметрии состояний, между которыми возможны переходы, влияют на интенсивность линий и полос, а также и на их поляризацию. Например, у гомоядерных двухатомных молекул запрещены и не проявляются в спектрах переходы между электронными состояниями одинаковой чётности, электронные волновые функции которых ведут себя одинаковым образом при операции инверсии. у молекул бензола и аналогичных соединений запрещены переходы между невырожденными электронными состояниями одного и того же типа симметрии и т. п. Правила отбора по симметрии дополняются для переходов между различными состояниями правилами отбора, связанными со Спином этих состояний.
У молекул с парамагнитными центрами симметрия окружения этих центров приводит к определённому типу анизотропии g-фактора (Ланде множитель), что сказывается на структуре спектров электронного парамагнитного резонанса, тогда как у молекул, ядра атомов которых обладают ненулевым спином, симметрия отдельных локальных фрагментов ведёт к определённому типу расщепления по энергии состояний с различными проекциями ядерного спина, что сказывается на структуре спектров ядерного магнитного резонанса.
В приближённых подходах квантовой химии, использующих представление о молекулярных орбиталях, классификация по симметрии возможна не только для волновой функции молекулы в целом, но и для отдельных орбиталей. Если у равновесной конфигурации молекулы имеется плоскость симметрии, в которой лежат ядра, то все орбитали этой молекулы разбиваются на два класса: симметричные
(&sigma.) и антисимметричные (&pi.) относительно операции отражения в этой плоскости. Молекулы, у которых верхними (по энергии) занятыми орбиталями являются &pi.-орбитали, образуют специфические классы ненасыщенных и сопряжённых соединений с характерными для них свойствами. Знание локальной симметрии отдельных фрагментов молекул и локализованных на этих фрагментах молекулярных орбиталей позволяет судить о том, какие фрагменты легче подвергаются возбуждению и сильнее меняются в ходе химических превращений, например при фотохимических реакциях.
Представления о симметрии имеют важное значение при теоретическом анализе строения комплексных соединений, их свойств и поведения в различных реакциях. Теория кристаллического поля и теория поля лигандов устанавливают взаимное расположение занятых и вакантных орбиталей комплексного соединения на основе данных о его симметрии, характер и степень расщепления энергетических уровней при изменении симметрии поля лигандов. Знание одной лишь симметрии комплекса очень часто позволяет качественно судить о его свойствах.
В 1965 P. Вудворд и Р. Хоффман выдвинули принцип сохранения орбитальной симметрии при химических реакциях, подтвержденный впоследствии обширным экспериментальным материалом и оказавший большое влияние на развитие препаративной органической химии. Этот принцип (правило Вудворда — Хоффмана) утверждает, что отдельные элементарные акты химических реакций проходят с сохранением симметрии молекулярных орбиталей, или орбитальной симметрии. Чем больше нарушается симметрия орбиталей при элементарном акте, тем труднее проходит реакция.
Учёт симметрии молекул важен при поиске и отборе веществ, используемых при создании химических лазеров и молекулярных выпрямителей, при построении моделей органических сверхпроводников, при анализе канцерогенных и фармакологически активных веществ и т. д.
Лит.: Хохштрассер Р., Молекулярные аспекты симметрии, пер. с англ., М., 1968.

В геометрии - свойство геометрических фигур. Две точки, лежащие на одном перпендикуляре к данной плоскости (или прямой) по разные стороны и на одинаковом расстоянии от нее, называются симметричными относительно этой плоскости (или прямой). Фигура (плоская или пространственная) симметрична относительно прямой (оси симметрии) или плоскости (плоскости симметрии), если ее точки попарно обладают указанным свойством. Фигура симметрична относительно точки (центр симметрии), если ее точки попарно лежат на прямых, проходящих через центр симметрии, по разные стороны и на равных расстояниях от него.

Определение симметрии

Понятие "симметрия" (греч. symmetria - соразмерность), по словам одного из крупнейших математиков ХХ в. Германа Вейля (1885 - 1955), "является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство". Обычно под словом "симметрия" понимается гармония пропорций - нечто уравновешенное, не ограниченное пространственными объектами (например, в музыке, поэзии и т.п.). С другой стороны, это понятие имеет и чисто геометрический смысл, заключающийся в закономерной повторяемости в пространстве равных фигур или их частей. Как писал Е.С.Федоров (1901), "симметрия есть свойство геометрических фигур повторять свои части, или, выражаясь точнее, свойство их в различных положениях приходить в совмещение с первоначальным положением".

Однако, говоря о симметричных фигурах, следует различать два вида равенства: конгруэнтное (греч. congruens - совмещающийся) и энантиоморфное - зеркально равное (греч. enantios - противоположный, morphe - форма). В первом случае подразумеваются фигуры или их части, равенство которых можно выявить простым совмещением - наложением друг на друга, т.е. "собственным" движением, переводящим левую (Л) фигуру (например, левый винт, руку) в левую, правую (П) - в правую, при котором все точки одной фигуры совпадают с соответствующими точками другой. Во втором случае - равенство выявляется с помощью отражения - движения, переводящего объект в его зеркальное изображение (левое - в правое и наоборот).

При этом все точки пространственной фигуры становятся попарно симметричными относительно плоскости. В результате таких преобразований (движений) объект совмещается сам с собой, т.е. преобразуется в себя. Иными словами, он инвариантен по отношению к этому преобразованию, а следовательно, симметричен. Само преобразование, выявляющее симметричность объекта, называемое преобразованием симметрии, сохраняет неизменными метрические свойства частей объекта, а значит, и расстояния между любой парой их точек. Таким образом, объекты можно считать симметрично равными, если все точки одного из них переводятся в соответствующие точки другого по единому правилу.

Симметрия ассоциируется с гармонией и порядком. И не зря. Потому что на вопрос, что такое симметрия, есть ответ в виде дословного перевода с древнегреческого. И получается, что она означает соразмерность и неизменность. А что может быть упорядоченней, чем строгое определение местоположения? И что можно назвать более гармоничным, чем то, что строго соответствует размерам?

Что означает симметрия в разных науках?

Биология. В ней важной составляющей симметрии является то, что животные и растения имеют закономерно расположенные части. Причем в этой науке не существует строгой симметрии. Всегда наблюдается некоторая асимметрия. Она допускает то, что части целого не совпадают с абсолютной точностью.

Химия. Молекулы вещества имеют определенную закономерность в расположении. Именно их симметрией объясняются многие свойства материалов в кристаллографии и других разделах химии.

Физика. Система тел и изменения в ней описываются с помощью уравнений. В них оказываются симметричные составляющие, что позволяет упростить все решение. Это выполняется благодаря поиску сохраняющихся величин.

Математика. Именно в ней в основном и дается разъяснение, что такое симметрия. Причем большее значение ей уделяется в геометрии. Здесь симметрия — это способность к отображению у фигур и тел. В узком смысле она сводится просто к зеркальному отображению.

Как определяют симметрию разные словари?

В какой бы из них мы ни заглянули, везде встретится слово «соразмерность». У Даля можно увидеть еще и такое толкование, как равномерие и равнообразие. Другими словами, симметричное - значит одинаковое. Здесь же говорится о том, что она скучна, интереснее смотрится то, в чем ее нет.

На вопрос, что такое симметрия, словарь Ожегова уже говорит об одинаковости в положении частей относительно точки, прямой или плоскости.

В словаре Ушакова упоминается еще и пропорциональность, а также полное соответствие двух частей целого друг другу.

Когда говорят об асимметрии?

Приставка «а» отрицает смысл основного существительного. Поэтому асимметрия означает то, что расположение элементов не поддается определенной закономерности. В ней отсутствует всякая неизменность.

Этот термин используется в ситуациях, когда две половины предмета не являются полностью совпадающими. Чаще всего они совсем не похожи.

В живой природе асимметрия играет важную роль. Причем она может быть как полезной, так и вредной. К примеру, сердце помещается в левую половину груди. За счет этого левое легкое существенно меньшего размера. Но это необходимо.

О центральной и осевой симметрии

В математике выделяют такие ее виды:

  • центральная, то есть выполненная относительно одной точки;
  • осевая, которая наблюдается около прямой;
  • зеркальная, она основывается на отражениях;
  • симметрия переноса.

Что такое ось и центр симметрии? Это точка или прямая, относительно которой любой точке тела найдется другая. Причем такая, чтобы расстояние от исходной до получившейся делилось пополам осью или центром симметрии. Во время движения этих точек они описывают одинаковые траектории.


Понять, что такое симметрия относительно оси, проще всего на примере. Тетрадный лист нужно сложить пополам. Линия сгиба и будет осью симметрии. Если провести к ней перпендикулярную прямую, то все точки на ней будут иметь лежащие на таком же расстоянии по другую сторону оси точки.

В ситуациях, когда необходимо найти центр симметрии, нужно поступать следующим образом. Если фигур две, то найти у них одинаковые точки и соединить их отрезком. Потом разделить пополам. Когда фигура одна, то помочь может знание ее свойств. Часто этот центр совпадает с точкой пересечения диагоналей или высот.

Какие фигуры являются симметричными?

Геометрические фигуры могут обладать осевой или центральной симметрией. Но это не обязательное условие, существует множество объектов, которые не обладают ею вовсе. К примеру, параллелограмм обладает центральной, но у него нет осевой. А неравнобедренные трапеции и треугольники не имеют симметрии совсем.

Если рассматривается центральная симметрия, фигур, обладающих ею, оказывается довольно много. Это отрезок и круг, параллелограмм и все правильные многоугольники с числом сторон, которое делится на два.

Центром симметрии отрезка (также круга) является его центр, а у параллелограмма он совпадает с пересечением диагоналей. В то время как у правильных многоугольников эта точка тоже совпадает с центром фигуры.

Если в фигуре можно провести прямую, вдоль которой ее можно сложить, и две половинки совпадут, то она (прямая) будет являться осью симметрии. Интересно то, сколько осей симметрии имеют разные фигуры.

К примеру, острый или тупой угол имеет только одну ось, которой является его биссектриса.

Если нужно найти ось в равнобедренном треугольнике, то нужно провести высоту к его основанию. Линия и будет осью симметрии. И всего одной. А в равностороннем их будет сразу три. К тому же, треугольник обладает еще и центральной симметрией относительно точки пересечения высот.

У круга может быть бесконечное число осей симметрии. Любая прямая, которая проходит через его центр, может исполнить эту роль.

Прямоугольник и ромб обладают двумя осями симметрии. У первого они проходят через середины сторон, а у второго совпадают с диагоналями.

Квадрат же объединяет предыдущие две фигуры и имеет сразу 4 оси симметрии. Они у него такие же, как у ромба и прямоугольника.

Итак, что касается геометрии: выделяют три основных вида симметрии.

Во-первых, центральная симметрия (или симметрия относительно точки) – это преобразование плоскости (или пространства), при котором единственная точка (точка О – центр симметрии) остаётся на месте, остальные же точки меняют своё положение: вместо точки А получаем точку А1 такую, что точка О середина отрезка АА1. Чтобы построить фигуру Ф1, симметричную фигуре Ф относительно точки О, нужно через каждую точку фигуры Ф провести луч, проходящий через точку О (центр симметрии), и на этом луче отложить точку, симметричную выбранной относительно точки О. Множество построенных таким образом точек даст фигуру Ф1.


Большой интерес вызывают фигуры, имеющие центр симметрии: при симметрии относительно точки О любая точка фигурф Ф преобразуется опять же в некоторую точку фигуры Ф. Таких фигур в геометрии встречается много. Например: отрезок (середина отрезка – центр симметрии), прямая (любая её точка – центр её симметрии), окружность (центр окружности – центр симметрии), прямоугольник (точка пересечения его диагоналей – центр симметрии). Много центральносимметричных объектов в живой и неживой природе (сообщение учащихся). Часто люди сами создают объекты, имеющие центр симмет рии (примеры из рукоделия, примеры из машиностроения, примеры из архитектуры и много других примеров).

Во-вторых, осевая симметрия (или симметрия относительно прямой) – это преобразование плоскости (или пространства), при котором только точки прямой р остаются на месте (эта прямая является осью симметрии), остальные же точки меняют своё положение: вместо точки В получаем такую точку В1, что прямая р является серединным перпендикуляром к отрезку ВВ1. Чтобы построить фигуру Ф1, симметричную фигуре Ф, относительно прямой р, нужно для каждой точки фигуры Ф построить точку, симметричную ей относительно прямой р. Множество всех этих построенных точек и дают искомую фигуру Ф1. Много существует геометрических фигур, имеющих ось симметрии.

У прямоугольника их две, у квадрата – четыре, у круга – любая прямая, проходящая через его центр. Если присмотреться к буквам алфавита, то и среди них можно найти, имеющие горизонтальную или вертикальную, а иногда и обе оси симметрии. Объекты, имеющие оси симметрии достаточно часто встречаются в живой и неживой природе (доклады учащихся). В своей деятельности человек создаёт много объектов (например, орнаменты), имеющих несколько осей симметрии.

______________________________________________________________________________________________________

В-третьих, плоскостная (зеркальная) симметрия (или симметрия относительно плоскости) – это преобразование пространства, при котором только точки одной плоскости сохраняют своё местоположение (α-плоскость симметрии), остальные точки пространства меняют своё положение: вместо точки С получается такая точка С1, что плоскость α проходит через середину отрезка СС1, перпендикулярно к нему.

Чтобы построить фигуру Ф1,симметричную фигуре Ф относительно плоскости α, нужно для каждой точки фигуры Ф выстроить симметричные относительно α точки, они в своём множестве и образуют фигуру Ф1.

Чаще всего в окружающем нас мире вещей и объектов нам встречаются объёмные тела. И некоторые из этих тел имеют плоскости симметрии, иногда даже несколько. И сам человек в своей деятельности (строительство, рукоделие, моделирование, ...) создаёт объекты имеющие плоскости симметрии.

Стоит отметить, что наряду с тремя перечисленными видами симметрии, выделяют (в архитектуре) переносную и поворотную , которые в геометрии являются композициями нескольких движений.

К понятию о симметрии мы привыкаем с детства. Мы знаем, что симметрична бабочка: у неё одинаковы правое и левое крылышки; симметрично колесо, секторы которого одинаковы; симметричны узоры орнаментов, звёздочки снежинок.

Проблеме симметрии посвящена поистине необозримая литература. От учебников и научных монографий до произведений, обращающих внимание не столько на чертежи и формулы, сколько на художественные образы.

Сам термин "симметрия" по-гречески означает "соразмерность", которую древние философы понимали как частный случай гармонии - согласования частей в рамках целого. Многие народы с древних времён владели представлением о симметрии в широком смысле - как эквиваленте уравновешенности и гармонии.

Симметрия является одной из наиболее фундаментальных и одной из наиболее общих закономерностей мироздания: неживой, живой природы и общества. С ней мы встречаемся всюду. Понятие симметрии проходит через всю многовековую историю человеческого творчества. Оно встречается уже у истоков человеческого знания; его широко используют все без исключения направления современной науки. Действительно симметричные объекты окружают нас буквально со всех сторон, мы имеем дело с симметрией везде, где наблюдается какая-либо упорядоченность. Получается, что симметрия – это уравновешенность, упорядоченность, красота, совершенство. Она многообразна, вездесуща. Она создает красоту и гармонию. Симметрия буквально пронизывает весь окружающий нас мир, именно поэтому выбранная мной тема всегда будет актуальной.

Симметрия выражает сохранение чего-то при каких-то изменениях или сохранение чего-то, несмотря на изменение. Симметрия предполагает неизменность не только самого объекта, но и каких-либо его свойств по отношению к преобразованиям, выполненным над объектом. Неизменность тех или иных объектов может наблюдаться по отношению к разнообразным операциям – к поворотам, переносам, взаимной замене частей, отражениям и т. д. В связи с этим выделяют разные виды симметрии. Рассмотрим все виды более подробно.

ОСЕВАЯ СИММЕТРИЯ.

Симметрия относительно прямой называется осевой симметрией (зеркальным отражением относительно прямой).

Если точка А лежит на оси l, то она симметрична самой себе, т. е. А совпадает с А1.

В частности, если при преобразовании симметрии относительно оси l фигура F переходит сама в себя, то она называется симметричной относительно оси l, а ось l называется её осью симметрии.

ЦЕНТРАЛЬНАЯ СИММЕТРИЯ.

Фигура называется центрально-симметричной, если существует точка, относительно которой каждая точка фигуры симметрична некоторой точке той же фигуры. А именно: движение, изменяющее направления на противоположные, является центральной симметрией.

Точка О называется центром симметрии и является неподвижной. Других неподвижных точек это преобразование не имеет. Примерами фигур, обладающих центром симметрии, являются параллелограмм, окружность и т. д.

Знакомые понятия поворота и параллельного переноса используются при определении так называемой трансляционной симметрии. Рассмотрим трансляционную симметрию более подробно.

1. ПОВОРОТ

Преобразование, при котором каждая точка А фигуры (тела) поворачивается на один и тот же угол α вокруг заданного центра О, называется вращением или поворотом плоскости. Точка О называется центром вращения, а угол α - углом вращения. Точка О является неподвижной точкой этого преобразования.

Интересна поворотная симметрия кругового цилиндра. Он имеет бесконечное число поворотных осей 2-го порядка и одну поворотную ось бесконечно высокого порядка.

2. ПАРАЛЛЕЛЬНЫЙ ПЕРЕНОС

Преобразование, при котором каждая точка фигуры (тела) перемещается в одном и том же направлении на одно и то же расстояние, называется параллельным переносом.

Чтобы задать преобразование параллельного переноса достаточно задать вектор а.

3. СКОЛЬЗЯЩАЯ СИММЕТРИЯ

Скользящей симметрией называется такое преобразование, при котором последовательно выполняются осевая симметрия параллельный перенос. Скользящая симметрия - изометрия евклидовой плоскости. Скользящей симметрией называют композицию симметрии относительно некоторой прямой l и переноса на вектор, параллельный l (этот вектор может быть и нулевым).

Скользящую симметрию можно представить в виде композиции 3 осевых симметрий (теорема Шаля).

ЗЕРКАЛЬНАЯ СИММЕТРИЯ

Что может быть больше похоже на мою руку или мое ухо, чем их собственное отражение в зеркале? И все же руку, которую я вижу в зеркале, нельзя поставить на место настоящей руки.

Иммануил Кант.

Если преобразование симметрии относительно плоскости переводит фигуру (тело) в себя, то фигура называется симметричной относительно плоскости, а данная плоскость – плоскостью симметрии этой фигуры. Такую симметрию называют зеркальной. Как показывает само название, зеркальная симметрия связывает некоторый предмет и его отражение в плоском зеркале. Два симметричных тела не могут быть «вложены друг в друга», так как в сравнении с самим объектом его зазеркальный двойник оказывается, вывернутым вдоль направления, перпендикулярного плоскости зеркала.

Симметричные фигуры при всем их сходстве существенно отличаются друг от друга. Наблюдаемый в зеркале двойник не является точной копией самого объекта. Зеркало не просто копирует объект, а меняет местами (представляет) передние и задние по отношению к зеркалу части объекта. Например, если у вас родинка находится на правой щеке, то у зазеркального двойника на левой. Поднесите к зеркалу книгу, – и вы увидите, что буквы как бы вывернуты наизнанку. В зеркале всё переставлено справа налево.

Зеркально равными телами называются тела, если при надлежащем их смещении они могут образовать две половины зеркально симметричного тела.

2. 2 Симметрия в природе

Фигура обладает симметрией, если существует движение (преобразование не тождественное), переводящее ее в себя. Например, фигура обладает поворотной симметрией, если она переводится в себя некоторым поворотом. Но в природе с помощью математики красота не создается, как в технике и в искусстве, а лишь фиксируется, выражается. Она не только радует глаз и вдохновляет поэтов всех времен и народов, а позволяет живым организмам лучше приспособиться к среде обитания и просто выжить.

В основе строения любой живой формы лежит принцип симметрии. Из прямого наблюдения мы можем вывести законы геометрии и почувствовать их несравненное совершенство. Этот порядок являющийся закономерной необходимостью, поскольку ничто в природе не служит чисто декоративным целям, помогает нам найти общую гармонию, на которой зиждется все мироздание.

Мы видим, что природа проектирует любой живой организм согласно определенной геометрической схеме, причем законы мироздания имеют четкое обоснование.

Принципы симметрии лежат в основе теории относительности, квантовой механики, физики твердого тела, атомной и ядерной физики, физики элементарных частиц. Эти принципы наиболее ярко выражаются в свойствах инвариантности законов природы. Речь при этом идет не только о физических законах, но и других, например, биологических.

Говоря о роли симметрии в процессе научного познания, следует особо выделить применение метода аналогий. По словам французского математика Д. Пойа, "не существует, возможно, открытий ни в элементарной, ни в высшей математике, ни, пожалуй, в любой другой области, которые могли быть сделаны без аналогий".В основе большинства этих аналогий лежат общие корни, общие закономерности, которые проявляются одинаковым образом на разных уровнях иерархии.

Итак, в современном понимании симметрия - это общенаучная философская категория, характеризующая структуру организации систем. Важнейшим свойством симметрии является сохранение (инвариантность) тех или иных признаков (геометрических, физических, биологических и т. д.) по отношению к вполне определенным преобразованиям. Математическим аппаратом изучения симметрии сегодня является теория групп и теория инвариантов.

Симметрия в мире растений

Специфика строения растений определяется особенностями среды обитания, к которой они приспосабливаются. У любого дерева есть основание и вершина, "верх" и "низ", выполняющие разные функции. Значимость различия верхней и нижней частей, а также направление силы тяжести определяют вертикальную ориентацию поворотной оси "древесного конуса" и плоскостей симметрии. Дерево при помощи корневой системы поглощает влагу и питательные вещества из почвы, то есть снизу, а остальные жизненно важные функции выполняются кроной, т. е, наверху. В то же время направления в плоскости, перпендикулярной к вертикали, для дерева фактически неразличимы; по всем этим направлениям к дереву в равной мере поступает воздух, свет, влага.

Дерево имеет вертикальную поворотную ось (ось конуса) и вертикальные плоскости симметрии.

Когда мы хотим нарисовать лист растения или бабочку, то нам приходится учитывать их осевую симметрию. Средняя жилка для листа служит осью симметрии. Ярко выраженной симметрией обладают листья, ветви, цветы, плоды. Для листьев характерна зеркальная симметрия. Эта же симметрия встречается и у цветов, однако у них зеркальная симметрия чаще выступает в сочетании с поворотной симметрией. Нередки случаи и переносной симметрии (веточки акации, рябины).

В многообразном мире цветов встречаются поворотные оси разных порядков. Однако наиболее распространена поворотная симметрия 5-го порядка. Эта симметрия встречается у многих полевых цветов (колокольчик, незабудка, герань, гвоздика, зверобой, лапчатка), у цветов плодовых деревьев (вишня, яблоня, груша, мандарин и др.), у цветов плодово-ягодных растений (земляника, малина, калина, черемуха, рябина, шиповник, боярышник) и др.

Этот факт академик Н. Белов объясняет тем, что ось 5-го порядка - своеобразный инструмент борьбы за существование, "страховка против окаменения, кристаллизации, первым шагом которой была бы их поимка решеткой". Действительно, живой организм не имеет кристаллического строения в том смысле, что даже отдельные его органы не обладают пространственной решеткой. Однако упорядоченные структуры в ней представлены очень широко.

В своей книге «Этот правый, левый мир» М. Гарднер пишет: «На Земле жизнь зародилась в сферически симметричных формах, а потом стала развиваться по двум главным линиям: образовался мир растений, обладающих симметрией конуса, и мир животных с билатеральной симметрией».

В природе существуют тела, обладающие винтовой симметрией, то есть совмещением со своим первоначальным положением после поворота на угол вокруг оси, дополнительным сдвигом вдоль той же оси.

Если - рациональное число, то поворотная ось оказывается также осью переноса.

Листья на стебле расположены не по прямой, а окружают ветку по спирали. Сумма всех предыдущих шагов спирали, начиная с вершины, равна величине последующего шага А+В=С, В+С=Д и т. д.

Винтовая симметрия наблюдается в расположении листьев на стеблях большинства растений. Располагаясь винтом по стеблю, листья как бы раскидываются во все стороны и не заслоняют друг друга от света, крайне необходимого для жизни растений. Это интересное, ботаническое явление носит название филлотаксиса (буквально «устроение листа»).

Другим проявлением филлотаксиса оказывается устройство соцветия подсолнечника или чешуи еловой шишки, в которой чешуйки располагаются в виде спиралей и винтовых линий. Такое расположение особенно четко видно у ананаса, имеющего более или менее шестиугольные ячейки, которые образуют ряды, идущие в различных направлениях.

Симметрия в мире животных

Значение формы симметрии для животного легко понять, если поставить её в связь с образом жизни, экологическими условиями. Под симметрией у животных понимают соответствие в размерах, форме и очертаниях, а также относительное расположение частей тела, находящихся на противоположных сторонах разделяющей линии.

Поворотная симметрия 5-го порядка встречается и в животном мире. Это симметрия, при которой объект совмещается сам с собой при повороте вокруг поворотной оси 5 раз. Примерами могут служить морская звезда и панцирь морского ежа. Вся кожа морских звёзд как бы инкрустирована мелкими пластинками из углекислого кальция, от некоторых пластинок отходят иглы, часть которых подвижна. Обычная морская звезда обладает 5 плоскостями симметрии и 1 осью вращения 5-ого порядка (это самая высокая симметрия среди животных). Ее предки, по-видимому, имели более низкую симметрию. Об этом свидетельствует, в частности, строение личинок звезды: они, как и большинство живых существ, в том числе человек, обладают лишь одной плоскостью симметрии. Морские звезды не имеют горизонтальной плоскости симметрии: у них есть «верх» и «низ». Морские ежи похожи на живые подушечки для булавок; шаровидное тело их несёт длинные и подвижные иголки. У этих животных известковые пластинки кожи слились и образовали сферическую раковину панцирь. В центре нижней поверхности имеется рот. Амбулакральные ножки (воднососудистая система) собраны в 5 полос на поверхности раковины.

Однако в отличие от мира растений поворотная симметрия в животном мире наблюдается редко.

Для насекомых, рыб, яиц, животных характерно несовместимое с поворотной симметрией различие между направлениями «вперед» и «назад».

Направление движения является принципиально выделенным направлением, относительно которого нет симметрии у любого насекомого, любой птицы или рыбы, любого животного. В этом направлении животное устремляется за пищей, в этом же направлении оно спасается от преследователей.

Кроме направления движения симметрию живых существ определяет еще одно направление - направление силы тяжести. Оба направления существенны; они задают плоскость симметрии животного существа.

Билатеральная (зеркальная) симметрия - характерная симметрия всех представителей животного мира. Эта симметрия хорошо видна у бабочки. Симметрия левого и правого крыла проявляются здесь с почти математической строгостью.

Можно сказать, что каждое животное (а также насекомое, рыба, птица) состоит из двух энантиоморфов - правой и левой половин. Энантиоморфами являются также парные детали, одна из которых попадает в правую, а другая в левую половину тела животного. Так, энантиоморфами являются правое и левое ухо, правый и левый глаз, правый и левый рог и т. д.

Упрощение условий жизни может привести к нарушению двусторонней симметрии, и животные из двусторонне-симметричных становятся радиально-симметричными. Это относится к иглокожим (морские звёзды, морские ежи, морские лилии). Все морские животные имеют радиальную симметрию, при которой части тела отходят по радиусам от центральной оси, подобно спицам колеса. Степень активности животных коррелирует с их типом симметрии. Радиально симметричные иглокожие обычно мало подвижны, перемещаются медленно или же прикреплены к морскому дну. Тело морской звезды состоит из центрального диска и 5-20 или большего числа радиально отходящих от него лучей. На математическом языке эту симметрию называют поворотной симметрией.

Отметим, наконец, зеркальную симметрию человеческого тела (речь идет о внешнем облике и строении скелета). Эта симметрия всегда являлась и является основным источником нашего эстетического восхищения хорошо сложенным человеческим телом. Не станем пока разбираться, существует ли на самом деле абсолютно симметричный человек. У каждого, разумеется, обнаружится родинка, прядь волос или какая-нибудь другая деталь, нарушающая внешнюю симметрию. Левый глаз никогда не бывает в точности таким, как правый, да и уголки рта находятся на разной высоте, во всяком случае, у большинства людей. И все же это лишь мелкие несоответствия. Никто не усомнится, что внешне человек построен симметрично: левой руке всегда соответствует правая и обе руки совершенно одинаковы.

Каждому известно, что сходство между нашими руками, ушами, глазами и другими частями тела такое же, как между предметом и его отражением в зеркале. Именно вопросам симметрии и зеркального отражения здесь и уделяется внимание.

Многие художники обращали пристальное внимание на симметрию и пропорции человеческого тела, во всяком случае, до тех пор, пока ими руководило желание в своих произведениях как можно точнее следовать природе.

В современных школах живописи в качестве единой меры чаще всего принимается размер головы по вертикали. С известным допущением можно считать, что длина туловища превосходит размер головы в восемь раз. Размеру головы пропорциональна не только длина туловища, но и размеры других частей тела. По этому принципу построены все люди, оттого-то мы, в общем, похожи друг на друга. Однако наши пропорции согласуются лишь приблизительно, а потому люди лишь похожи, но не одинаковы. Во всяком случае, все мы симметричны! К тому же некоторые художники в своих произведениях особенно подчеркивают эту симметрию.

Наша собственная зеркальная симметрия очень удобна для нас, она позволяет нам двигаться прямолинейно и с одинаковой лёгкостью поворачиваться вправо и влево. Столь же удобна зеркальная симметрия для птиц, рыб и других активно движущихся существ.

Двусторонняя симметрия означает, что одна сторона тела животного представляет собой зеркальное отражение другой стороны. Такой тип организации характерен для большинства беспозвоночных, в особенности для кольчатых червей и для членистоногих – ракообразных, паукообразных, насекомых, бабочек; для позвоночных – рыб, птиц, млекопитающих. Впервые двусторонняя симметрия появляется у плоских червей, у которых передний и задний концы тела различаются между собой.

Рассмотрим ещё один тип симметрии, который встречается в животном мире. Это винтовая или спиральная симметрия. Винтовая симметрия есть симметрия относительно комбинации двух преобразований - поворота и переноса вдоль оси поворота, т. е. идёт перемещение вдоль оси винта и вокруг оси винта.

Примерами природных винтов являются: бивень нарвала (небольшого китообразного, обитающего в северных морях) – левый винт; раковина улитки – правый винт; рога памирского барана – энантиоморфы (один рог закручен по левой, а другой по правой спирали). Спиральная симметрия не бывает идеальной, например, раковина у моллюсков сужается или расширяется на конце. Хотя внешняя спиральная симметрия у многоклеточных животных встречается редко, зато спиральную структуру имеют многие важные молекулы, из которых построены живые организмы – белки, дезоксирибонуклеиновые кислоты - ДНК.

Симметрия в неживой природе

Симметрия кристаллов - свойство кристаллов совмещаться с собой в различных положениях путём поворотов, отражений, параллельных переносов либо части или комбинации этих операций. Симметрия внешней формы (огранки) кристалла определяется симметрией его атомного строения, которая обусловливает также и симметрию физических свойств кристалла.

Рассмотрим внимательно многогранные формы кристаллов. Прежде всего, видно, что кристаллы разных веществ отличаются друг от друга по своим формам. Каменная соль - это всегда кубики; горный хрусталь - всегда шестигранные призмы, иногда с головками в виде трехгранных или шестигранных пирамид; алмаз - чаще всего правильные восьмигранники (октаэдры); лед - шестигранные призмочки, очень похожие на горный хрусталь, а снежинки - всегда шестилучевые звездочки. Что бросается в глаза, когда смотришь на кристаллы? Прежде всего, их симметрия.

Многие думают, что кристаллы - это красивые, редко встречающиеся камни. Они бывают разных цветов, обычно прозрачные и, что самое замечательное, обладают красивой правильной формой. Чаще всего кристаллы представляют собой многогранники, стороны (грани) их идеально плоские, рёбра строго прямые. Они радуют глаз чудесной игрой света в гранях, удивительной правильностью строения.

Однако кристаллы - совсем не музейная редкость. Кристаллы окружают нас повсюду. Твёрдые тела, из которых мы строем дома и станки, вещества, которые мы употребляем в быту, - почти все они относятся к кристаллам. Почему же мы этого не видим? Дело в том, что в природе редко попадаются тела в виде отдельных одиночных кристаллов (или как говорят монокристаллов). Чаще всего вещество встречается в виде прочно сцепившихся кристаллических зёрнышек уже совсем малого размера - меньше тысячной доли миллиметра. Такую структуру можно увидеть лишь в микроскоп.

Тела, состоящие из кристаллических зёрнышек, называются мелкокристаллическими, или поликристаллическими ("поли" - по-гречески "много").

Конечно, к кристаллам надо отнести и мелкокристаллические тела. Тогда окажется, что почти все окружающие нас твёрдые тела - кристаллы. Песок и гранит, медь и железо, краски - всё это кристаллы.

Есть и исключения; стекло и пластмассы не состоят из кристалликов. Такие твёрдые тела называются аморфными.

Изучать кристаллы - это значит изучать почти все окружающие нас тела. Понятно, как это важно.

Одиночные кристаллы сразу же узнают по правильности форм. Плоские грани и прямые рёбра являются характерным свойством кристалла; правильность формы несомненно связана с правильностью внутреннего строения кристалла. Если кристалл в каком-то направлении особо вытянулся, значит, и строение кристалла в этом направлении какое-то особенное.

Есть центр симметрии и в кубике каменной соли, и в восьмиграннике алмаза, и в звёздочке снежинки. А вот в кристаллике кварца центра симметрии нет.

Наиболее точная симметрия осуществляется в мире кристаллов, но и здесь она неидеальная: невидимые глазом трещинки, царапины всегда делают равные грани слегка отличными друг от друга.

Все кристаллы симметричны. Это значит, что в каждом кристаллическом многограннике можно найти плоскости симметрии, оси симметрии, центр симметрии или другие элементы симметрии так, чтобы совместились, друг с другом одинаковые части многогранника.

Все элементы симметрии повторяют одинаковые части фигуры, все придают ей симметричную красоту и завершенность, но центр симметрии, - самый интересный. От того, есть ли в кристалле центр симметрии или нет его, могут зависеть не только форма, но и очень многие физические свойства кристалла.

Соты - настоящий конструкторский шедевр. Они состоят из ряда шестигранных ячеек. Это самая плотная упаковка, позволяющая наивыгоднейшим образом разместить в ячейке личинку и при максимально возможном объеме наиболее экономно использовать строительный материал-воск.

III Заключение

Симметрия пронизывает буквально все вокруг, захватывая, казалось бы, совершенно неожиданные области и объекты Она, проявляясь в самых различных объектах материального мира, несомненно, отражает наиболее общие, наиболее фундаментальные его свойства. Принципы симметрии играют важную роль в физике и математике, химии и биологии, технике и архитектуре, живописи и скульптуре, поэзии и музыке.

Мы видим, что природа проектирует любой живой организм согласно определенной геометрической схеме, причем законы мироздания имеют четкое обоснование. Поэтому исследование симметрии разнообразных природных объектов и сопоставление его результатов является удобным и надежным инструментом познания основных закономерностей существования материи.

Законы природы, управляющие неисчерпаемой в своём многообразии картиной явлений, в свою очередь, подчиняются принципам симметрии. Существует множество видов симметрии, как в растительном, так и в животном мире, но при всем многообразии живых организмов, принцип симметрии действует всегда, и этот факт еще раз подчеркивает гармоничность нашего мира. Симметрия лежит в основе вещей и явлений, выражая нечто общее, свойственное разным объектам, тогда как асимметрия связана с индивидуальным воплощением этого общего в конкретном объекте.

Итак, на плоскости мы имеем четыре вида движений, переводящих фигуру F в равную фигуру F1:

1) параллельный перенос;

2) осевая симметрия (отражение от прямой);

3) поворот вокруг точки (Частичный случай – центральная симметрия);

4) «скользящее» отражение.

В пространстве к вышеперечисленным видам симметрии добавляется зеркальная.

Считаю, что цель, поставленная в реферате, достигнута. При написании реферата наибольшей сложностью для меня стали собственные выводы. Думаю, что моя работа поможет школьникам расширить представление о симметрии. Надеюсь, что мой реферат войдет в методический фонд кабинета математики.