Условие мейснера. Эффект мейснера и его практическое применение

Левитация - это преодоление силы тяжести, при которой субъект или объект находится в пространстве без опоры. Слово «левитация» происходит от латинского Levitas, что означает «легкость».

Левитацию неправильно приравнивать к полету, потому что последний основан на сопротивлении воздуха, именно поэтому птицы, насекомые и другие животные летают, а не левитируют.

Левитация в физике

Левитация в физике относится к устойчивому положению тела в гравитационном поле, при этом тело не должно касаться других объектов. Левитация подразумевает некоторые необходимые и труднодостижимые условия:

  • Сила, которая способна компенсировать гравитационное притяжение и силу тяжести.
  • Сила, которая способна обеспечить устойчивость тела в пространстве.

Из закона Гаусса следует, что в статическом магнитном поле статические тела или объекты не способны к левитации. Однако если сменить условия, то можно достичь левитации.

Квантовая левитация

Широкой публике о квантовой левитации впервые стало известно в марте 1991 года, когда в научном журнале Nature было опубликовано интересное фото. На нем директор Токийской исследовательской лаборатории по сверхпроводимости Дон Тапскотт стоял на керамической сверхпроводящей пластине, а между полом и пластиной не было ничего. Фотография оказалась настоящей, а пластина, которая вместе со стоящим на ней директором весила около 120 килограммов, могла левитировать над полом благодаря эффекту сверхпроводимости, известному как эффект Мейснера-Оксенфельда.

Диамагнитная левитация

Так называют тип пребывания в подвешенном состоянии в магнитном поле тела, содержащего воду, которая сама по себе является диамагнетиком, то есть материалом, атомы которого способны намагничиваться против направления основного электромагнитного поля.

В процессе диамагнитной левитации основную роль играют диамагнитные свойства проводников, атомы которых под действием внешнего магнитного поля слегка изменяют параметры движения электронов в их молекулах, что приводит к появлению слабого магнитного поля, противоположного по направлению основному. Эффекта этого слабого электромагнитного поля достаточно, чтобы преодолеть силу тяжести.

Чтобы продемонстрировать диамагнитную левитацию, ученые многократно проводили опыты на небольших животных.

Этот вид левитации использовался в экспериментах на живых объектах. Во время опытов во внешнем магнитном поле с индукцией около 17 Тесла было достигнуто подвешенное состояние (левитация) лягушек и мышей.

По третьему закону Ньютона, свойства диамагнетиков можно использовать и наоборот, то есть для левитации магнита в поле диамагнетика или для его стабилизации в электромагнитном поле.

Диамагнитная левитация по своей природе идентична квантовой левитации. То есть как и при воздействии эффекта Мейснера, происходит абсолютное вытеснение из материала проводника магнитного поля. Небольшим отличием является лишь то, что для достижения диамагнитной левитации необходимо значительно более сильное электромагнитное поле, однако при этом совершенно не нужно охлаждать проводники, чтобы добиться их сверхпроводимости, как в случае с квантовой левитацией.

В домашних условиях можно даже поставить несколько опытов по диамагнитной левитации, например, при наличии двух пластин висмута (который является диамагнетиком) можно установить в подвешенное состояние магнит с невысокой индукцией, около 1 Тл. Кроме того, в электромагнитном поле с индукцией в 11 Тесла можно стабилизировать в подвешенном состоянии небольшой магнит, регулируя его положение пальцами, при этом совершенно не касаясь магнита.

Часто встречающимися диамагнетиками являются практически все инертные газы, фосфор, азот, кремний, водород, серебро, золото, медь и цинк. Даже человеческое тело является диамагнетиком в правильном электромагнитном магнитном поле.

Магнитная левитация

Магнитная левитация - это эффективный метод поднятия объекта с использованием магнитного поля. В этом случае магнитное давление используется для компенсации силы тяжести и свободного падения.

Согласно теореме Ирншоу, нельзя удерживать объект в гравитационном поле устойчиво. То есть левитация при таких условиях невозможна, однако если принять во внимание механизмы действия диамагнетиков, вихревых токов и сверхпроводников, то можно достичь эффективной левитации.

Если магнитная левитация обеспечивает подъемную силу при механической поддержке, такое явление принято называть псевдолевитацией.

Эффект Мейснера

Эффект Мейснера - это процесс абсолютного вытеснения магнитного поля из всего объема проводника. Обычно это происходит в процессе перехода проводника в сверхпроводящее состояние. Именно этим сверхпроводники отличаются от идеальных - при том, что у обоих сопротивление отсутствует, магнитная индукция идеальных проводников остается неизменной.

Впервые это явление наблюдали и описали в 1933 году двое немецких физиков - Мейснер и Оксенфельд. Именно поэтому иногда квантовую левитацию называют эффектом Мейснера-Оксенфельда.

Из общих законов электромагнитного поля следует, что при отсутствии в объеме проводника магнитного поля в нем присутствует только поверхностный ток, который занимает пространство у поверхности сверхпроводника. При этих условиях сверхпроводник ведет себя так же, как и диамагнетик, при этом таковым не являясь.

Эффект Мейснера разделяют на полный и частичный, в зависимости от качества сверхпроводников. Полный эффект Мейснера наблюдается, когда магнитное поле вытесняется полностью.

Высокотемпературные сверхпроводники

В природе мало чистых сверхпроводников. Большинство их материалов, обладающих свойствами сверхпроводимости, являются сплавами, у которых чаще всего наблюдается лишь частичный эффект Мейснера.

В сверхпроводниках именно способность полностью вытеснять магнитное поле из своего объема разделяет материалы на сверхпроводники первого и второго типов. Сверхпроводниками первого типа являются чистые вещества, например, ртуть, свинец и олово, способные даже при высоких магнитных полях продемонстрировать полный эффект Мейснера. Сверхпроводники второго типа - чаще всего сплавы, а также керамика или некоторые органические соединения, которые в условиях магнитного поля с высокой индукцией способны лишь на частичное вытеснение магнитного поля из своего объема. Тем не менее в условиях очень малой индукции магнитного поля практически все сверхпроводники, в том числе и второго типа, способны на полный эффект Мейснера.

Известно несколько сотен сплавов, соединений и несколько чистых материалов, обладающих характеристиками квантовой сверхпроводимости.

Опыт «Гроб Магомета»

«Гроб Магомета» - это своеобразный фокус с левитацией. Так называли опыт, наглядно демонстрирующий эффект.

Согласно мусульманской легенде, гроб пророка Магомеда находился в воздухе в подвешенном состоянии, без какой-либо опоры и поддержки. Именно поэтому у опыта такое название.

Научное объяснение опыта

Сверхпроводимость может быть достигнута лишь при очень низких температурах, поэтому сверхпроводник необходимо заранее охладить, например, при помощи высокотемпературных газов, таких как жидкий гелий или жидкий азот.

Затем на поверхность плоского охлажденного сверхпроводника помещают магнит. Даже в полях с минимальной магнитной индукцией, не превышающей 0,001 Тесла, магнит поднимается вверх над поверхностью сверхпроводника примерно на 7-8 миллиметров. Если постепенно увеличивать индукцию магнитного поля, расстояние между поверхностью сверхпроводника и магнитом будет увеличиваться все больше и больше.

Магнит буде продолжать левитировать до того момента, пока внешние условия не изменятся и сверхпроводник не потеряет свои сверхпроводящие характеристики.

Загадочные квантовые явления до сих пор удивляют исследователей своим невообразимым поведением. Ранее мы говорили о , сегодня же рассмотрим другое квантово-механическое явление - сверхпроводимость.

Что такое сверхпроводимость? Сверхпроводимость - это квантовое явление протекания электрического тока в твердом теле без потерь, то есть при строго нулевом электрическом сопротивлении тела.

С введением в физику такого понятия как «абсолютный ноль» ученые стали все больше исследовать свойства веществ при низкой температуре, когда движение молекул практически отсутствует. Для достижения низких температур требуется проведение такого процесса, как «сжижение газа». При испарении такой газ отбирает энергию у тела, которое погружено в этот газ, так как для отрыва молекул от жидкости требуется энергия. Подобные процессы протекают в бытовых холодильниках, где сжиженный газ фреон испарятся в морозилке.

В конце XIX - начале XX столетия уже были получены такие сжиженные газы как кислород, азот, водород. Долгое время не поддавался сжижению гелий, при этом ожидалось, что он поможет достичь минимальной температуры.

Успех в сжижении гелия был достигнут голландским физиком Хейке Камерлинг-Оннесем в 1908-м году, который работал в Лейденском университете (Нидерланды). Сжиженный гелий позволял достичь рекордно низкой температуры - около 4 К. Получив жидкий гелий, ученый начал заниматься изучением свойств разных материалов при гелиевых температурах.

История открытия

Одним из вопросов, которые интересовали Камерлинг-Оннеса, было изучение сопротивления металлов при сверхнизких температурах. Было известно, что с ростом температуры электрическое сопротивление также растет. Следовательно, можно ожидать, что с уменьшением температуры будет наблюдаться обратный эффект.

Экспериментируя с ртутью в 1911-м году, ученый довел ее до замерзания и продолжил понижать температуру. При достижении 4,2 К устройство перестало фиксировать сопротивление. Оннес заменял устройства в исследовательской установке, поскольку побаивался их неисправности, однако устройства неизменно показывали нулевое сопротивление, несмотря на то, что до абсолютного нуля оставалось еще 4 К.

После открытия сверхпроводимости ртути возникло большое количество вопросов. Среди них: «свойственна ли сверхпроводимость другим веществам, помимо ртути?» или «сопротивление снижается до нуля, либо оно настолько мало, что устройства, которые существуют, не могут его измерить.

Оннес предложил оригинальное исследование с непрямым измерением, до какого уровня понижается сопротивление. Возбужденный в полупроводниковой цепи электрический ток, который был измерен при помощи отклонения магнитной стрелки, не затухал несколько лет. Согласно результатам этого эксперимента, полученное посредством расчетов удельное электрическое сопротивление сверхпроводника равнялось 10−25 Ом.м. По сравнению с удельным электрическим сопротивлением меди (1.5۰10−8 Ом.м) данная величина меньше на 7 порядков, что делает ее практически нулевой.

Эффект Мейснера

Помимо сверхпроводимости, сверхпроводники обладают еще одной отличительной чертой, а именно - эффектом Мейснера. Это явление быстрого затухания магнитного поля в сверхпроводнике. Сверхпроводник является диамагнетиком, то есть в магнитном поле в сверхпроводнике индуцируются макроскопические токи, которые создают собственное магнитное поле, которое полностью компенсирует внешнее.

Эффект Мейснера пропадает в сильных магнитных полях. В зависимости от типа сверхпроводника (об этом далее) сверхпроводящее состояние при этом либо пропадает полностью (сверхпроводники I-го рода), либо сверхпроводник сегментируется на нормальные и сверхпроводимые области (II-го рода). Именно этот эффект способен объяснить левитацию сверхпроводника над сильным магнитом, либо магнита над сверхпроводником.

Теоретическое объяснение эффекта сверхпроводимости

Феноменологический подход. Хоть Камерлинг-Оннес и является первооткрывателем сверхпроводимости, первая теория сверхпроводимости впервые была предложена в 1935-м году немецкими физиками и братьями Фрицом и Гайнцом Лондонами. Ученые стремились математически записать такие свойства сверхпроводника как сверхпроводимость и эффект Мейснера, не вникая в микроскопические причины сверхпроводимости, феноменологически. Выведенные уравнения позволяли объяснить эффект Мейснера так, что внешнее магнитное поле могло проникать в сверхпроводник только на определенную глубину, зависящую от так называемой лондоновской глубины проникновения. Для объяснения сверхпроводимости, потребовалось предположение о том, что носителями тока в сверхпроводнике, как и в металле, являются электроны. При этом, нулевое сопротивление означает то, что электрон не испытывает столкновений во время своего движения. Так как это относится ко всем электронам проводимости, то имеет место ток электронов без сопротивления.

Очевидно, что данная теория не объясняет саму природу данного явления, а лишь описывает его и позволяет предсказывать его поведение в ряде случаев. Более глубокая, но также, феноменологическая теория была предложена в 1950-м году советскими физиками-теоретиками Левом Ландау и Виталием Гнизбургом.

Теория БКШ. Первое качественное объяснение явлению сверхпроводимости было предложено в рамках так называемой теории БКШ, построенной американскими физиками Джоном Бардином, Леоном Купером и Джоном Шриффером. Эта теория выходит из предположения, что между электронами при определенных условиях может возникать притяжение. Притяжение, которое обусловлено различными возбуждениями, в первую очередь - колебаниями кристаллической решетки, способно создавать «куперовские пары» — связанные состояния двух электронов в кристалле. Такая пара может двигаться в кристалле, не рассеиваясь ни на колебания кристаллической решетки, ни на примеси. В веществах с температурой, далекой от нуля, достаточно энергии, чтобы «разорвать» такую пару электронов, в то время как при низких температурах система не обладает достаточной энергией. В результате этого возникает поток связанных электронов - куперовских пар, которые практически не взаимодействуют с веществом. В 1972-м году Д. Бардин, Л. Купер и Д. Шриффер получили Нобелевскую премию по физике.

Позднее советский физик-теоретик Николай Боголюбов усовершенствовал теорию БКШ. В своих работах ученый подробно описал условия, при которых могут образовываться куперовские пары (энергия близкая к энергии Ферми, определенные спины и др.) в результате квантовых эффектов. По отдельности электроны представляют собой частицы с полуцелым спином (фермионы), которые неспособны образовывать и переходить в сверхтекучее состояние. Когда же имеется куперовская пара электронов, то она представляет собой квазичастицу с целым спином и является . При определенных условиях бозоны способны формировать конденсат Бозе-Эйнштейна, то есть вещество, частицы которого занимают одно и то же состояние, что приводит к возникновению сверхтекучести. Такая сверхтекучесть электронов и объясняет эффект сврехпроводимости.

Сверхпроводники в переменном электрическом поле

Кроме сверхпроводимости и эффекта Мейснера, сверхпроводники обладают рядом других свойств. Стоит отметить следующее — нулевое сопротивление сверхпроводников характерно только при постоянном токе. Переменное электрическое поле делает сопротивление сверхпроводника ненулевым и оно растет, с увеличением частоты поля.

Также как двухжидкостная модель разделяет сверхтекучий материал на область сверхтекучести и область обычного вещества, так разделяется и поток электронов на сверхпроводящие и обычные. Постоянно поле ускоряло бы сверхпроводящие электроны до бесконечности (учитывая их нулевое сопротивление), что невозможно, потому оно обращается в ноль при попадании в сверхпроводник. Так как постоянное электрическое поле не действует на сверхпроводники, то и обычные электроны не подвержены его воздействию (оно просто выталкивается наружу), а значит движение представлено лишь сверхпроводящими электронами.

В случае с переменным электрическим полем происходит процесс ускорения электронов с последующим замедлением, что физически возможно. В таком случае имеет место и ток обычных электронов, которые обладают свойством сопротивления. Чем выше частота такого поля, тем большее проявляются эффекты, связанные с обычными электронами.

Момент Лондона

Еще одно интересное свойство сверхпроводника - момент Лондона. Суть феномена заключается в том, что вращающийся сверхпроводник создает магнитное поле, которое выравнивается точно вдоль оси вращения проводника.

Дальнейшее исследование этого явления привело к открытию гравити магнитного момента Лондона. В2006-м году исследователи Мартин Таджмар из института ARC Seibersdorf Research, Австрия, и Кловис де Матос из Европейского космического агентства (ESA) обнаружили, что вращающийся с ускорением сврехпроводник генерирует также и гравитационное поле. Однако такое гравитационное поле слабее земного примерно в 100 миллионов раз.

Классификация сверхпроводников

Существует несколько классификаций сверхпроводников, которые опираются на такие критерии:

  1. Реакция на магнитное поле. Это свойство делит сверхпроводники на две категории. Сверхпроводники I-го рода имеют некоторое одно критическое значение магнитного поля, превысив которое, они теряют сверхпроводимость. II-го рода - имеют два предельных значения магнитного поля. При применении магнитного поля, ограниченного этими значениями, к сверхпроводникам этой категории, поле частично проникает внутрь, при этом сохраняя сверхпроводимость.
  2. Критическая температура. Различают низкотемпературные и высокотемпературные сверхпроводники. Первые обладают свойством сверхпроводимости при температурах ниже −196 °C или 77 К. Высокотемпературным сверхпроводникам достаточно температуры выше указанной. Такое разделение имеет место, так как высокотемпературные сверхпроводники могут применяться на практике в качестве охладителей.
  3. Материал. Здесь выделяют такие разновидности как: чистый химический элемент (вроде ртути или свинца), сплавы, керамика, органические или на основе железа.
  4. Теоретическое описание. Как известно, любая физическая теория имеет определенную область применения. По этой причине, для дальнейшего применения, имеет смысл разделять сверхпроводники по теориям, которые способны описать их природу.

Сверхпроводимость графена

За последние несколько лет известность графена значительно возросла. Напомним, что графен представляет собой слой модифицированного углерода, толщиной в один атом. В первую очередь, этому поспособствовало открытие углеродных нанотрубок - специфическому сверхпрочному материалу, который создается посредством сворачивания одного или нескольких слоев графена.

В 2018-м году группа исследователей из Массачусетского технологического института и Гарвардского университета под руководством профессора Пабло Джарилло-Эрреро, обнаружила, что при вращении под определенном («магически») углом, два листа графена полностью лишены электропроводимости. Когда исследователи применили к материалу напряжение, добавив небольшое количество электродов к этой графеновой конструкции, они обнаружили, что на определенном уровне электроны вырвались из исходного изолирующего состояния и протекали без сопротивления. Важнейшей особенностью данного явления является то, что сверхпроводимость указанной графеновой конструкции была получена при комнатной температуре. И хотя объяснение данного эффекта все еще остается под вопросом, его потенциал в сфере энергоснабжения довольно высок.

Применение сверхпроводников

Сверхпроводники еще не получили широкое применение, однако разработки в этой области активно ведутся. Так благодаря эффекту Мейснера возможны «парящие» над дорогой поезда на магнитной подушке - маглевы.

На основе сверхпроводников уже создаются сверхмощные турбогенераторы, которые могут применяться на электростанциях.

Криотрон - еще одно применение сверхпроводимости, которое может быть полезно для техники и электронных приборов. Это такое устройство, которое может переключать состояние сверхпроводника из обычного в сверхпроводящее за очень короткое время (от 10⁻⁶ до 10⁻¹¹с). Криотроны могут быть использованы в информационных системах, связанных с запоминанием и кодированием. Так впервые они применялись как запоминающие устройства в ЭВМ. Также криотроны могут помочь в области криоэлектроники, среди задач которой - повысить чувствительность приемников сигнала и сохранить форму сигнала как можно лучше. Здесь достижению поставленных целей способствуют низкие температуры и эффект сверхпроводимости.

Также, в силу отсутствия сопротивления в сверхпроводниках, кабели из такого вещества доставляли бы электричество без потерь на нагревание, что значительно бы повысило эффективность электроснабжения. Сегодня такие кабели требуют охлаждения посредством жидкого азота, что повышает цену на их эксплуатацию. Однако, исследования в этой сфере ведутся, и первая электропередача на основе сверхпроводников была приведена в эксплуатацию в Нью-Йорке 2008-м году компанией American Superconductor. В 2015-м году Южная Корея объявила о намерении создать несколько тысяч километров сверхпроводящих линий электропередач. Если добавить к этому недавнее открытие сверхпроводимости графена при комнатной температуре, то в ближайшее время следует ожидать глобальные изменения в области электроснабжения.

Кроме указанных областей применения, сверхпроводимость применяется в измерительной технике, начиная от детекторов фотонов и заканчивая измерением геодезической прецессии посредством сверхпроводящих гироскопов на космическом аппарате «Gravity Probe B». Это измерение подтвердило предсказание Эйнштейна о наличии таковой прецессии по причинам, изложенным в Общей теории относительности. Не углубляясь в механизм измерения, следует отметить, что данные о геодезической прецессии Земли позволяют точно калибровать искусственные спутники Земли.

Подводя итоги написанного выше, напрашивается вывод о перспективности эффекта сверхпроводимости во множестве областей, и большом потенциале сверхпроводников, в первую очередь в сферах электроснабжения и электротехники. Ожидаем в ближайшее время множество открытий в данной области.

В 1913г. немецкие физики Мейснер и Оксенфельд решили экспериментально проверить, как именно распределяется магнитное поле вокруг сверхпроводника. Результат оказался неожиданным. Независимо от условий проведения эксперимента магнитное поле внутрь проводника не проникало. Поразительный факт заключался в том, что сверхпроводник, охлажденный ниже критической температуры в постоянном магнитном поле, самопроизвольно выталкивает это поле из своего объема, переходя в состояние, при котором магнитная индукция В=0, т.е. состояние идеального диамагнетизма. Это явление получило название эффекта Мейснера.

Многие считают, что эффект Мейснера, является наиболее фундаментальным свойством сверхпроводников. Действительно, существование нулевого сопротивления неизбежно следует из этого эффекта. Ведь поверхностные экранизирующие токи постоянны во времени и не затухают в не измеряющемся магнитном поле. В тонком поверхностном слое сверхпроводника эти токи создают свое магнитное поле, строго равное и противоположное внешнему полю. В сверхпроводнике эти два встречных магнитных поля складываются так, что суммарное магнитное поле становится равным нулю, хотя слагаемые поля существуют совместно, поэтому и говорят об эффекте «выталкивание» внешнего магнитного поля из сверхпроводника.

Пусть в исходном состоянии идеальный проводник охлажден ниже критической температуры и внешнее магнитное поле отсутствует. Внесем теперь такой идеальный проводник во внешнее магнитное поле. Поле в образец не проникает, что схематически изображено на рис. 1. Сразу по появлении внешнего поля на поверхности идеального проводника возникает ток, создающий, по правилу Ленца, свое собственное магнитное поле, направленное навстречу приложенному, и полное поле в образце будет равно нулю.

Это можно доказать используя уравнения Максвелла. При изменении индукции В внутри образца должно возникнуть электрическое поле Е:

Где с - скорость света в вакууме. Но в идеальном проводнике R= 0, так как

E = jс ,

где с -- удельное сопротивление, которое в нашем случае равно нулю, j -- плотность наведенного тока. Отсюда следует, что B =const, но поскольку до внесения образца в поле В = 0, то ясно, что В = 0 и после внесения в поле. Это можно интерпретировать еще и так: поскольку с =0, время проникновения магнитного поля в идеальный проводник равно бесконечно.

Итак, внесенный во внешнее магнитное поле идеальный проводник имеет В = 0 в любой точке образца. Однако того же состояния (идеальный проводник при Т <Т с во внешнем магнитном поле) можно достигнуть и другим путем: сперва наложить внешнее поле на «теплый» образец, а затем охладить его до температуры Т <Т с .

Электродинамика предсказывает для идеального проводника совершенно другой результат. Действительно, образец при Т>Т с имеет сопротивление и магнитное поле в него хорошо проникает. После охлаждения его ниже Т с поле останется в образце. Эта ситуация изображена на рис. 2.

Таким образом, кроме нулевого сопротивления сверхпроводники обладают еще одним фундаментальным свойством - идеальным диамагнетизмом. Исчезновение магнитного поля внутри связано с появлением незатухающих поверхностных токов в сверхпроводнике. Но магнитное поле не может быть вытолкнуто полностью, т.к. это бы означало, что на поверхности магнитное поле падает скачком от конечного значения В до нуля. Для этого необходимо, чтобы по поверхности протекал ток, бесконечной плотности, что невозможно. Следовательно, магнитное поле проникает в глубь сверхпроводника, на некоторую глубину л.

Эффект Мейснера Ї Оксенфельда наблюдается только в слабых полях. При увеличении напряженности магнитного поля до величины Н cm сверхпроводящее состояние разрушается. Это поле получило название критического Н cm .Зависимость между критическим магнитным полем и критической температурой хорошо описывается эмпирической формулой (6).

Н cm (T)= Н cm (0) [1-(T/T c ) 2 ] (6)

Где Н cm (0) - критическое поле экстраполированное к абсолютному нулю.

График этой зависимости приведен на рисунке 3. Этот график также можно рассматривать, как фазовую диаграмму, где каждая точка серой части соответствует сверхпроводящему состоянию, а белой области - нормальному.

По характеру проникновения магнитного поля сверхпроводники делятся на сверхпроводники первого и второго рода. В сверхпроводник первого рода магнитное поле не проникает до тех пор пока, напряженность поля не достигнет значения Н cm . Если поле превышает критическое значении, то сверхпроводящее состояние разрушается и поле полностью проникает в образец. К сверхпроводникам первого рода относятся все химические элементы сверхпроводники, кроме ниобия.

Подсчитали, что при переходе металла из нормального состояния в сверхпроводящее производится некоторая работа. Что, собственно, является источником этой работы? То, что у сверхпроводника энергия ниже, чем у того же металла в нормальном состоянии.

Ясно, что «роскошь» эффекта Мейснера сверхпроводник может себе позволить за счет выигрыша в энергии. Выталкивание магнитного поля будет иметь место до тех пор, пока связанное с этим явлением увеличение энергии компенсируется более эффективным ее уменьшением, связанным с переходом металла в сверхпроводящее состояние. В достаточно магнитных полях энергетически более выгодным оказывается не сверхпроводящее, а нормальное состояние, в котором поле свободно проникает в образец.

Немецкими физиками и .

Физическое объяснение

При охлаждении сверхпроводника, находящегося во внешнем постоянном магнитном поле, в момент перехода в сверхпроводящее состояние магнитное поле полностью вытесняется из его объёма. Этим сверхпроводник отличается от идеального проводника, у которого при падении сопротивления до нуля индукция магнитного поля в объёме должна сохраняться без изменения.

Отсутствие магнитного поля в объёме проводника позволяет заключить из , что в нём существует только поверхностный ток. Он физически реален и поэтому занимает некоторый тонкий слой вблизи поверхности. Магнитное поле тока уничтожает внутри сверхпроводника внешнее магнитное поле. В этом отношении сверхпроводник ведёт себя формально как идеальный . Однако он не является диамагнетиком, так как внутри него намагниченность равна нулю.

Эффект Мейснера не может быть объяснён только бесконечной проводимостью. Впервые его природу объяснили братья и c помощью . Они показали, что в сверхпроводнике поле проникает на фиксированную глубину от поверхности — лондоновскую глубину проникновения магнитного поля λ {\displaystyle \lambda } . Для металлов λ ∼ 10 − 2 {\displaystyle \lambda \sim 10^{-2}} мкм.

Сверхпроводники I и II рода

Чистые вещества, у которых наблюдается явление сверхпроводимости, немногочисленны. Чаще сверхпроводимость бывает у сплавов. У чистых веществ имеет место полный эффект Мейснера, а у сплавов не происходит полного выталкивания магнитного поля из объёма (частичный эффект Мейснера). Вещества, проявляющие полный эффект Мейснера, называются сверхпроводниками первого рода, а частичный — сверхпроводниками второго рода. Однако стоит отметить, что в низких магнитных полях полным эффектом Мейснера обладают все типы сверхпроводников.

У сверхпроводников второго рода в объёме имеются круговые токи, создающие магнитное поле, которое, однако, заполняет не весь объём, а распределено в нём в виде отдельных нитей . Что же касается сопротивления, оно равно нулю, как и в сверхпроводниках первого рода, хотя движение вихрей под действием текущего тока создаёт эффективное сопротивление в виде диссипативных потерь на передвижение магнитного потока внутри сверхпроводника, чего избегают вводом в структуру сверхпроводника дефектов — центров , за которые вихри «цепляются».

«Гроб Магомета»

«Гроб Магомета» — опыт, демонстрирующий эффект Мейснера в .

Происхождение названия

По , с телом висел в пространстве без всякой поддержки, поэтому этот эксперимент называют «гроб Магомета».

Постановка опыта

Сверхпроводимость существует только при низких температурах (в -керамиках — при температурах ниже 150 ), поэтому предварительно вещество охлаждают, например, при помощи . Далее кладут на поверхность плоского сверхпроводника. Даже в полях, которых составляет 0,001 , заметно смещение магнита вверх на расстояние порядка сантиметра. При увеличении поля вплоть до критического магнит поднимается всё выше.

Объяснение

Одним из свойств сверхпроводников является выталкивание из области сверхпроводящей фазы. Отталкиваясь от неподвижного сверхпроводника, магнит «всплывает» сам и продолжает «парить» до тех пор, пока внешние условия не выведут сверхпроводник из сверхпроводящей фазы. В результате этого эффекта магнит, приближающийся к сверхпроводнику, «видит» магнит одинаковой полярности и точно такого же размера, — что и вызывает левитацию.

Примечания

Литература

  • Сверхпроводимость металлов и сплавов. — М. : , 1968. — 280 с.
  • О проблемах левитации тел в силовых полях // . — 1996. — № 3 . — С. 82—86 .

Эффект Мейснера или эффект Мейснера-Оксенфельда заключается в вытеснении магнитного поля из объема сверхпроводника при его переходе в сверхпроводящее состояние. Данное явление в 1933 году обнаружили немецкие физики Вальтер Мейснер и Роберт Оксенфельд, измерившие распределение магнитного поля за пределами сверхпроводящих образцов олова и свинца.

В эксперименте сверхпроводники, в присутствии приложенного магнитного поля, охлаждали ниже температуры их сверхпроводящего перехода, при этом почти все внутреннее магнитное поле образцов обнулялось. Эффект был обнаружен учеными лишь косвенно, так как магнитный поток сверхпроводника сохранялся: когда магнитное поле внутри образца уменьшалось, внешнее магнитное поле увеличивалось.

Таким образом эксперимент впервые четко показал, что сверхпроводники были не просто идеальными проводниками, но и демонстрировали уникальное определяющее свойство сверхпроводящего состояния. Способность к эффекту вытеснения магнитного поля определяется природой равновесия, образованного нейтрализацией внутри элементарной ячейки сверхпроводника.

Считается, что сверхпроводник со слабым магнитным полем или вообще без магнитного поля пребывает в состоянии Мейснера. Но состояние Мейснера нарушается, когда приложенное магнитное поле оказывается слишком велико.

Здесь стоит отметить, что сверхпроводники можно разделить на два класса в зависимости от того, как происходит это нарушение. В сверхпроводниках первого рода сверхпроводимость резко нарушается когда напряженность приложенного магнитного поля становятся выше критического значения Hc.

В зависимости от геометрии образца можно получить промежуточное состояние, подобное изысканному рисунку областей нормального материала, несущего магнитное поле, смешанных с областями сверхпроводящего материала, где магнитное поле отсутствует.

В сверхпроводниках второго рода повышение напряженности приложенного магнитного поля до первого критического значения Hc1 приводит к смешанному состоянию (также известному как вихревое состояние), в котором все большее количество магнитного потока проникает в материал, но сопротивления электрическому току, если этот ток не слишком велик, не остается.

При величине второй критической напряженности Hc2 сверхпроводящее состояние разрушается. Смешанное состояние вызывается вихрями в сверхтекучей электронной жидкости, которые иногда называют флюксонами (флюксон-квант магнитного потока), поскольку поток переносимый этими вихрями квантуется.

Самые чистые элементарные сверхпроводники, кроме ниобия и углеродистых нанотрубок, являются сверхпроводниками первого типа, в то время как почти все примесные и сложные сверхпроводники - относятся ко второму типу сверхпроводников.

Феноменологически эффект Мейснера был объяснен братьями Фрицем и Хайнцем Лондонами, которые показали, что свободная электромагнитная энергия сверхпроводника минимизируется при условии:

Данное условие называется уравнением Лондонов. Оно предсказывает, что магнитное поле в сверхпроводнике экспоненциально затухает от любого значения, которым оно обладает на поверхности.

Если приложено слабое магнитное поле, то сверхпроводник вытесняет почти весь магнитный поток. Это происходит из-за возникновения электрических токов вблизи его поверхности. Магнитное поле поверхностных токов нейтрализует приложенное магнитное поле внутри объема сверхпроводника. Поскольку вытеснение или подавление поля не изменяется со временем, значит токи создающие данный эффект (постоянные токи), со временем не затухают.

У поверхности образца в пределах лондоновской глубины, магнитное поле не полностью отсутствует. Каждый сверхпроводящий материал имеет собственную глубину проникновения магнитного поля.

Любой совершенный проводник предотвратит всякое изменение магнитного потока, проходящего через его поверхность из-за обычной электромагнитной индукции при нулевом сопротивлении. Но эффект Мейснера отличается от данного явления.

Когда обычный проводник охлаждается таким образом, что переходит в сверхпроводящее состояние при наличии постоянно приложенного магнитного поля, магнитный поток вытесняется во время этого перехода. Данный эффект нельзя объяснить бесконечной проводимостью.

Размещение и последующая левитация магнита над уже сверхпроводящим материалом не демонстрирует эффекта Мейснера, в то время как эффект Мейснера демонстрируется если первоначально неподвижный магнит позже отталкивается от сверхпроводника охлаждаемого до критической температуры.

В состоянии Мейснера сверхпроводники демонстрируют совершенный диамагнетизм или супердиамагнетизм. Это означает, что полное магнитное поле очень близко к нулю глубоко внутри них, на большом расстоянии внутри от поверхности. Магнитная восприимчивость -1.

Диамагнетизм определяется генерацией спонтанной намагниченности материала, которая прямо противоположна направлению приложенного снаружи магнитного поля. Но фундаментальное происхождение диамагнетизма в сверхпроводниках и нормальных материалах сильно различается.

В обычных материалах диамагнетизм возникает как прямой результат орбитального вращения электронов вокруг ядер атома, индуцированного электромагнитного при приложении внешнего магнитного поля. В сверхпроводниках же иллюзия совершенного диамагнетизма возникает из-за постоянных экранирующих токов, которые протекают в противоположность приложенному полю (собственно эффект Мейснера), а не только за счет орбитального вращения.

Открытие эффекта Мейснера привело в 1935 году к феноменологической теории сверхпроводимости Фрица и Хайнца Лондонов. Эта теория объяснила исчезновение сопротивления и эффект Мейснера. Она позволила сделать первые теоретические предсказания касательно сверхпроводимости.

Однако эта теория лишь объяснила экспериментальные наблюдения, но она не позволила идентифицировать макроскопическое происхождение сверхпроводящих свойств. Это было успешно сделано позже, в 1957 году, теорией Бардина-Купера-Шриффера, из которой вытекает и глубина проникновения и эффект Мейснера. Тем не менее, некоторые физики утверждают, что теория Бардина-Купера-Шриффера не объясняет эффекта Мейснера.

Применение эффекта Мейснера реализуется по следующему принципу. При переходе температуры сверхпроводящего материала через критическое значение, магнитное поле вокруг него резко изменяется, что приводит к генерации импульса ЭДС в катушке, намотанной вокруг такого материала. А при изменении тока управляющей обмотки можно управлять магнитным состоянием материала. Данное явление используют с целью измерений сверхслабых магнитных полей при помощи специальных датчиков.

Криотрон - переключающее устройство на базе эффекта Мейснера. Конструктивно он состоит из двух сверхпроводников. Вокруг танталового стержня намотана катушка из ниобия, по которой протекает управляющий ток.

При увеличении управляющего тока возрастает напряженность магнитного поля, и тантал переходит из состояния сверхпроводимости в обычное состояние. При этом нелинейным образом изменяется проводимость танталового проводника и рабочий ток в контрольной цепи. На основе криотронов создают, например, управляемые вентили.