Большая энциклопедия нефти и газа. Элементарные частицы

§1. Знакомьтесь: электрон, протон, нейтрон

Атомы - мельчайшие частицы вещества.
Если увеличить до размеров Земного шара яблоко средней величины, то атомы станут размером всего лишь с яблоко. Несмотря на столь малые размеры, атом состоит из еще более мелких физических частиц.
Со строением атома вы должны быть уже знакомы из школьного курса физики. И все-таки напомним, что в составе атома есть ядро и электроны, которые вращаются вокруг ядра так быстро, что становятся неразличимыми - образуют "электронное облако", или электронную оболочку атома.

Электроны принято обозначать так: e . Электроны e − очень легкие, почти невесомые, но зато имеют отрицательный электрический заряд. Он равен −1. Электрический ток, которым все мы пользуемся - это поток электронов, бегущий в проводах.

Ядро атома , в котором сосредоточена почти вся его масса, состоит из частиц двух сортов - нейтронов и протонов.

Нейтроны обозначают так: n 0 , а протоны так: p + .
По массе нейтроны и протоны почти одинаковы - 1,675 · 10 −24 г и 1,673 · 10 −24 г.
Правда, считать массу таких маленьких частиц в граммах очень неудобно, поэтому ее выражают в углеродных единицах , каждая из которых равна 1,673 · 10 −24 г.
Для каждой частицы получают относительную атомную массу , равную частному от деления массы атома (в граммах) на массу углеродной единицы. Относительные атомные массы протона и нейтрона равны 1, а вот заряд у протонов положительный и равен +1, в то время как у нейтронов заряда нет.

. Загадки про атом


Атом можно собрать "в уме" из частиц, как игрушку или машинку из деталей детского конструктора. Надо только при этом соблюдать два важных условия.

  • Первое условие : каждому виду атомов соответствует свой собственный набор "деталей" - элементарных частиц . Например, в атоме водорода обязательно будет ядро с положительным зарядом +1, значит, в нем непременно должен быть один протон (и не больше).
    В атоме водорода могут быть и нейтроны. Об этом - в следующем параграфе .
    Атом кислорода (порядковый номер в Периодической системе равен 8) будет иметь ядро, заряженное восемью положительными зарядами (+8), - значит, там восемь протонов. Поскольку масса атома кислорода равна 16 относительных единиц, чтобы получить ядро кислорода, добавим еще 8 нейтронов.
  • Второе условие состоит в том, чтобы каждый атом оказался электронейтральным . Для этого в нем должно быть электронов столько, чтобы уравновесить заряд ядра. Иначе говоря, число электронов в атоме равно числу протонов в его ядре, а также порядковому номеру этого элемента в Периодической системе .

Многим со школы хорошо известно, что все вещества состоял из атомы. Атомы в свою очередь состоят из протонов и нейтронов образующих ядро атомы и электронов, расположенных на некотором расстоянии от ядра. Многие также слышали, что свет тоже состоит из частиц – фотонов. Однако на этом мир частиц не ограничивается. На сегодняшний день известно более 400 различных элементарных частиц. Попробуем понять, чем элементарные частицы отличаются друг от друга.

Существует множество параметров, по которым можно отличить элементарные частицы друг от друга:

  • Масса.
  • Электрический заряд.
  • Время жизни. Почти все элементарные частицы имеют конечное время жизни по истечении которого они распадаются.
  • Спин. Его можно, весьма приближенно считать как вращательный момент.

Еще несколько параметров, или как их принято называть в науке квантовых чисел. Эти параметры не всегда имеют понятный физический смысл, но они нужны для того, чтобы отличать одни частицы от других. Все эти дополнительные параметры введены как некоторые величины, сохраняющиеся во взаимодействии.

Массой обладают почти все частицы, кроме фотоны и нейтрино (по последним данным нейтрино обладают массой, но столь малой, что часто ее считают нулем). Без массовые частицы могут существуют только в движении. Масса у всех частиц различна. Минимальной массой, не считая нейтрино, обладает электрон. Частицы, которые называются мезонами обладают массой в 300-400 раз большей массы электрона, протон и нейтрон почти в 2000 раз тяжелее электрона. Сейчас уже открыты частицы, которые почти в 100 раз тяжелее протона. Масса,(или ее энергетический эквивалент по формуле Эйнштейна:

сохраняется во всех взаимодействиях элементарных частиц.

Электрическим зарядом обладают не все частицы, а значит что не все частицы способны участвовать в электромагнитном взаимодействии. У всех свободно существующих частиц электрический заряд кратен заряду электрона. Кроме свободно существующих частиц существуют также частицы, находящие только в связанном состоянии, о них мы скажем чуть позже.

Спин, как и другие квантовые числа у различных частиц различны и характеризуют их уникальность. Некоторые квантовые числа сохраняются в одних взаимодействиях, некоторые в других. Все эти квантовые числа определяют то, какие частицы взаимодействуют с какими и как.

Время жизни также очень важная характеристика частицы и ее мы рассмотрим наиболее подробно. Начнем с замечания. Как мы уже сказали в начале статьи – все что нас окружает состоит из атомов (электронов, протонов и нейтронов) и света (фотонов). А где же тогда еще сотни различных видов элементарных частиц. Ответ прост – всюду вокруг нас, но мы из не замечаем по двум причинам.

Первая из них – почти все остальные частицы живут очень мало, примерно 10 в минус 10 степени секунд и меньше, и потому не образовывают таких структур как атомы, кристаллические решетки и т.п. Вторая причина касается нейтрино, эти частицы хоть и не распадаются, но они подвержены только слабому и гравитационному взаимодействию. Это значит, что эти частицы взаимодействуют на столько незначительно, что обнаружить из почти невозможно.

Представим наглядно в чем выражается то, на сколько частица хорошо взаимодействуем. Например поток электронов можно остановить довольно тонким листом стали, порядка нескольких миллиметров. Это произойдет потому, что электроны сразу начнут взаимодействовать с частицами листа стали, будут резко менять свой направления, излучать фотоны, и таким образом довольно быстро потеряют энергию. С потоком нейтрино все не так, они почти без взаимодействий могут пройти насквозь Земного Шара. И потому обнаружить их очень тяжело.

Итак, большинство частиц живут очень короткое время, по истечении которого она распадаются. Распады частиц- наиболее часто встречающиеся реакции. В результате распада одна частица распадается на несколько других меньшей массы, а те в свою очередь распадаются дальше. Все распады подчиняются определенным правилам – законам сохранения. Так, например, в результате распада должен сохраняться электрический заряд, масса, спин и еще ряд квантовых чисел. Некоторые квантовые числа в ходе распада могут меняться, но тоже подчиняясь определенным правилам. Именно правила распада говорят нам о том, что электрон и протон это стабильные частицы. Они уже не могут распадаются подчиняясь правилам распада, и потому именно ими заканчиваются цепочки распада.

Здесь хочется сказать несколько слов о нейтроне. Свободный нейтрон тоже распадается, на протон и электрон примерно за 15 минут. Однако когда нейтрон находится в атомном ядре это не происходит. Этот факт можно объяснить различными способами. Например так, когда в ядре атома появляется электрон и лишний протон от распавшегося нейтрона, то тут же происходит обратная реакция – один из протонов поглощает электрон и превращается в нейтрон. Такая картина называется динамическим равновесием. Она наблюдалась в вселенной на ранней стадии ее развития вскоре после большого взрыва.

Кроме реакций распада есть еще реакции рассеяния – когда две или более частиц вступают во взаимодействие одновременно, и в результате получается одна или несколько других частиц. Также есть реакции поглощение, когда из двух или более частиц получается одна. Все реакции происходят в результате сильного слабого или электромагнитного взаимодействия. Реакции идущие за счет сильного взаимодействия идут быстрее всего, время такой реакции может достигать 10 в минус 20 секунды. Скорость реакций идущих за счет электромагнитного взаимодействия ниже, тут время может быть порядка 10 в минус 8 секунды. Для реакций слабого взаимодействия время может достигать десятков секунд а иногда и годы.

В завершении рассказа про частицы расскажем про кварки. Кварки – это элементарные частицы, имеющие электрический заряд кратный трети заряда электрона и которые не могут существовать в свободном состоянии. Их Взаимодействие устроено так, что они могут жить только в составе чего либо. Например комбинация из трех кварков определенного типа образуют протон. Другая комбинация дает нейтрон. Всего известно 6 кварков. Их различные комбинации дают нам разные частицы, и хотя далеко не все комбинации кварков разрешены физическими законами, частиц, составленных из кварков довольно много.

Здесь может возникнуть вопрос, как можно протон называть элементарным если он состоит из кварков. Очень просто – протон элементарен, так как его невозможно расщепить на составные части – кварки. Все частицы, которые участвуют в сильном взаимодействии состоят из кварков, и при этом являются элементарными.

Понимание взаимодействий элементарных частиц очень важно для понимания устройства вселенной. Все что происходит с макро телами есть результат взаимодействия частиц. Именно взаимодействием частиц описываются рост деревьев на земле, реакции в недрах звезд, излучение нейтронных звезд и многое другое.

Вероятности и квантовая механика >

Нейтрон (элементарная частица)

Данная статья была написана Владимиром Горунович для сайта "Викизнание", помещена на этот сайт в целях защиты информации от вандалов, а затем дополнена на этом сайте.

Полевая теория элементарных частиц, действуя в рамках НАУКИ, опирается на проверенный ФИЗИКОЙ фундамент:

  • Классическую электродинамику,
  • Квантовую механику,
  • Законы сохранения - фундаментальные законы физики.
В этом принципиальное отличие научного подхода, использованного полевой теорией элементарных частиц - подлинная теория должна строго действовать в рамках законов природы: в этом и заключается НАУКА.

Использовать не существующие в природе элементарные частицы, выдумывать не существующие в природе фундаментальные взаимодействия, или подменять существующие в природе взаимодействия сказочными, игнорировать законы природы, занимаясь математическими манипуляциями над ними (создавая видимость науки) - это удел СКАЗОК, выдаваемых за науку . В итоге физика скатывалась в мир математических сказок.

    1 Радиус нейтрона
    2 Магнитный момент нейтрона
    3 Электрическое поле нейтрона
    4 Масса покоя нейтрона
    5 Время жизни нейтрона
    6 Новая физика: Нейтрон (элементарная частица) - итог

Нейтрон - элементарная частица квантовое число L=3/2 (спин = 1/2) - группа барионов, подгруппа протона, электрический заряд +0 (систематизация по полевой теории элементарных частиц).

Согласно полевой теории элементарных частиц (теории - построенной на научном фундаменте и единственной получившей правильный спектр всех элементарных частиц), нейтрон состоит из вращающегося поляризованного переменного электромагнитного поля с постоянной составляющей. Все голословные утверждения Стандартной модели о том, что нейтрон якобы состоит из кварков, не имеют ничего общего с действительностью . - Физика экспериментально доказала, что нейтрон обладает электромагнитными полями (нулевая величина суммарного электрического заряда, еще не означает отсутствие дипольного электрического поля, что косвенно вынуждена была признать даже Стандартная модель, введя электрические заряды у элементов структуры нейтрона), и еще гравитационным полем. О том, что элементарные частицы не просто обладают - а состоят из электромагнитных полей, физика гениально догадалась еще 100 лет назад, но вот построить теорию никак не удавалось до 2010 года. Теперь в 2015 году появилась еще и теория гравитации элементарных частиц, установившая электромагнитную природу гравитации и получившая уравнения гравитационного поля элементарных частиц, отличные от уравнений гравитации, на основании которых была построена не одна математическая сказка в физике.

Структура электромагнитного поля нейтрона (E-постоянное электрическое поле,H-постоянное магнитное поле, желтым цветом отмечено переменное электромагнитное поле).

Энергетический баланс (процент от всей внутренней энергии):

  • постоянное электрическое поле (E) - 0,18%,
  • постоянное магнитное поле (H) - 4,04%,
  • переменное электромагнитное поле - 95,78%.
Наличие мощного постоянного магнитного поля объясняет обладание нейтроном ядерными силами. Структура нейтрона приведена на рисунке.

Несмотря на нулевой электрический заряд, нейтрон обладает дипольным электрическим полем.

1 Радиус нейтрона

Полевая теория элементарных частиц определяет радиус (r) элементарной частицы как расстояние от центра до точки в которой достигается максимум плотности массы.

Для нейтрона это будет 3,3518 ∙10 -16 м. К этому надо добавить еще толщину слоя электромагнитного поля 1,0978 ∙10 -16 м.

Тогда получится 4,4496 ∙10 -16 м. Таким образом, внешняя граница нейтрона должна находиться от центра на расстоянии более 4,4496 ∙10 -16 м. Получилась величина почти равная радиусу протона и это не удивительно. Радиус элементарной частицы определяется квантовым числом L и величиной массы покоя. У обеих частиц одинаковый набор квантовых чисел L и M L , а массы покоя незначительно отличаются.

2 Магнитный момент нейтрона

В противовес квантовой теории полевая теория элементарных частиц утверждает, что магнитные поля элементарных частиц не создаются спиновым вращение электрический зарядов, а существуют одновременно с постоянным электрическим полем как постоянная составляющая электромагнитного поля. Поэтому магнитные поля есть у всех элементарных частиц с квантовым числом L>0.

Полевая теория элементарных частиц не считает магнитный момент нейтрона аномальным - его величина определяется набором квантовых чисел в той степени, в какой квантовая механика работает в элементарной частице.

Так магнитный момент нейтрона создается током:

  • (0) с магнитным моментом -1 eħ/m 0n c
Далее умножаем его на процент энергии переменного электромагнитного поля нейтрона разделенный, на 100 процентов, и переводим в ядерные магнетоны. При этом не следует забывать, что ядерные магнетоны учитывают массу протона (m 0p), а не нейтрона (m 0n), так что полученный результат надо умножить на отношение m 0p /m 0n . В итоге получим 1,91304.

3 Электрическое поле нейтрона

Несмотря на нулевой электрический заряд, согласно полевой теории элементарных частиц у нейтрона должно быть постоянное электрическое поле. У электромагнитного поля, из которого состоит нейтрон, имеется постоянная составляющая, а, следовательно, у нейтрона должны быть постоянное магнитное поле и постоянное электрическое поле. Поскольку электрический заряд равен нулю то постоянное электрическое поле будет дипольным. То есть у нейтрона должно быть постоянное электрическое поле аналогичное полю двух распределенных параллельных электрических зарядов равных по величине и противоположного знака. На больших расстояниях электрическое поле нейтрона будет практически незаметно из-за взаимной компенсации полей обоих знаков заряда. Но на расстояниях порядка радиуса нейтрона это поле будет оказывать существенное влияние на взаимодействия с другими элементарными частицами близких по размерам. Это, прежде всего, касается взаимодействия в атомных ядрах нейтрона с протоном и нейтрона с нейтроном. Для нейтрон - нейтронного взаимодействия это будут силы отталкивания при одинаковом направлении спинов и силы притяжения при противоположном направлении спинов. Для нейтрон - протонного взаимодействия знак силы зависит не только от ориентации спинов, но еще и от смещения между плоскостями вращения электромагнитных полей нейтрона и протона.
Итак, у нейтрона должно быть дипольное электрическое поле двух распределенных параллельных симметричных кольцевых электрических зарядов (+0.75e и -0.75e), среднего радиуса , расположенных на расстоянии

Электрический дипольный момент нейтрона (согласно полевой теории элементарных частиц) равен:

где ħ - постоянная Планка, L - главное квантовое число в полевой теории элементарных частиц, e - элементарный электрический заряд, m 0 - масса покоя нейтрона, m 0~ - масса покоя нейтрона, заключенная в переменном электромагнитном поле, c - скорость света, P - вектор электрического дипольного момента (перпендикулярен плоскости нейтрона, проходит через центр частицы и направлен в сторону положительного электрического заряда), s - среднее расстояние между зарядами, r e - электрический радиус элементарной частицы.

Как видите, электрические заряды близки по величине к зарядам предполагаемых кварков (+2/3e=+0.666e и -2/3e=-0.666e) в нейтроне, но в отличие от кварков, электромагнитные поля в природе существуют, и аналогичной структурой постоянного электрического поля обладает любая нейтральная элементарная частица, независимо от величины спина и... .

Потенциал электрического дипольного поля нейтрона в точке (А) (в ближней зоне 10s > r > s приблизительно), в системе СИ равен:

где θ - угол между вектором дипольного момента P и направлением на точку наблюдения А, r 0 - нормировочный параметр равный r 0 =0.8568Lħ/(m 0~ c), ε 0 - электрическая постоянная, r - расстояние от оси (вращения переменного электромагнитного поля) элементарной частицы до точки наблюдения А, h - расстояние от плоскости частицы (проходящей через ее центр) до точки наблюдения А, h e - средняя высота расположения электрического заряда в нейтральной элементарной частице (равна 0.5s), |...| - модуль числа, P n - величина вектора P n . (В системе СГС отсутствует множитель .)

Напряженность E электрического дипольного поля нейтрона (в ближней зоне 10s > r > s приблизительно), в системе СИ равна:

где n =r /|r| - единичный вектор из центра диполя в направлении точки наблюдения (А), точкой (∙) обозначено скалярное произведение, жирным шрифтом выделены вектора. (В системе СГС отсутствует множитель .)

Компоненты напряженности электрического дипольного поля нейтрона (в ближней зоне 10s>r>s приблизительно) продольная (| |) (вдоль радиус-вектора, проведенного от диполя в данную точку) и поперечная (_|_) в системе СИ:

Где θ - угол между направлением вектора дипольного момента P n и радиус-вектором в точку наблюдения (в системе СГС отсутствует множитель ).

Третья компонента напряженности электрического поля - ортогональная плоскости, в которой лежат вектор дипольного момента P n нейтрона и радиус-вектор, - всегда равна нулю.

Потенциальная энергия U взаимодействия электрического дипольного поля нейтрона (n) с электрическим дипольным полем другой нейтральной элементарной частицы (2) в точке (А) в дальней зоне (r>>s), в системе СИ равна:

где θ n2 - угол между векторами дипольных электрических моментов P n и P 2 , θ n - угол между вектором дипольного электрического момента P n и вектором r , θ 2 - угол между вектором дипольного электрического моментаP 2 и вектором r , r - вектор из центра дипольного электрического момента p n в центр дипольного электрического момента p 2 (в точку наблюдения А). (В системе СГС отсутствует множитель )

Нормировочный параметр r 0 вводится с целью уменьшения отклонения значения E, от рассчитанного с помощью классической электродинамики и интегрального исчисления в ближней зоне. Нормировка происходит в точке, лежащей в плоскости параллельной плоскости нейтрона, удаленной от центра нейтрона на расстояние (в плоскости частицы) и со смещением по высоте на h=ħ/2m 0~ c, где m 0~ - величина массы заключенной в переменном электромагнитном поле покоящегося нейтрона (для нейтрона m 0~ = 0.95784 m. Для каждого уравнения параметр r 0 рассчитывается самостоятельно. В качестве приблизительного значения можно взять полевой радиус:

Из всего вышесказанного следует, что электрическое дипольное поле нейтрона (о существовании которого в природе, физика 20 века и не догадывалась), согласно законам классической электродинамики, будет взаимодействовать с заряженными элементарными частицами .

4 Масса покоя нейтрона

В соответствии с классической электродинамикой и формулой Эйнштейна, масса покоя элементарных частиц с квантовым числом L>0, в том числе и нейтрона, определяется как эквивалент энергии их электромагнитных полей:

где определенный интеграл берется по всему электромагнитному полю элементарной частицы, E - напряженность электрического поля, H - напряженность магнитного поля. Здесь учитываются все компоненты электромагнитного поля: постоянное электрическое поле (которое у нейтрона есть), постоянное магнитное поле, переменное электромагнитное поле. Эта маленькая, но очень емкая для физики формула, на основании которой получены уравнения гравитационного поля элементарных частиц, отправит в утиль не одну сказочную "теорию" - поэтому ее возненавидят некоторые их авторы.

Как следует из приведенной формулы, величина массы покоя нейтрона зависит от условий, в которых нейтрон находится . Так поместив нейтрон в постоянное внешнее электрическое поле (например, атомное ядро), мы повлияем на E 2 , что отразится на массе нейтрона и его стабильности. Аналогичная ситуация возникнет при помещении нейтрона в постоянное магнитное поле. Поэтому некоторые свойства нейтрона внутри атомного ядра, отличаются от тех же свойств свободного нейтрона в вакууме, вдали от полей.

5 Время жизни нейтрона

Установленное физикой время жизни 880 секунд соответствует свободному нейтрону.

Полевая теория элементарных частиц утверждает, что время жизни элементарной частицы зависит от условий, в которых она находится. Поместив нейтрон во внешнее поле (например, магнитное) мы изменяем энергию, содержащуюся в его электромагнитном поле. Можно выбрать направление внешнего поля так, чтобы внутренняя энергия нейтрона уменьшилась. В результате при распаде нейтрона выделится меньше энергии, что затруднит распад и увеличит время жизни элементарной частицы. Можно подобрать такую величину напряженности внешнего поля, что распад нейтрона будет требовать дополнительной энергии и, следовательно, нейтрон станет стабильным. Именно это наблюдается в атомных ядрах (например, дейтерия), в них магнитное поле соседних протонов не допускает распад нейтронов ядра. В прочем при внесении в ядро дополнительной энергии распады нейтронов вновь могут стать возможными.

6 Новая физика: Нейтрон (элементарная частица) - итог

Стандартная модель (опущенная в данной статье, но которая в 20 веке претендовала на истину) утверждает, что нейтрон является связанным состоянием трёх кварков: одного "верхнего" (u) и двух "нижних" (d) кварков (предполагаемая кварковая структура нейтрона: udd). Поскольку наличие кварков в природе экспериментально не доказано, электрический заряд, равный по величине заряду гипотетических кварков в природе не обнаружен, а имеются лишь косвенные свидетельства, которые можно интерпретировать как наличие следов кварков в некоторых взаимодействиях элементарных частиц, но можно и интерпретировать иначе, то утверждение Стандартной модели, что нейтрон обладает кварковой структурой остается всего лишь бездоказательным предположением. Любая модель, в том числе и Стандартная вправе предположить любую структуру элементарных частиц включая нейтрона, но пока на ускорителях не будут обнаружены соответствующие частицы, из которых якобы состоит нейтрон, утверждение модели следует считать не доказанным.

Стандартная модель, описывая нейтрон, вводит не найденные в природе кварки с глюонами (глюоны тоже никто не нашел), не существующие в природе поля и взаимодействия и вступает в противоречие с законом сохранения энергии;

Полевая теория элементарных частиц (Новая физика) описывает нейтрон исходя из существующих в природе полей и взаимодействий в рамках, действующих в природе законов - в этом и заключается НАУКА.

Владимир Горунович

Как только случается встретиться с неизвестным предметом, так обязательно возникает меркантильно-житейский вопрос - а сколько это весит. А вот если это неизвестное - элементарная частица, что тогда? А ничего, вопрос остается прежним: какая же масса этой частицы. Если бы кто-то занялся подсчетом затрат, понесенных человечеством для удовлетворения своего любопытства на исследования, точнее, измерения, массы элементарных частиц, то мы бы узнали, что, например, масса нейтрона в килограммах с умопомрачительным количеством нулей после запятой, обошлось человечеству дороже, чем самое дорогое строительство с таким же количеством нулей до запятой.

А начиналось все очень буднично: в руководимой Дж. Дж.Томсоном лаборатории в 1897 г. проводились исследования катодных лучей. В результате была определена универсальная константа для Вселенной - величина отношения массы электрона к его заряду. До определения массы электрона осталось совсем немного - определить его заряд. Через 12 лет сумел это сделать. Он проводил эксперименты с падающими в электрическом поле капельками масла, и ему удалось не только уравновесить их вес величиной поля, но и провести необходимые и чрезвычайно тонкие измерения. Их результат - численное значение массы электрона:

me = 9,10938215(15) * 10-31кг.

К этому времени относятся и исследования структуры где первопроходцем был Эрнест Резерфорд. Именно он, наблюдая за рассеянием заряженных частиц, предложил модель атома с внешней электронной оболочкой и положительным ядром. Частица, которой в была предложена роль ядра простейшего атома, получалась при бомбардировке азота Это была первая ядерная реакция, полученная в лаборатории - в ее результате из азота получался кислород и ядра будущих названных протонами. Однако, альфа-лучи состоят из сложных частиц: кроме двух протонов они содержат еще два нейтрона. Масса нейтрона почти равна и общая масса альфа-частицы получается вполне солидной для того, чтоб разрушить встречное ядро и отколоть от него «кусочек», что и случилось.

Поток положительных протонов отклонялся электрическим полем, компенсируя его отклонение, вызываемое В этих экспериментах определить массу протона уже не составляло труда. Но самым интересным был вопрос о том, какое соотношение имеют масса протона и электрона. Загадка была тут же решена: масса протона превышает массу электрона чуть больше, чем 1836 раз.

Итак, первоначально, модель атома предполагалась, по Резерфорду, как электронно-протонный комплект с одинаковым числом протонов и электронов. Однако совсем скоро оказалось, что первичная ядерная модель не полностью описывает все наблюдаемые эффекты по взаимодействиям элементарных частиц. Только в 1932 году подтвердил гипотезу о дополнительных частицах в составе ядра. Их назвали нейтронами, нейтральными протонами, т.к. они не имели заряда. Именно это обстоятельство обуславливает их большую проникающую способность - они не расходуют свою энергию на ионизацию встречных атомов. Масса нейтрона совсем незначительно превышает массу протона - всего примерно на 2,6 электронных массы больше.

Химические свойства веществ и соединений, которые образуются данным элементом, определяются числом протонов в ядре атома. Со временем подтвердилось участие протона в сильных и других фундаментальных взаимодействиях: электромагнитном, гравитационном и слабом. При этом, несмотря на то, что заряд нейтрона отсутствует, при сильных взаимодействиях протон и нейтрон рассматривают как элементарную частицу нуклон в различных квантовых состояниях. Отчасти сходство поведения этих частиц объясняется и тем, что масса нейтрона очень мало отличается от массы протона. Стабильность протонов позволяет использовать их, предварительно ускорив до высоких скоростей, в качестве бомбардирующих частиц для осуществления ядерных реакций.

Размеры и массы атомов малы. Радиус атомов составляет 10 -10 м, а радиус ядра – 10 -15 м. Масса атома определяется делением массы одного моль атомов элемента на число атомов в 1 моль (N A = 6,02·10 23 моль -1). Масса атомов изменяется в пределах 10 -27 ~ 10 -25 кг. Обычно массу атомов выражают в атомных единицах массы (а.е.м.). За а.е.м. принята 1/12 массы атома изотопа углерода 12 С.

Основными характеристиками атома являются заряд его ядра (Z) и массовое число (А). Число электронов в атоме равно заряду его ядра. Свойства атомов определяются зарядом их ядер, числом электронов и их состоянием в атоме.

Основные свойства и строение ядра (теория состава атомных ядер)

1. Ядра атомов всех элементов (за исключением водорода) состоят из протонов и нейтронов.

2.Число протонов в ядре определяет значение его положительного заряда (Z). Z - порядковый номер химического элемента в периодической системе Менделеева.

3. Суммарное число протонов и нейтронов - значение его массы, так как масса атома в основном сосредоточена в ядре (99, 97% массы атома). Ядерные частицы - протоны и нейтроны - объединяются под общим названием нуклоны (от латинского слова nucleus, что означает “ядро”). Общее число нуклонов соответствует - массовому числу, т.е. округленной до целого числа его атомной массе А.

Ядра с одинаковыми Z , но различными А называются изотопами . Ядра, которые при одинаковом А имеют различные Z , называются изобарами . Всего известно около 300 устойчивых изотопов химических элементов и более 2000 естественных и искусственно полученных радиоактивных изотопов

4. Число нейтронов в ядре N может быть найдено по разности между массовым числом (А ) и порядковым номером (Z ):

5. Размер ядра характеризуется радиусом ядра , имеющим условный смысл ввиду размытости границы ядра.

Плотность ядерного вещества составляет по порядку величины 10 17 кг/м 3 и постоянна для всех ядер. Она значительно превосходит плотности самых плотных обычных веществ.

Протонно-нейтронная теория позволила разрешить возникшие ранее противоречия в представлениях о составе атомных ядер и о его связи с порядковым номером и атомной массой.

Энергия связи ядра определяется величиной той работы, которую нужно совершить, чтобы расщепить ядро на составляющие его нуклоны без придания им кинетической энергии. Из закона сохранения энергии следует, что при образовании ядра должна выделяться такая же энергия, какую нужно затратить при расщеплении ядра на составляющие его нуклоны. Энергия связи ядра является разностью между энергией всех свободных нуклонов, составляющих ядро, и их энергией в ядре.

При образовании ядра происходит уменьшение его массы: масса ядра меньше, чем сумма масс составляющих его нуклонов. Уменьшение массы ядра при его образовании объясняется выделением энергии связи. Если W св- величина энергии, выделяющейся при образовании ядра, то соответствующая ей масса Dm, равная

называется дефектом массы и характеризует уменьшение суммарной массы при образовании ядра из составляющих его нуклонов. Одной атомной единице массы соответствует атомная единица энергии (а.е.э.): а.е.э.=931,5016 МэВ.

Удельной энергией связи ядра w свназывается энергия связи, приходящаяся на один нуклон: w св= . Величина w свсоставляет в среднем 8 МэВ/нуклон. По мере увеличения числа нуклонов в ядре удельная энергия связи убывает.

Критерием устойчивости атомных ядер является соотношение между числом протонов и нейтронов в устойчивом ядре для данных изобаров. (А = const).

Ядерные силы

1. Ядерное взаимодействие свидетельствует о том, что в ядрах существуют особые ядерные силы , не сводящиеся ни к одному из типов сил, известных в классической физике (гравитационных и электромагнитных).

2. Ядерные силы являются короткодействующими силами. Они проявляются лишь на весьма малых расстояниях между нуклонами в ядре порядка 10-15 м. Длина (1,5ј2,2)10-15 мназывается радиусом действия ядерных сил .

3. Ядерные силы обнаруживают зарядовую независимость : притяжение между двумя нуклонами одинаково независимо от зарядового состояния нуклонов - протонного или нуклонного. Зарядовая независимость ядерных сил видна из сравнения энергий связи в зеркальных ядрах . Так называются ядра, в которых одинаково общее число нуклонов, но число протонов в одном равно числу нейтронов в другом. Например, ядра гелия тяжелого водорода трития - .

4. Ядерные силы обладают свойством насыщения, которое проявляется в том, что нуклон в ядре взаимодействует лишь с ограниченным числом ближайших к нему соседних нуклонов. Именно поэтому наблюдается линейная зависимость энергий связи ядер от их массовых чисел (А). Практически полное насыщение ядерных сил достигается у a-частицы, которая является очень устойчивым образованием.

Радиоактивность, g -излучение, a и b - распад

1. Радиоактивностью называется превращение неустойчивых изотопов одного химического элемента в изотопы другого элемента, сопровождающееся испусканием элементарных частиц, ядер или жесткого рентгеновского излучения. Естественной радиоактивностью называется радиоактивность, наблюдающаяся у существующих в природе неустойчивых изотопов. Искусственной радиоактивностью называется радиоактивность изотопов, полученных в результате ядерных реакций.

2. Обычно все типы радиоактивности сопровождаются испусканием гамма-излучения - жесткого, коротковолнового электроволнового излучения. Гамма-излучение является основной формой уменьшения энергии возбужденных продуктов радиоактивных превращений. Ядро, испытывающее радиоактивный распад, называется материнским ; возникающее дочернее ядро, как правило, оказывается возбужденным, и его переход в основное состояние сопровождается испусканием g-фотона.

3. Альфа-распадом называется испускание ядрами некоторых химических элементов a - частиц. Альфа-распад является свойством тяжелых ядер с массовыми числами А >200 и зарядами ядер Z >82. Внутри таких ядер происходит образование обособленных a-частиц, состоящих каждая из двух протонов и двух нейтронов, т.е. образуется атом элемента, смещенного в таблице периодической системы элементов Д.И. Менделеева (ПСЭ) на две клеточки влево от исходного радиоактивного элемента с массовым числом меньшим не 4 единицы (правило Содди – Фаянса):

4. Термином бета-распад обозначают три типа ядерных превращений: электронный (b-) и позитронный (b+) распады, а также электронный захват .

b- распад происходит преимущественно у сравнительно богатых нейтронами ядер. При этом нейтрон ядра распадается на протон, электрон и антинейтрино () с нулевым зарядом и массой.

При b- распаде массовое число изотопа не изменяется, так как общее число протонов и нейтронов сохраняется, а заряд увеличивается на 1. Поэтому, атом образовавшегося химического элемента смещается ПСЭ на одну клеточку вправо от исходного элемента, а его массовое число не изменяется (правило Содди – Фаянса):

b+- распад происходит преимущественно у относительно богатых протонами ядер. При этом протон ядра распадается на нейтрон, позитрон и нейтрино ().

.

При b+- распаде массовое число изотопа не изменяется, так как общее число протонов и нейтронов сохраняется, а заряд уменьшается на 1. Поэтому, атом образовавшегося химического элемента смещается ПСЭ на одну клеточку влево от исходного элемента, а его массовое число не изменяется (правило Содди – Фаянса):

5. В случае электронного захвата превращение заключается в том, что исчезает один из электронов в ближайшем к ядру слое. Протон, превращаясь в нейтрон, как бы “захватывает” электрон; отсюда произошел термин ”электронный захват”. Электронный захват в отличие от b±-захвата сопровождается характеристическим рентгеновским излучением.

6. b--распад происходит у естественно-радиоактивных, а также искусственно-радиоактивных ядер; b+-распад характерен только для явления искусственной радиоактивности.

7. g- излучение: при возбуждении ядро атома испускает электромагнитное излучение с малой длиной волны и высокой частотой, обладающее большой жесткостью и проникающей способностью, чем рентгеновское излучение. В результате энергия ядра уменьшается, а массовое число и заряд ядра остаются не низменными. Поэтому превращение химического элемента в другой не наблюдается, а ядро атома переходит в менее возбужденное состояние.