Что такое графен. Графен: мифы и реальность

Графе́н (англ. graphene) - двумерная аллотропная модификация углерода, слой атомов углерода толщиной в один атом соединяется посредством sp² связей в гексагональную двумерную кристаллическую решётку. Его можно представить как одну плоскость графита, отделённую от объёмного кристалла. Графен обладает большой механической жёсткостью и хорошей теплопроводностью. Высокая подвижность носителей заряда делает его перспективным материалом для использования в самых различных приложениях, в частности, как будущую основу наноэлектроники и возможную замену кремния в интегральных микросхемах.

Основным из существующих в настоящее время способов получения графена, в условиях научных лабораторий основан на механическом отщеплении или отшелушивании слоёв графита. Он позволяет получать наиболее качественные образцы с высокой подвижностью носителей. Этот метод не предполагает использования масштабного производства, поскольку это ручная процедура.

Другой известный способ - метод термического разложения подложки карбида кремния гораздо ближе к промышленному производству. Поскольку графен впервые был получен только в 2004 году, он ещё недостаточно хорошо изучен и привлекает к себе повышенный интерес.

Из-за особенностей энергетического спектра носителей графен проявляет специфические, в отличие от других двумерных систем, электрофизические свойства.

История открытия

Первооткрывателям графена, А. К. Гейму и К. С. Новосёлову, была присуждена Нобелевская премия по физике за 2010 год.

Графен является двумерным кристаллом, состоящим из одиночного слоя атомов углерода, собранных в гексагональную решётку.

Рис. 1. Идеальная кристаллическая структура графена представляет собой гексагональную кристаллическую решётку.

Теоретические исследования по созданию графена начались задолго до получения реальных образцов материала. Из графена можно собрать трёхмерный кристалл графита, поэтому графен является базой для построения теории этого кристалла. Графит является полуметаллом, и как было показано в 1947 году П. Воллесом, в зонной структуре графена также отсутствует запрещённая зона, причём в точках соприкосновения валентной зоны и зоны проводимости энергетический спектр электронов и дырок линеен как функция волнового вектора. Такого рода спектром обладают безмассовые фотоны и ультрарелятивистские частицы, а также нейтрино. Поэтому говорят, что эффективная масса электронов и дырок в графене вблизи точки соприкосновения зон равна нулю. Но здесь стоит заметить, что, несмотря на сходство фотонов и безмассовых носителей, в графене существует несколько существенных различий, делающих носители в графене уникальными по своей физической природе, а именно: электроны и дырки являются фермионами, и они заряжены. В настоящее время аналогов для этих безмассовых заряженных фермионов среди известных элементарных частиц нет.

Несмотря на такие специфические особенности, экспериментального подтверждения эти выводы не получили до 2005 года, поскольку не удавалось создать графен. Кроме того, ещё раньше было доказано теоретически, что свободную идеальную двумерную плёнку получить невозможно из-за нестабильности относительно сворачивания или скручивания. Тепловые флуктуации приводят к плавлению двумерного кристалла при любой конечной температуре.

Интерес к графену появился снова после открытия углеродных нанотрубок, поскольку вся первоначальная теория строилась на простой модели нанотрубки как развёртки цилиндра. Поэтому теория для графена в приложении к нанотрубкам хорошо проработана.

Попытки получения графена, прикреплённого к другому материалу, начались с экспериментов, использующих простой карандаш, и продолжились с использованием атомно-силового микроскопа для механического удаления слоёв графита, но не достигли успеха. Использование графита с внедрёнными (интеркалированный графит) в межплоскостное пространство чужеродными атомами (используется для увеличения расстояния между соседними слоями и их расщепления) также не привело к результату.

В 2004 году российскими и британскими учёными была опубликована работа в журнале Science, где сообщалось о получении графена на подложке окисленного кремния. Таким образом, стабилизация двумерной плёнки достигалась благодаря наличию связи с тонким слоем диэлектрика . Впервые были измерены проводимость, эффект Шубникова - де Гааза, эффект Холла для образцов, состоящих из плёнок углерода с атомарной толщиной.

Эффект Шубникова - де Гааза назван в честь советского физика Л. В. Шубникова и нидерландского физика В. де Хааза, открывших его в 1930 году.

Наблюдаемый эффект заключался в осцилляциях магнетосопротивления плёнок висмута при низких температурах. Позже эффект Шубникова - де Гааза наблюдали в многих других металлах и полупроводниках. Эффект Шубникова - де Гааза используется для определения тензора эффективной массы и формы поверхности Ферми в металлах и полупроводниках.

Термины продольный и поперечный эффекты Шубникова - де Гааза вводят, чтобы различать ориентацию магнитного поля относительно направления течения электрического тока. Особый интерес заслуживает поперечный эффект Шубникова - де Гааза в двумерном электронном газе.

Причина возникновения осцилляций проводимости и сопротивления кроется в особенностях энергетического спектра двумерном электронном газе, а именно здесь речь идёт об уровнях Ландау с энергиями

где - постоянная Планка,

Циклотронная частота осциллятора Ландау,

m * - эффективная масса электрона,

n - номер уровня Ландау,

c - скорость света,

Метод отшелушивания является довольно простым и гибким, поскольку позволяет работать со всеми слоистыми кристаллами, то есть теми материалами, которые представляются как слабо (по сравнению с силами в плоскости) связанные слои двумерных кристаллов. Его можно использовать для получения других двумерных кристаллов: , , и др.

Получение графена

Рис. 2. Слои интеркалированного графита можно отделять друг от друга

Кусочки графена получают при механическом воздействии на высокоориентированный пиролитический графит. Сначала плоские куски графита помещают между липкими лентами (скотч) и отщепляют раз за разом создавая достаточно тонкие слои (среди многих плёнок могут попадаться однослойные и двуслойные, которые и представляют интерес). После отшелушивания скотч с тонкими плёнками графита прижимают к подложке окисленного кремния. При этом трудно получить плёнку определённого размера и формы в фиксированных частях подложки (горизонтальные размеры плёнок составляют обычно около 10 мкм). Найденные с помощью оптического микроскопа (они слабо видны при толщине диэлектрика 300 нм) плёнки подготавливают для измерений. Толщину можно определить с помощью атомно-силового микроскопа (она может варьироваться в пределах 1 нм для графена). Используя стандартную электронную литографию и реактивное плазменное травление, задают форму плёнки для электрофизических измерений.

Кусочки графена также можно приготовить из графита используя химические методы. Меняя органические растворители и химикаты, можно получить нанометровые слои графита. Выращивание графена при высоком давлении и температуре можно использовать для получения плёнок большой площади.

Если кристалл пиролитического графита и подложку поместить между электродами, можно добиться того, что кусочки графита с поверхности, среди которых могут оказаться плёнки атомарной толщины, под действием электрического поля могут перемещаться на подложку окисленного кремния. Для предотвращения пробоя (между электродами прикладывали напряжение от 1 до 13 кВ) между электродами также помещали тонкую пластину слюды.

Идеальный графен состоит исключительно из шестиугольных ячеек. Присутствие пяти- и семиугольных ячеек будет приводить к различного рода дефектам. Наличие пятиугольных ячеек приводит к сворачиванию атомной плоскости в конус. Структура с 12 такими дефектами одновременно известна под названием фуллерен . Присутствие семиугольных ячеек приводит к образованию седловидных искривлений атомной плоскости. Комбинация этих дефектов и нормальных ячеек может приводить к образованию различных форм поверхности.

Возможные области применения графена

Считается, что на основе графена можно сконструировать баллистический транзистор. В марте 2006 года группа исследователей из технологического института штата Джорджии заявила, что ими был получен полевой транзистор на графене, а также квантово-интерференционный прибор. Исследователи полагают, что благодаря их достижениям в скором времени появится новый класс графеновой наноэлектроники с базовой толщиной транзисторов до 10 нм. Данный транзистор обладает большим током утечки, то есть нельзя разделить два состояния с закрытым и открытым каналом.

Использовать напрямую графен при создании полевого транзистора без токов утечки не представляется возможным благодаря отсутствию запрещённой зоны в этом материале, поскольку нельзя добиться существенной разности в сопротивлении при любых приложенных напряжениях к затвору, то есть не получается задать два состояния пригодных для двоичной логики: проводящее и непроводящее. Сначала нужно создать каким-нибудь образом запрещённую зону достаточной ширины при рабочей температуре (чтобы термически возбуждённые носители давали малый вклад в проводимость). Один из возможных способов основан на создании тонкой полоски графена с такой шириной, чтобы благодаря квантово-размерному эффекту ширина запрещённой зоны была достаточной для перехода в диэлектрическое состояние (закрытое состояние) прибора при комнатной температуре (28 мэВ соответствует ширине полоски 20 нм). Благодаря высокой подвижности быстродействие такого транзистора будет заметно выше, чем кремниевого.создаёт уровень близко к точке электронейтральности. В общем случае примеси, молекулы которых имеют магнитный момент (неспаренный электрон), обладают более сильными легирующими свойствами.

Ещё одна перспективная область применения графена - его использование для изготовления электродов в ионисторах (суперконденсаторах) для использования их в качестве перезаряжаемых источников тока . Опытные образцы ионисторов на графене уже имеют удельную энергоёмкость, сравнимую с энергоемкостью свинцово-кислотными аккумуляторамии.

Недавно был создан новый тип светодиодов на основе графена (LEC).

Идеальную двумерную плёнку в свободном состоянии нельзя получить из-за её термодинамической нестабильности. Но если в плёнке будут дефекты или она будет деформирована в пространстве (в третьем измерении), то такая «неидеальная» плёнка может существовать без контакта с подложкой. В эксперименте с использованием просвечивающего электронного микроскопа было показано, что свободные плёнки графена существуют и образуют поверхность сложной волнистой формы, с латеральными размерами пространственных неоднородностей около 5-10 нм и высотой 1 нм. В статье было показано, что можно создать свободную от контакта с подложкой плёнку, закреплённую с двух краёв, образуя, таким образом, наноэлектромеханическую систему. В данном случае подвешенный графен можно рассматривать как мембрану, изменение частоты механических колебаний которой предлагается использовать для детектирования массы, силы и заряда, то есть использовать в качестве высокочувствительного сенсора .

Графен (G) представляет революционный материал, который открывает широкие перспективы. Это самый электропроводящий, легкий и прочный вариант углеродного соединения. G — был открыт Андреем Геймом и Константином Новоселовым, которые работают в Университете Манчестера. Русских ученых за это открытие наградили Нобелевской премией. На исследование свойств графена только на сегодняшний день выделено свыше десяти миллиардов долларов.

Ученые предполагают, что он может стать превосходной заменой кремнию, в особенности в полупроводниковой промышленности. Неслучайно его называют «материалом будущего». Несмотря на «молодость» графена, исследователи находят все новые свойства графена, которые открывают перед человечеством невероятное окно возможностей.

Что это графен

G — представляет двумерную модификацию углерода, в которой атомы объединены в гексагональную кристаллическую решетку, а его толщина составляет всего один атом.

При этом материал обладает уникальными свойствами:

  • Рекордно большая теплопроводность.
  • Большая механическая жесткость, он прочнее стали в сотни раз.
  • Высокая гибкость.
  • Большая электропроводимость.
  • Его температура плавления находится выше 3000 градусов.
  • Непроницаемость для большинства газов и жидкостей.
  • Прозрачность.

Если сложить 3-и миллиона листов графена, то можно получить толщину порядка 1 мм.

Чтобы объяснить самым простым способом, что такое G , можно сказать: данный материал состоит из мягкого слоистого материала, используемого в грифелях. Однако графен, в отличие от графита, имеет иную структуру. Так же, как графит и алмаз являются формами углерода, они существенно кардинально отличаются по прочности. Так и графен очень твердый в виду того, что его атомы имеют гексагональное расположение.

Чудеса начинаются, когда начинается выделение графена из графита. Благодаря толщине в один атом он представляет первый 2D-материал из когда-либо обнаруженных. К тому же он обладает многочисленными полезными и удивительными свойствами. Сегодня не существует такой области применения, где графен не был бы интересен. Именно поэтому проводятся многочисленные интенсивные исследования, которые направлены на изучение сфер, где потенциально можно было бы внедрить указанный материал. Для ученых открываются невероятные возможности, ведь G особенно широко можно использовать в развитии технологий и науки.

Устройство

Начиная с 2004 года, когда новейший наноматериал был открыт, ученые смогли освоить целый спектр методов его получения. Но основными из них являются следующие способы:

  • Химическое перофазное охлаждение, то есть CVD-процесс.
  • Эпитаксиальный рост в вакууме.
  • Механическая эксфолиация.

Последний метод является наиболее простым. Создание графена при помощи механической эксфолиации осуществляется следующим образом:

  • Выполняется нанесение специального графита на специальную клейкую поверхность изоляционной ленты.
  • Затем основу, словно лист бумаги, начинают разгибать и сгибать, отделяя необходимый материал.

При использовании указанного способа G получается наиболее высокого качества. Но подобные действия не подойдут для массового производства, указанного наноматериала.

При применении метода эпитаксиального роста:

  • Используют тонкие кремниевые пластины, у которых поверхностный слой состоит из карбида кремния.
  • Затем данный материал нагревают при весьма высокой температуре, достигающей 1000 К.
  • Вследствие химической реакции осуществляется отделение атомов кремния от атомов углерода, при этом первые испаряются. На пластинке остается лишь чистый G .

Среди минусов данного метода можно отметить необходимость применения высоких температур, при которых обеспечивается сгорание атомов углерода.

Наиболее простым и надежным способом, который применяется для массового производства графена, считается CVD-процесс. Данный метод представляет способ, при котором протекает химическая реакция между углеводородными газами и металлическим покрытием-катализатором.

В результате указанных методов получается двумерная аллотропная модификация углерода, которая образована слоем атомов углерода толщиной в один атом, которые соединены в гексагональную двумерную кристаллическую решетку посредством σ- и π-связей. Носители заряда графена обладают высокой подвижностью, самой большой среди всех известных материалов. Благодаря этому G является перспективным материалом для возможной замены кремния в интегральных микросхемах и будущей основы нано электроники.

Применения и особенности

Рынок применения графена непосредственно связан с прогрессом в производстве графена со свойствами, которые требуются для конкретного его использования. На текущий момент развиваются и применяются десятки методов по получению графена различного качества, формы и размера.

Среди методов, которые могут быть использованы, можно выделить три класса, получаемого графена:

  1. Хлопьевидный восстановленный оксид графена, который применяется для проводящих красок, композитных материалов и так далее.
  2. Плоский G, применяемый для создания высокопроизводительных электронных устройств.
  3. Плоский G, применяемый для создания неактивных и низкопроизводительных устройств.

Свойства конкретного класса графена, а значит и функционал приложений, где можно его задействовать, очень сильно зависят от качества подложки, материала, типа дефектов и тому подобное. А это в первую очередь определяется методом производства.

G — в зависимости от метода производства сегодня применяется в следующих направлениях:

  • При механическом отслаивании графен применяется для исследований. Подвижность носителей заряда составляет 2×105 и 106 (при низкой температуре) см²В-1с-1.
  • При химическом отслаивании G применяется для создания композитных материалов, покрытий, красок, чернил, биоприложений, конденсаторов, прозрачных проводящих слоев. Подвижность носителей заряда составляет 100 см²В-1с-1.
  • При химическом отслаивании через оксид графена материал применяется для создания композитных материалов, покрытий, красок, чернил, биоприложений, конденсаторов, прозрачных проводящих слоев. Подвижность носителей заряда составляет 1 см²В-1с-1;
  • При методе CVD G применяется для создания наноэлектроники, фотоники, биоприложений, сенсоров, прозрачных проводящих слоев. Подвижность носителей заряда составляет 1000 см²В-1с-1;
  • При методе SiC G применяется для создания электронных устройств, высокочастотных транзисторов и иных устройств. Подвижность носителей заряда составляет 1000 см²В-1с-1.

На текущий момент изучаются и другие сферы применения графена:

  • В альтернативной электронике;

Наноплазмоника и оптоэлектроника;
спинтроника;
баллистическая электроника.

  • В химическом применении;

Газовые сенсоры;
хранение водорода.

  • G — как конструкционный материал;

Композитные материалы;
графеновые мембраны.

  • G — как проводник;

Холодные катоды;
суперконденсаторы и электрические батареи;
квантовые точки;
НЭМС (наноэлектромеханические системы);
прозрачные покрытия и проводящие электроды.

Так или иначе, но уникальные свойства, которыми обладает графен, смогут обеспечить внимание разработчиков и ученых к нему на десятки лет. Возможно, данный материал начнет вытеснять кремний из электронной промышленности.

Достоинства и недостатки

К достоинствам графена можно отнести следующее:

  • Высокая электропроводность . G — может проводить электричество как обычная медь. На его основе можно создавать различные электрические приборы.
  • Отличная оптическая чистота . G — может поглощать только чуть более двух процентов видимого света вне зависимости от характеристик излучения. Вследствие этого данный материал практически бесцветен. Сторонний наблюдатель может назвать его невидимым.
  • Высокая механическая прочность . G — по прочности превосходит алмаз.
  • Гибкость . G — является более гибким, чем кремний. По данным параметрам он даже превосходит резину. Благодаря однослойной структуре можно изменять форму и растягивать графен по мере необходимости.
  • Способность противостоять внешним воздействиям .
  • Рекордная теплопроводность . G — по данному показателю превосходит медь в десять раз.

К недостаткам графена можно отнести следующее:

  • На данный момент трудно получать G большой площади в промышленных масштабах с заданными высоко-химическими характеристиками. Удается получить лишь небольшие по размерам листы графена.
  • Промышленный G по своим свойствам в большинстве случаев проигрывает экземплярам, которые получены в научных лабораториях. Поэтому достичь аналогичных характеристик при применении промышленных средств на данный момент не удается, несмотря на совершенствование технологий.
  • Производство графена требует значительных затрат, что ограничивает его применение.

Тем не менее, эти трудности вполне преодолимы, что открывает широкие перспективы.

Перспективы

  • Южнокорейская компания Samsung уже объявила, что намерена производить G в промышленных масштабах. Он будет применяться для создания очень тонких и гибких гаджетов. Производство пока дорогостоящее, но Samsung в будущем обещает удешевить его.
  • Графеновые транзисторы могут стать заменой традиционным кремниевым, обеспечив невероятный прорыв в вычислительных мощностях на десятки лет вперед. Теоретически графеновые транзисторы могут работать на высоких частотах, а их размеры будут существенно меньше обычных.
  • G — способен решить проблему фото- и видеооборудования, она заключается в невысоком качестве съемки при недостаточном освещении. Датчики на основе графена способны увеличить чувствительность сенсоров в сотни раз. Это означает появление новых инфракрасных камер, приборов ночного видения, аппаратов спутников, способных делать детализированные фотографии.
  • Победа над раком. Оксид графена убивает стволовые клетки, которые запрограммированы на преобразование в раковую опухоль. Он уменьшает размер опухоли, предотвращая ее дальнейший рост.
  • Огромные перспективы в медицине, автомобилестроении, химической промышленности и в других областях.

Что , обещающий революцию во многих областях технологий, далеко не безопасен. Он может оказывать губительное воздействие на здоровье человека и окружающую среду.

Графен - это материал с уникальными свойствами, многие связывают с ним . Графен прочнее стали, гибок, обладает высокой электропроводимостью, при этом состоит всего из одного слоя атомов углерода. Эти свойства привели к тому, что материал стали воспринимать как основу для множества будущих "прорывных" изобретений человечества.

Тем не менее, до недавнего времени серьезным изучением экологических последствий применения нового материала никто не занимался. После продолжительного исследования ученые из Калифорнийского университета в Риверсайде пришли к выводу, что графен может быть опасен.

Выяснилось, что при попадании материала в грунтовые воды гексагональная структура графена начинает разрушаться, микрочастицы довольно быстро теряют стабильность, разрушаются и значительного вреда принести не могут. А вот графеновое загрязнение поверхностных вод, в которых больше органики, а жесткость ниже, может оказаться гораздо более серьезным. Молекулярная структура графена такова, что острые выступы нано-частиц материала способны разрывать мембраны клеток живых организмов, что обуславливает его токсичность. Ученые призывают максимально тщательно изучить свойства графена до того, как его начнут активно использовать в производстве электроники.

Тем не менее, вряд ли это открытие остановят человечество от масштабного применения графена. Материал обладает настолько уникальными свойствами, что заменить его попросту нечем. Ни один сплав не может похвастаться такой теплопроводностью, выдающейся прочностью и максимальными из всех известных материалов электропроводящими качествами. Подвижность электронов в графеновых структурах в сто раз превышает показатель кремния, который в данный момент является основой практически всей электроники на планете.

По своим свойствам графен куда надежнее, чем сталь. Гаджеты будущего на его основе окажутся куда более устойчивыми к повреждениям, чем то, что мы имеем сейчас. Но и это еще не все - графен может в сто раз ускорить скорость доступа к Интернету, привести к революции в компьютерной индустрии, на несколько порядков увеличив мощность процессоров. Графен нашел применение в медицине, в укреплении старых зданий, в производстве электроэнергии и сотнях других областей.

Первыми графен получили в 2004 году, работая в Великобритании в Манчестерском университете, выходцы из России Андрей Гейм и Константин Новоселов. В 2010 году за свой вклад в изучение "материала будущего" они были удостоены Нобелевской премии.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

Славянский Педагогический Государственный университет

КАФЕДРА ФИЗИКИ

КУРСОВАЯ РАБОТА

По теме: Графен и его свойства. Нобелевская премия 2010 года по физике

Выполнила

студентка 3-го курса,

физико-математического факультета, группа 3

Щербина И.Л.

Преподаватель

Костиков А.П

Славянск 2011г.

1. История открытия

2. Получение

3. Дефекты

4. Возможные применения

5.1 Теория

5.1.1 Кристаллическая структура

5.1.2 Зонная структура

5.1.3 Линейный закон дисперсии

5.1.4 Эффективная масса

5.1.5 Хиральность и парадокс Клейна

5.2 Эксперимент

5.2.1 Проводимость

5.2.2 Квантовый эффект Холла

6. Интересные факты

Литература


1. История открытия

Графен является двумерным кристаллом, состоящим из одиночного слоя атомов углерода, собранных в гексагональную решётку. Его теоретическое исследование началось задолго до получения реальных образцов материала, поскольку из графена можно собрать трёхмерный кристаллграфита.

Графен является базой для построения теории этого кристалла. Графит являетсяполуметаллом. Как было показано в1947 годуП. Воллесом, взонной структуреграфена также отсутствуетзапрещённая зона, причём в точках соприкосновения валентной зоны, изоны проводимостиэнергетический спектрэлектронов идыроклинеен, как функцияволнового вектора. Такого рода спектром, обладают безмассовыефотоныи ультрарелятивистские частицы, а такженейтрино. Поэтому говорят, что эффективная массаэлектронов и дырок в графене вблизи точки соприкосновения зон равна нулю. Но здесь стоит заметить, что несмотря на сходство фотонов и безмассовых носителей, в графене существует несколько существенных различий, делающих носители в графене уникальными по своей физической природе, а именно: электроны и дырки являютсяфермионами, и они заряжены. В настоящее время аналогов для этих безмассовых заряженных фермионов среди известных элементарных частиц нет.

Несмотря на такие специфические особенности, экспериментального подтверждения эти выводы не получили до2005 года, поскольку не удавалось создать графен. Кроме того, ещё раньше было доказано теоретически, что свободную идеальную двумерную плёнку получить невозможно из-за нестабильности относительно сворачивания или скручивания. Тепловые флуктуации приводят к плавлению двумерного кристалла при любой конечной температуре.

Интерес к графену появился снова после открытияуглеродных нанотрубок, поскольку вся первоначальная теория строилась на простой модели нанотрубки как развёртки цилиндра. Поэтому теория для графена в приложении к нанотрубкам хорошо проработана.

Попытки получения графена, прикреплённого к другому материалу, начались с экспериментов, использующих простойкарандаш, и продолжились с использованием атомно-силового микроскопа для механического удаления слоёв графита, но не достигли успеха. Использование графита с внедрёнными (интеркалированный графит)в межплоскостное пространство чужеродными атомами (используется для увеличения расстояния между соседними слоями и их расщепления) также не привело к результату.

В 2004 году российскими и британскими учёными была опубликована работа в журнале Science , где сообщалось о получении графена на подложке окисленного кремния. Таким образом, стабилизация двумерной плёнки достигалась благодаря наличию связи с тонким слоем диэлектрикаSiO2по аналогии с тонкими плёнками, выращенными с помощьюМПЭ. Впервые были измереныпроводимость,эффект Шубникова- де Гааза,эффект Холла для образцов, состоящих из плёнок углерода с атомарной толщиной.

Метод отшелушивания является довольно простым и гибким, поскольку позволяет работать со всеми слоистыми кристаллами, то есть теми материалами, которые представляются как слабо (по сравнению с силами в плоскости) связанные слои двумерных кристаллов. В последующей работе авторы показали, что его можно использовать для получения других двумерных кристаллов:BN,MoS2,NbSe2, Bi2Sr2CaCu2Ox.


2. Получение

Кусочки графена получают при механическом воздействии на высокоориентированный пиролитический графитиликиш-графит. Сначала плоские куски графита помещают между липкими лентами (скотч) и расщепляют раз за разом, создавая достаточно тонкие слои (среди многих плёнок могут попадаться однослойные и двуслойные, которые и представляют интерес). После отшелушивания скотч с тонкими плёнками графита прижимают к подложке окисленного кремния. При этом трудно получить плёнку определённого размера и формы в фиксированных частях подложки (горизонтальные размеры плёнок составляют обычно около 10 мкм).Найденныес помощью оптического микроскопа, (они слабо видны при толщине диэлектрика 300 нм) плёнки подготавливают для измерений. Толщину можно определить с помощью атомно-силового микроскопа (она может варьироваться в пределах 1 нм для графена) или, используякомбинационное рассеяние. Используя стандартнуюэлектронную литографиюиреактивное плазменное травление, задают форму плёнки для электрофизических измерений.

Кусочки графена также можно приготовить из графита, используя химические методы. Сначала микрокристаллы графита подвергаются действию смесисернойисолянойкислот. Графит окисляется и на краях образца появляютсякарбоксильные группыграфена. Их превращают в хлориды при помощитионилхлорида. Затем под действиемоктадециламинав растворахтетрагидрофурана,тетрахлорметанаидихлорэтанаони переходят в графеновые слои толщиной 0,54нм. Этот химический метод не единственный, и, меняя органические растворители и химикаты, можно получить нанометровые слои графита.

В статьях описан ещё один химический метод получения графена, встроенного вполимернуюматрицу. Следует упомянуть ещё два метода: радиочастотное плазмохимическое осаждение из газовой фазы (англ. PECVD ), рост при высоком давлении и температуре (англ.HPHT ) . Из этих методов только последний можно использовать для получения плёнок большой площади.

Если кристалл пиролитического графита и подложку поместить между электродами, то, можно добиться того, что кусочки графита с поверхности, среди которых могут оказаться плёнки атомарной толщины, под действием электрического поля могут перемещаться на подложку окисленного кремния. Для предотвращения пробоя (между электродами прикладывали напряжение от 1 до 13 кВ) между электродами также помещали тонкую пластинуслюды.

Существует также несколько сообщений, посвящённых получению графена, выращенного на подложкахкарбида кремнияSiC(0001). Графитовая плёнка формируется при термическом разложении поверхности подложки SiC (этот метод получения графена гораздо ближе к промышленному производству), причём качество выращенной плёнки зависит от того, какая стабилизация у кристалла:C - стабилизированная или Si - стабилизированная поверхность - в первом случае качество плёнок выше. В работах та же группа исследователей показала, что, несмотря на то, что толщина слоя графита составляет больше одного монослоя, в проводимости участвует только один слой в непосредственной близости от подложки, поскольку на границе SiC- C из-за разностиработ выходадвух материалов образуется нескомпенсированный заряд. Свойства такой плёнки оказались эквивалентны свойствам графена.


3. Дефекты

Идеальный графен состоит исключительно из шестиугольных ячеек. Присутствие пяти- и семиугольных ячеек будет приводить к различного родадефектам.

Наличие пятиугольных ячеек приводит к сворачиванию атомной плоскости в конус. Структура с 12 такими дефектами одновременно известна под названиемфуллерен. Присутствие семиугольных ячеек приводит к образованию седловидных искривлений атомной плоскости. Комбинация этих дефектов и нормальных ячеек может приводить к образованию различных форм поверхности.


4. Возможные применения

Считается, что на основе графена можно сконструировать баллистический транзистор. В марте 2006 года группа исследователей из технологического института штата Джорджии заявила, что ими был полученполевой транзисторна графене, а такжеквантово-интерференционныйприбор. Исследователи полагают, что благодаря их достижениям в скором времени появится новый класс графеновой наноэлектроники с базовой толщинойтранзисторовдо 10 нм. Данный транзистор обладает большим током утечки, то есть нельзя разделить два состояния с закрытым и открытым каналом.

Использовать напрямую графен при созданииполевого транзисторабез токов утечки не представляется возможным благодаря отсутствию запрещённой зоны в этом материале, поскольку нельзя добиться существенной разности в сопротивлении при любых приложенных напряжениях к затвору, то есть, не получается задать два состояния пригодных для двоичной логики: проводящее и непроводящее. Сначала нужно создать каким-нибудь образом запрещённую зону достаточной ширины при рабочей температуре (чтобы термически возбуждённые носители давали малый вклад в проводимость). Один из возможных способов предложен в работе. В этой статье предлагается создать тонкие полоски графена с такой шириной, чтобы благодаря квантово-размерномуэффекту ширина запрещённой зоны была достаточной для перехода в диэлектрическое состояние (закрытое состояние) прибора при комнатной температуре (28 мэВ соответствует ширине полоски 20 нм). Благодаря высокой подвижности (имеется в виду, что подвижность выше чем вкремнии, используемом вмикроэлектронике) 104см²·В−1·с−1 быстродействие такого транзистора будет заметно выше. Несмотря на то, что это устройство уже способно работать как транзистор, затвор к нему ещё не создан.

Другая область применения предложена в статьеи заключается в использовании графена в качестве очень чувствительногосенсорадля обнаружения отдельных молекул химических веществ, присоединённых к поверхности плёнки. В этой работе исследовались такие вещества, какNH3,CO,H2O,NO2. Сенсор размером 1 мкм × 1 мкм использовался для детектирования присоединения отдельных молекул NO2к графену. Принцип действия этого сенсора заключается в том, что разные молекулы могут выступать какдонорыиакцепторы, что в свою очередь ведёт к изменению сопротивления графена. В работетеоретически исследуется влияние различных примесей (использованных в отмеченном выше эксперименте) на проводимость графена. В работебыло показано, что NO2молекула является хорошим акцептором из-за своихпарамагнитныхсвойств, адиамагнитнаямолекула N2O4создаёт уровень близко к точке электронейтральности. В общем случае примеси, молекулы которых имеютмагнитный момент(неспаренный электрон), обладают более сильными легирующими свойствами.


Введение...

Математическая формулировка...

См. также: Портал:Физика

Получение

Кусочки графена получают при механическом воздействии на высокоориентированный пиролитический графит или киш-графит . Сначала плоские куски графита помещают между липкими лентами (скотч) и расщепляют раз за разом, создавая достаточно тонкие слои (среди многих плёнок могут попадаться однослойные и двуслойные, которые и представляют интерес). После отшелушивания скотч с тонкими плёнками графита прижимают к подложке окислённого кремния. При этом трудно получить плёнку определённого размера и формы в фиксированных частях подложки (горизонтальные размеры плёнок составляют обычно около 10 мкм). Найденные с помощью оптического микроскопа (они слабо видны при толщине диэлектрика 300 нм) плёнки подготавливают для измерений. Толщину можно определить с помощью атомно-силового микроскопа (она может варьироваться в пределах 1 нм для графена) или используя комбинационное рассеяние . Используя стандартную электронную литографию и реактивное плазменное травление, задают форму плёнки для электрофизических измерений.

Кусочки графена также можно приготовить из графита, используя химические методы . Сначала микрокристаллы графита подвергаются действию смеси серной и соляной кислот. Графит окисляется, и на краях образца появляются карбоксильные группы графена. Их превращают в хлориды при помощи тионилхлорида . Затем под действием октадециламина в растворах тетрагидрофурана , тетрахлорметана и дихлорэтана они переходят в графеновые слои толщиной 0,54 нм . Этот химический метод не единственный, и, меняя органические растворители и химикаты, можно получить нанометровые слои графита .

Существует также несколько сообщений , посвящённых получению графена, выращенного на подложках карбида кремния SiC(0001). Графитовая плёнка формируется при термическом разложении поверхности подложки SiC (этот метод получения графена гораздо ближе к промышленному производству), причём качество выращенной плёнки зависит от того, какая стабилизация у кристалла: C -стабилизированная или Si -стабилизированная поверхность - в первом случае качество плёнок выше. В работах та же группа исследователей показала, что, несмотря на то, что толщина слоя графита составляет больше одного монослоя, в проводимости участвует только один слой в непосредственной близости от подложки, поскольку на границе SiC-C из-за разности работ выхода двух материалов образуется нескомпенсированный заряд. Свойства такой плёнки оказались эквивалентны свойствам графена.

Дефекты

Идеальный графен состоит исключительно из шестиугольных ячеек. Присутствие пяти- и семиугольных ячеек будет приводить к различного рода дефектам .

Наличие пятиугольных ячеек приводит к сворачиванию атомной плоскости в конус. Структура с 12 такими дефектами одновременно известна под названием фуллерен . Присутствие семиугольных ячеек приводит к образованию седловидных искривлений атомной плоскости. Комбинация этих дефектов и нормальных ячеек может приводить к образованию различных форм поверхности.

Возможные применения

Считается, что на основе графена можно сконструировать баллистический транзистор. В марте 2006 года группа исследователей из технологического института штата Джорджия заявила, что ими был получен полевой транзистор на графене, а также квантово-интерференционный прибор . Исследователи полагают, что благодаря их достижениям в скором времени появится новый класс графеновой наноэлектроники с базовой толщиной транзисторов до 10 нм. Данный транзистор обладает большим током утечки, то есть нельзя разделить два состояния с закрытым и открытым каналом.

Использовать напрямую графен при создании полевого транзистора без токов утечки не представляется возможным из-за отсутствия запрещённой зоны в этом материале, поскольку нельзя добиться существенной разности в сопротивлении при любых приложенных напряжениях к затвору, то есть не получается задать два состояния, пригодных для двоичной логики: проводящее и непроводящее. Сначала нужно создать каким-нибудь образом запрещённую зону достаточной ширины при рабочей температуре (чтобы термически возбуждённые носители давали малый вклад в проводимость). Один из возможных способов предложен в работе . В этой статье предлагается создать тонкие полоски графена с такой шириной, чтобы благодаря квантово-размерному эффекту ширина запрещённой зоны была достаточной для перехода в диэлектрическое состояние (закрытое состояние) прибора при комнатной температуре (28 мэВ соответствует ширине полоски 20 нм). Благодаря высокой подвижности (имеется в виду, что подвижность выше, чем в кремнии , используемом в микроэлектронике) 10 4 см²·В −1 ·с −1 быстродействие такого транзистора будет заметно выше. Несмотря на то, что это устройство уже способно работать как транзистор, затвор к нему ещё не создан.

Другая область применения предложена в статье и заключается в использовании графена в качестве очень чувствительного сенсора для обнаружения отдельных молекул химических веществ, присоединённых к поверхности плёнки. В этой работе исследовались такие вещества, как NH 3 , , H 2 O , NO 2 . Сенсор размером 1 мкм × 1 мкм использовался для детектирования присоединения отдельных молекул NO 2 к графену. Принцип действия этого сенсора заключается в том, что разные молекулы могут выступать как доноры и акцепторы , что в свою очередь ведёт к изменению сопротивления графена. В работе теоретически исследуется влияние различных примесей (использованных в отмеченном выше эксперименте) на проводимость графена. В работе было показано, что NO 2 молекула является хорошим акцептором благодаря своим парамагнитным свойствам, а диамагнитная молекула N 2 O 4 создаёт уровень близко к точке электронейтральности. В общем случае примеси, молекулы которых имеют магнитный момент (неспаренный электрон), обладают более сильными легирующими свойствами.

Ещё одна перспективная область применения графена - его использование для изготовления электродов в ионисторах (суперконденсаторах) для использования их в качестве перезаряжаемых источников тока. Опытные образцы ионисторов на графене имеют удельную энергоёмкость 32 Вт·ч/кг, сравнимую с таковой для свинцово-кислотных аккумуляторов (30−40 Вт·ч/кг) .

Недавно был создан новый тип светодиодов на основе графена (LEC) . Процесс утилизации новых материалов экологичен при достаточно низкой цене.

Физика

Физические свойства нового материала можно изучать по аналогии с другими подобными материалами. В настоящее время экспериментальное и теоретическое исследование графена сосредоточено на стандартных свойствах двумерных систем: проводимости, квантовом эффекте Холла, слабой локализации и других эффектах, исследованных ранее в двумерном электронном газе .

Теория

В этом параграфе кратко описываются основные положения теории, некоторые из которых получили экспериментальное подтверждение, а некоторые ещё ждут верификации .

Кристаллическая структура

а соответствующие им векторы обратной решётки:

(без множителя ). В декартовых координатах положение ближайших к узлу подрешётки A (все атомы которой на рисунке 3 показаны красным) в начале координат атомов из подрешётки B (показаны соответственно зелёным цветом) задаётся в виде:

Зонная структура

Кристаллическая структура материала находит отражение во всех его физических свойствах. В особенности сильно от порядка, в котором расположены атомы в кристаллической решётке, зависит зонная структура кристалла.

Линейный закон дисперсии приводит к линейной зависимости плотности состояний от энергии, в отличие от обычных двумерных систем с параболическим законом дисперсии, где плотность состояний не зависит от энергии. Плотность состояний в графене задаётся стандартным способом

где выражение под интегралом и есть искомая плотность состояний (на единицу площади) :

где и - спиновое и долинное вырождение соответственно, а модуль энергии появляется, чтобы описать электроны и дырки одной формулой. Отсюда видно, что при нулевой энергии плотность состояний равна нулю, то есть отсутствуют носители (при нулевой температуре).

Концентрация электронов задаётся интегралом по энергии

где - уровень Ферми . Если температура мала по сравнению с уровнем Ферми, то можно ограничиться случаем вырожденного электронного газа

Концентрацией носителей управляют с помощью затворного напряжения. Они связаны простым соотношением при толщине диэлектрика 300 нм. При такой толщине эффектами квантовой ёмкости можно принебречь, хотя при уменьшении расстояния до затвора в десять раз концентрация уже не будет линейной функцией приложенного напряжения.

Здесь также следует обратить внимание на тот факт, что появление линейного закона дисперсии при рассмотрении гексагональной решётки не является уникальной особенностью для данного типа кристаллической структуры, а может появляться и при существенном искажении решётки вплоть до квадратной решётки .

Эффективная масса

Благодаря линейному закону дисперсии эффективная масса электронов и дырок в графене равна нулю. Но в магнитном поле возникает другая масса, связанная с движением электрона по замкнутым орбитам и называемая циклотронной массой . Связь между циклотронной массой и энергетическим спектром для носителей в графене получается из следующего рассмотрения. Энергия уровней Ландау для уравнения Дирака задаётся в виде

где «±» соответствует псевдоспиновому расщеплению . Плотность состояний в графене осциллирует как функция обратного магнитного поля, и её частота равна

где - площадь орбиты в пространстве волновых векторов на уровне Ферми. Осциллирующий характер плотности состояний приводит к осцилляциям магнетосопротивления, что эквивалентно эффекту Шубникова - де Гааза в обычных двумерных системах. Исследуя температурную зависимость амплитуды осцилляций, находят циклотронную массу носителей.

Из периода осцилляций также можно определить концентрацию носителей

Хиральность и парадокс Клейна

Рассмотрим часть гамильтониана для долины K (см. формулу (3.2)):

Матрицы Паули здесь не имеют отношения к спину электрона, а отражают вклад двух подрешёток в формирование двухкомпонентной волновой функции частицы. Матрицы Паули являются операторами псевдоспина по аналогии со спином электрона. Данный гамильтониан полностью эквивалентен гамильтониану для нейтрино , и, как и для нейтрино, существует сохраняющаяся величина проекции спина (псевдоспина для частиц в графене) на направление движения - величина, называемая спиральностью (хиральностью). Для электронов хиральность положительна, а для дырок - отрицательна. Сохранение хиральности в графене приводит к такому явлению, как парадокс Клейна . В квантовой механике с этим явлением связано нетривиальное поведение коэффициента прохождения релятивистской частицей потенциальных барьеров , высота которых больше, чем удвоенная энергия покоя частицы. Частица более легко преодолевает более высокий барьер. Для частиц в графене можно построить аналог парадокса Клейна с той разницей, что не существует массы покоя. Можно показать , что электрон преодолевает с вероятностью, равной единице, любые потенциальные барьеры при нормальном падении на границу раздела. Если падение происходит под углом, то существует некоторая вероятность отражения. Например, обычный p-n переход в графене является таким преодолимым барьером . В целом парадокс Клейна приводит к тому, что частицы в графене трудно локализовать, что в свою очередь приводит, например, к высокой подвижности носителей в графене. Недавно были предложены несколько моделей, позволяющих локализовать электроны в графене . В работе впервые продемонстрирована квантовая точка из графена и измерена кулоновская блокада при 0,3 К.

Эффект Казимира

Эксперимент

Подавляющее большинство экспериментальных работ посвящено графену, полученному отшелушиванием объёмного кристалла пиролитического графита.

Проводимость

Теоретически показано, что основное ограничение на подвижность электронов и дырок в графене (на Si подложке) возникает из-за заряженных примесей в диэлектрике (SiO 2), поэтому сейчас ведутся работы по получению свободновисящих плёнок графена, что должно увеличить подвижность до 2·10 6 см²·В −1 ·c −1 . В настоящее время максимальная достигнутая подвижность составляет 2·10 5 см²·В −1 ·c −1 ; она была получена в образце, подвешенном над слоем диэлектрика на высоте 150 нм (часть диэлектрика была удалена с помощью жидкостного травителя) . Образец с толщиной в один атом поддерживался при помощи широких контактов. Для улучшения подвижности образец подвергался очистке от примесей на поверхности посредством пропускания тока , который нагревал весь образец до 900 К в высоком вакууме .

Идеальную двумерную плёнку в свободном состоянии нельзя получить из-за её термодинамической нестабильности. Но если в плёнке будут дефекты или она будет деформирована в пространстве (в третьем измерении), то такая «неидеальная» плёнка может существовать без контакта с подложкой . В эксперименте с использованием просвечивающего электронного микроскопа было показано, что свободные плёнки графена существуют и образуют поверхность сложной волнистой формы, с латеральными размерами пространственных неоднородностей около 5-10 нм и высотой 1 нм. В статье было показано, что можно создать свободную от контакта с подложкой плёнку, закреплённую с двух краёв, образуя, таким образом, наноэлектромеханическую систему. В данном случае подвешенный графен можно рассматривать как мембрану, изменение частоты механических колебаний которой предлагается использовать для детектирования массы, силы и заряда, то есть использовать в качестве высокочувствительного сенсора.

Подложка кремния с диэлектриком, на котором покоится графен, должна быть сильно легирована, чтобы её можно было использовать в качестве обратного затвора , при помощи которого можно управлять концентрацией и даже изменять тип проводимости. Поскольку графен является полуметаллом, то приложение положительного напряжения к затвору приводит к электронной проводимости графена, и напротив - если приложить отрицательное напряжение, то основными носителями станут дырки, поэтому в принципе нельзя обеднить полностью графен от носителей. Заметим, что если графит состоит из нескольких десятков слоёв, то электрическое поле достаточно хорошо экранировано, как и в металлах, огромным количеством носителей в полуметалле .

В идеальном случае, когда отсутствует легирование и затворное напряжение равно нулю, не должно быть носителей тока (см. ), что, если следовать наивным представлениям, должно приводить к отсутствию проводимости . Но, как показывают эксперименты и теоретические работы , вблизи дираковской точки или точки электронейтральности для дираковских фермионов существует конечное значение проводимости, хотя величина минимальной проводимости зависит от метода расчёта. Эта идеальная область не изучена просто потому, что нет достаточно чистых образцов. В действительности все плёнки графена соединены с подложкой, и это приводит к неоднородностям, флуктуациям потенциала, что ведёт к пространственной неоднородности типа проводимости по образцу, поэтому даже в точке электронейтральности концентрация носителей теоретически не меньше, чем 10 12 см −2 . Здесь проявляется отличие от обычных систем с двумерным электронным или дырочным газом, а именно - отсутствует переход металл-диэлектрик .

Квантовый эффект Холла

Впервые необычный (англ. unconventional ) квантовый эффект Холла наблюдали в работах , где было показано, что носители в графене действительно обладают нулевой эффективной массой, поскольку положения плато на зависимости недиагональной компоненты тензора проводимости соответствовали полуцелым значениям холловской проводимости в единицах (множитель 4 появляется из-за четырёхкратного вырождения энергии), то есть Это квантование согласуется с теорией квантового эффекта Холла для дираковских безмассовых фермионов . Сравнение целочисленного квантового эффекта Холла в обычной двумерной системе и графене см. на рисунке 6. Здесь показаны уширенные уровни Ландау для электронов (выделение красным цветом) и для дырок (синий цвет). Если уровень Ферми находится между уровнями Ландау, то на зависимости холловской проводимости наблюдается ряд плато. Эта зависимость отличается от обычных двумерных систем (аналогом может служить двумерный электронный газ в кремнии, который является двухдолинным полупроводником в плоскостях, эквивалентных {100}, то есть тоже обладает четырёхкратным вырождением уровней Ландау, и холловские плато наблюдаются при ).

Квантовый эффект Холла (КЭХ) может использоваться как эталон сопротивления, потому что численное значение наблюдаемого в графене плато, равное воспроизводится с хорошей точностью, хотя качество образцов уступает высокоподвижному ДЭГ в GaAs и, соответственно, точности квантования. Преимущество КЭХ в графене в том, что он наблюдается при комнатной температуре (в магнитных полях свыше 20 ). Основное ограничение на наблюдение КЭХ при комнатной температуре накладывает не само размытие распределения Ферми-Дирака, а рассеяние носителей на примесях, что приводит к уширению уровней Ландау.

В современных образцах графена (лежащих на подложке) вплоть до 45 Т невозможно наблюдать дробный квантовый эффект Холла , но наблюдается целочисленный квантовый эффект Холла, который не совпадает с обычным. В работе наблюдается спиновое расщепление релятивистских уровней Ландау и снятие четырёхкратного вырождения для наинизшего уровня Ландау вблизи точки электронейтральности . Для объяснения этого эффекта предложено несколько теорий , но недостаточное количество экспериментального материала не позволяет выбрать среди них правильную.

Благодаря отсутствию запрещённой зоны в графене в структурах с верхним затвором можно сформировать непрерывный p-n переход , когда напряжение на верхнем затворе позволяет инвертировать знак носителей, задаваемый обратным затвором в графене, где концентрация носителей никогда не обращается в ноль (кроме точки электронейтральности). В таких структурах тоже можно наблюдать квантовый эффект Холла, но из-за неоднородности знака носителей значения холловских плато отличаются от приведённых выше. Для структуры с одним p-n переходом значения квантования холловской проводимости описываются формулой

где и - факторы заполнения в n- и p-области соответственно (p-область находится под верхним затвором), которые могут принимать значения и т. д. Тогда плато в структурах с одним p-n переходом наблюдаются при значениях 1, 3/2, 2, и т. д.

Для структуры с двумя p-n переходами соответствующие значения холловской проводимости равны

Рис. 7. Для получения нанотрубки (n, m) графитовую плоскость надо разрезать по направлениям пунктирных линий и свернуть вдоль направления вектора R

См. также

Примечания

  1. Wallace P. R. «The Band Theory of Graphite», Phys. Rev. 71 , 622 (1947) DOI :10.1103/PhysRev.71.622
  2. Novoselov K. S. et al . «Electric Field Effect in Atomically Thin Carbon Films», Science 306 , 666 (2004) DOI :10.1126/science.1102896
  3. Bunch J. S. et. al. Electromechanical Resonators from Graphene Sheets Science 315 , 490 (2007) DOI :10.1126/science.1136836
  4. Balandin A. A. cond-mat/0802.1367
  5. Chen Zh. et. al. Graphene Nano-Ribbon Electronics Physica E 40 , 228 (2007) DOI :10.1016/j.physe.2007.06.020
  6. Novoselov, K. S. et al . «Two-dimensional atomic crystals» , PNAS 102 , 10451 (2005) DOI :10.1073/pnas.0502848102
  7. Rollings E. et. al. Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate J. Phys. Chem. Solids 67 , 2172 (2006) DOI :10.1016/j.jpcs.2006.05.010
  8. Hass J. et. al. Highly ordered graphene for two dimensional electronics Appl. Phys. Lett. 89 , 143106 (2006) DOI :10.1063/1.2358299
  9. Novoselov K. S. et al. «Two-dimensional gas of massless Dirac fermions in graphene», Nature 438 , 197 (2005) DOI :10.1038/nature04233
  10. Стали известны имена лауреатов Нобелевской премии по физике
  11. The Nobel Prize in Physics 2010 (англ.) . NobelPrize.org. Архивировано из первоисточника 24 января 2012. Проверено 8 января 2011.
  12. Shioyama H. Cleavage of graphite to graphene J. Mat. Sci. Lett. 20 , 499-500 (2001)
  13. Peierls R., Helv. Phys. Acta 7 , 81 (1934); Peierls R., Ann. I. H. Poincare 5 , 177 (1935); Landau L. D., Phys. Z. Sowjetvunion 11 , 26 (1937)
  14. Ландау Л. Д., Лифшиц Е. М. Статистическая физика. - 2001.
  15. Zhang Y. et al. Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices Appl. Phys. Lett. 86 , 073104 (2005) DOI :10.1063/1.1862334
  16. В Магеллановых облаках нашли следы графена
  17. Zhang Y.et. al. «Experimental observation of the quantum Hall effect and Berry’s phase in graphene» Nature 438 , 201 (2005) DOI :10.1038/nature04235
  18. Solution Properties of Graphite and Graphene Sandip Niyogi, Elena Bekyarova, Mikhail E. Itkis, Jared L. McWilliams, Mark A. Hamon, and Robert C. Haddon J. Am. Chem. Soc.; 2006; 128(24) pp 7720 - 7721; (Communication) DOI :10.1021/ja060680r
  19. Bunch J. S. et al. Coulomb Oscillations and Hall Effect in Quasi-2D Graphite Quantum Dots Nano Lett. 5 , 287 (2005) DOI :10.1021/nl048111+
  20. Stankovich S. et al . «Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate)», J. Mater. Chem. 16 , 155 (2006) DOI :10.1039/b512799h
  21. Stankovich S. et al . «Graphene-based composite materials», Nature 442 , 282 (2006) DOI :10.1038/nature04969
  22. Wang J. J. et. al. Free-standing subnanometer graphite sheets Appl. Phys. Lett. 85 , 1265 (2004) DOI :10.1063/1.1782253
  23. Parvizi F., et. al. Graphene Synthesis via the High Pressure - High Temperature Growth Process Micro Nano Lett., 3 , 29 (2008) DOI :10.1049/mnl:20070074 Препринт
  24. Sidorov A. N. et al .,Electrostatic deposition of graphene Nanotechnology 18 , 135301 (2007) DOI :10.1088/0957-4484/18/13/135301
  25. Berger, C. et al . «Electronic Confinement and Coherence in Patterned Epitaxial Graphene», Science 312 , 1191 (2006) DOI :10.1126/science.1125925
  26. J. Hass et. al. Why Multilayer Graphene on 4H-SiC(000-1) Behaves Like a Single Sheet of Graphene Phys. Rev. Lett. 100 , 125504 (2008).
  27. Carbon-Based Electronics: Researchers Develop Foundation for Circuitry and Devices Based on Graphite March 14, 2006 gtresearchnews.gatech.edu Link
  28. Schedin F. et. al. Detection of Individual Gas Molecules Absorbed on Graphene Nature Materials 6 , 652 (2007) DOI :10.1038/nmat1967
  29. Hwang E. H. et. al. Transport in chemically doped graphene in the presence of adsorbed molecules Phys. Rev. B 76 , 195421 (2007) DOI :10.1103/PhysRevB.76.195421
  30. Wehling T. O. et. al. Molecular Doping of Graphene Nano Lett. 8 , 173 (2008) DOI :10.1021/nl072364w
  31. S.R.C.Vivekchand; Chandra Sekhar Rout, K.S.Subrahmanyam, A.Govindaraj and C.N.R.Rao (2008). «Graphene-based electrochemical supercapacitors ». J. Chem. Sci., Indian Academy of Sciences 120, January 2008 : 9−13.
  32. Piotr Matyba, Hisato Yamaguchi, Goki Eda, Manish Chhowalla, Ludvig Edman, Nathaniel D. Robinson. Graphene and Mobile Ions: The Key to All-Plastic, Solution-Processed Light-Emitting Devices (англ.) // Журнал ACS Nano . - American Chemical Society, 2010. - В. 4 (2). - С. 637-642. - DOI :10.1021/nn9018569
  33. Предложена схема двумерного метаматериала на основе графена
  34. Ando T. Screening Effect and Impurity Scattering in Monolayer Graphene J. Phys. Soc. Jpn. 75 , 074716 (2006) DOI :10.1143/JPSJ.75.074716
  35. Hatsugai Y. cond-mat/0701431
  36. Gusynin V. P., et. al. AC conductivity of graphene: from tight-binding model to 2+1-dimensional quantum electrodynamics Int. J. Mod. Phys. B 21 , 4611 (2007) DOI :10.1142/S0217979207038022
  37. Katsnelson M. I. et al ., Chiral tunnelling and the Klein paradox in graphene Nat. Phys. 2 , 620 (2006) DOI :10.1038/nphys384
  38. Cheianov V. V. and Fal’ko V. I., Selective transmission of Dirac electrons and ballistic magnetoresistance of n-p junctions in graphene Phys. Rev. B 74 , 041403 (2006) DOI :10.1103/PhysRevB.74.041403
  39. Trauzettel B. et al ., Spin qubits in graphene quantum dots Nat. Phys. 3 , 192 (2007) DOI :10.1038/nphys544
  40. Silvestrov P. G. and Efetov K. B. Quantum Dots in Graphene Phys. Rev. Lett. 98 , 016802 (2007) DOI :10.1103/PhysRevLett.98.016802
  41. Geim A. K., Novoselov K. S. The rise of graphene. Nat. Mat. 6 , 183 (2007). DOI :10.1038/nmat1849
  42. Bordag M., Fialkovsky I. V., Gitman D. M., Vassilevich D. V. (2009). «Casimir interaction between a perfect conductor and graphene described by the Dirac model ». Physical Review B 80 . DOI :10.1103/PhysRevB.80.245406 .
  43. Fialkovsky I. V., Marachevskiy V.N., Vassilevich D. V. (2011). «