Генная днк в геноме человека составляет. В чем заключаются различия хромосом? Как происходит упаковка спиралей ДНК

Проект «Геном человека» является наиболее амбициозной биологической исследовательской программой за всю историю науки. Знание генома человека внесет неоценимый вклад в развитие медицины и биологии человека. Исследования человеческого генома так же необходимо человечеству, как когда-то было необходимо знание человеческой анатомии. Осознание этого пришло в 1980-х, и это привело к тому, что появился проект «Геном человека». В 1988-м с аналогичной идеей выступил выдающийся российский молекулярный биолог и биохимик, академик А. А. Баев (1904–1994). С 1989 г. и в США, и в СССР функционируют соответствующие научные программы; позднее возникла Международная организация по изучению генома человека (HUGO). Вклад России в международное сотрудничество признан в мире: 70 отечественных исследователей являются членами HUGO.

Итак, прошло 10 лет с того времени, когда проект «Геном человека» был завершен. Есть повод вспомнить, как это было...

В 1990 г. при поддержке министерства энергетики США, а также Великобритании, Франции, Японии, Китая и Германии, был запущен этот трехмиллиардный проект. Возглавил его д-р Фрэнсис Коллинз, глава . Целями проекта являлись:

  • идентификация 20 000–25 000 генов ДНК;
  • определение последовательности 3 млрд. пар химических оснований, составляющих ДНК человека, и сохранение этой информации в базе данных;
  • усовершенствование приборов для анализа данных;
  • внедрение новейших технологий в область частного использования;
  • исследование этических, правовых и социальных вопросов, возникающих при расшифровке генома.

В 1998 г. аналогичный проект был запущен д-ром Крейгом Вентером и его фирмой «Celera Genomics ». Д-р Вентер поставил перед своей командой задачу более быстрого и дешевого секвенирования человеческого генома (в отличие от трехмиллиардного международного проекта, бюджет проекта д-ра Вентера ограничивался 300 млн долл.). Кроме того, фирма «Celera Genomics » не собиралась открывать доступ к своим результатам.

6 июня 2000 г. президент США и премьер-министр Великобритании объявили о расшифровке человеческого генетического кода, и таким образом соревнование закончилось. На самом деле, был опубликован рабочий черновик человеческого генома, и лишь к 2003 г. он был расшифрован практически полностью, хотя и сегодня все еще проводят дополнительный анализ некоторых участков генома.

Тогда умы ученых были взбудоражены необыкновенными возможностями: новые, действующие на генетическом уровне лекарства, а значит, не за горами создание «персональной медицины», настроенной точно под генетический характер каждого отдельно взятого человека. Существовали, конечно, и опасения, что может быть создано генетически зависимое общество, в котором людей буду делить на высшие и низшие классы по их ДНК и соответственно ограничивать их возможности. Но все же была надежда, что этот проект окажется столь же прибыльным, сколь и Интернет.

И вдруг все затихло... надежды не оправдались... казалось, что 3 млрд долл., вложенных в эту затею, выброшены на ветер.

Нет, не совсем так. Быть может, полученные результаты не столь грандиозны, как предполагалось во времена зарождения проекта, но они позволят достичь в будущем значительных успехов в различных областях биологии и медицины.

В результате исполнения проекта «Геном человека» был создан открытый банк генокода. Общедоступность полученной информации позволила многим исследователям ускорить свою работу. Ф. Коллинз привел в качестве иллюстрации такой пример: «Поиск гена фиброзно-кистозной дегенерации был успешно завершен в 1989 г., что стало результатом нескольких лет исследований моей лаборатории и еще нескольких других и стоило США около 50 млн долл. Сейчас это способен сделать смышленый выпускник университета за несколько дней, и все, что ему понадобится, - это Интернет, несколько недорогих реактивов, термоциклический аппарат для увеличения специфичности сегментов ДНК и доступ к ДНК-секвенатору, читающему ее по световым сигналам».

Еще один важный результат проекта - дополнение истории человека. Раньше все данные об эволюции были почерпнуты из археологических находок, а расшифровка генокода не только дала возможность подтвердить теории археологов, но в будущем позволит точнее узнать историю эволюции как человека, так и биоты в целом. Как предполагается, анализ сходства в последовательностях ДНК различных организмов сможет открыть новые пути в исследовании теории эволюции, и во многих случаях вопросы эволюции теперь можно будет ставить в терминах молекулярной биологии. Такие важнейшие вехи в истории эволюции, как появление рибосомы и органелл, развитие эмбриона, иммунной системы позвоночных, можно будет проследить на молекулярном уровне. Ожидается, что это позволит пролить свет на многие вопросы о сходстве и различиях между людьми и нашими ближайшими сородичами: приматами, неандертальцем (чей генокод недавно был реконструирован из 1,3 млрд фрагментов, подвергавшихся тысячелетнему разложению и загрязненных генетическими следами археологов, державших в руках останки этого существа), а также и всеми млекопитающими, и ответить на вопросы: какой же ген делает нас Homo sapiens , какие гены отвечают за наши поразительные таланты? Таким образом, поняв, как прочитать информацию о нас в генокоде, мы сможем узнать, как гены влияют на физические и умственные характеристики и даже на наше поведение. Возможно, в будущем, посмотрев на генетический код, можно будет не только предсказать, как будет выглядеть человек, но и, к примеру, будет ли у него актерский талант. Хотя, естественно, никогда нельзя будет это определить со 100%-ной точностью.

Кроме того, межвидовое сравнение покажет, чем отличается один вид от другого, как они разошлись на эволюционном древе. Межпопуляционное сравнение покажет, как этот вид эволюционирует. Сравнение ДНК отдельных особей внутри популяции покажет, чем объясняется различие особей одного вида, одной популяции. Наконец, сравнение ДНК различных клеток внутри одного организма поможет понять, как происходит дифференцирование тканей, как они развиваются и что идет не так в случае заболеваний, таких например, как рак.

Вскоре после расшифровки большей части генокода в 2003 г., ученые обнаружили, что существует гораздо меньше генов, чем они ожидали, но впоследствии убедились в противоположном. Традиционно ген определяли как участок ДНК, который кодирует белок. Однако, расшифровывая генокод, ученые выяснили, что 98,5% участков ДНК не кодируют белки, и назвали эту часть ДНК «бесполезной». И выяснилось, что эти 98,5% участков ДНК имеют едва ли не большее значение: именно эта часть ДНК отвечает за ее функционирование. Например, определенные участки ДНК содержат инструкции для получения похожих на ДНК, но небелковых молекул, так называемых двухцепочечных РНК. Эти молекулы являются частью молекулярно-генетического механизма, контролирующего активность гена (РНК-интерференция). Некоторые двухцепочечные РНК могут подавлять гены, препятствуя синтезу их белковых продуктов. Таким образом, если данные участки ДНК также считать генами, то их количество удвоится. В итоге исследования изменилось само представление о генах, и сейчас ученые считают, что ген - это единица наследственности, которую нельзя понимать как просто участок ДНК, кодирующий белки.

Можно сказать, что химический состав клетки - ее «хард», а информация, закодированная в ДНК, - предварительно загруженный «софт». Никто раньше и не предполагал, что клетка является чем-то большим, чем просто совокупностью составных частей, и что для ее построения недостаточно закодированной в ДНК информации, что столь же важным является процесс саморегулирования генома - и путем сообщения между соседними генами, и путем воздействия других молекул клетки.

Открытый доступ к информации позволит объединить опыт врачей, информацию о патологических случаях, результаты многолетнего изучения отдельных особей, и потому станет возможным соотнести генетическую информацию с данными анатомии, физиологии, поведения человека. И уже это сможет привести к лучшей медицинской диагностике и прогрессу в лечении.

Например, исследователь, изучающий определенную форму рака, сможет сузить круг поиска до одного гена. Сверив свои данные с данными открытой базы генома человека, он сможет проверить, что другие написали об этом гене, включая (потенциально) трехмерную структуру его производного белка, его функции, его эволюционную связь с другими генами человека или с генами мышей, дрожжей или дрозофилы, возможные пагубные мутации, взаимосвязь с другими генами, тканями тела, в которых ген активируется, заболеваниями, связанными с этим геном, или другие данные.

Более того, понимание хода заболевания на уровне молекулярной биологии позволит создать новые терапевтические методы. Учитывая, что ДНК играет огромную роль в молекулярной биологии, а также ее центральное значение в функционировании и принципах работы живых клеток, углубление знаний в этой области откроет путь для новых методов лечения и открытий в различных областях медицины.

Наконец, и «персональная медицина» теперь кажется уже более реальной задачей. Д-р Уиллс выразил надежду, что лечение заболеваний путем замены поврежденного участка ДНК нормальным станет возможным уже в следующее десятилетие. Сейчас проблемой, препятствующей развитию такого метода лечения, является то, что ученые не умеют доставлять ген в клетку. Пока единственный известный способ доставки - заражение животного вирусом с необходимыми генами, но это опасный вариант. Однако д-р Уиллс предполагает, что в скором времени в этом направлении будет совершен прорыв.

Сегодня уже существуют простые способы проведения генетических тестов, которые могут показать предрасположенность к различным заболеваниям, включая рак молочной железы, нарушение свертываемости крови, кистозный фиброз, заболевания печени и др. Такие заболевания, как рак, болезнь Альцгеймера, диабет, как было выяснено, связаны не с общими для всех, а с огромным количеством редких, практически индивидуальных мутаций (причем не в одном гене, а в нескольких; например, мышечную дистрофию Шарко-Мари-Тут может вызвать мутация 39 генов), в результате чего эти болезни трудно поддаются диагностике и воздействию медицинских препаратов. Именно это открытие является одним из камней преткновения «персональной медицины», поскольку, прочитав генокод человека, пока невозможно точно определить состояние его здоровья. Исследуя генокоды разных людей, ученые были разочарованы результатом. Около 2000 участков ДНК человека статистически относилось к «болезненным», которые при этом не всегда относились к работающим генам, т. е. не представляли угрозы. Похоже, что эволюция избавляется от мутаций, вызывающих болезнь, до того, как они станут общими.

Проводя исследования, группа ученых в Сиэтле обнаружила, что из всего человеческого генокода лишь 60 генов претерпевают спонтанную мутацию каждое поколение. При этом мутировавшие гены могут вызвать различные заболевания. Так, если у каждого из родителей было по одному «испорченному» и одному «неиспорченному» гену, то у детей болезнь может и не проявиться или проявится в очень слабой форме, если они получат один «испорченный» и один «неиспорченный» ген, но если ребенок унаследует оба «испорченных» гена, то это может привести к болезни. К тому же, поняв, что общечеловеческие болезни вызываются индивидуальным мутациями, ученые пришли к выводу, что необходимо исследовать полностью весь генокод человека, а не его отдельные участки.

Несмотря на все затруднения, уже созданы первые генетические лекарства против рака, которые блокируют эффекты генетических отклонений, приводящих к росту опухолей. Также недавно было одобрено лекарство компании «Amgen » от остеопороза, которое основывается на том, что болезнь вызывается гиперактивностью определенного гена. Последнее достижение - проведение анализа биологических жидкостей на присутствие мутации определенного гена для диагностики рака толстой кишки. Такой тест позволит избавить людей от неприятной процедуры колоноскопии.

Итак, привычная биология ушла в прошлое, наступил час новой эры науки: постгеномной биологии. Она полностью развенчала идею витализма, и хотя в него уже больше столетия не верил ни один биолог, новая биология не оставила места и для призраков.

Не только интеллектуальные озарения играют важную роль в науке. Такие технические прорывы, как телескоп в астрономии, микроскоп в биологии, спектроскоп в химии, приводят к неожиданным и замечательным открытиям. Похожую революцию в геномике производят сейчас мощные компьютеры и информация, содержащаяся в ДНК.

Закон Мура говорит о том, что компьютеры увеличивают свою мощность вдвое примерно каждые два года. Таким образом, за последнее десятилетие их мощность возросла более чем в 30 раз при постоянно снижающейся цене. В геномике пока нет имени для аналогичного закона, но его следовало бы назвать законом Эрика Лэндера - по имени главы Broad Institute (Cambridge , Massachusetts , крупнейший американский центр, занимающийся расшифровкой ДНК). Он подсчитал, что по сравнению с прошлым десятилетием цена расшифровки ДНК снизилась на сотни тысяч долларов. При расшифровке последовательности геномов в International Human Genome Sequencing Consortium использовали метод, разработанный еще в 1975 г. Ф. Сенджером, что заняло 13 лет и стоило 3 млрд долл. А значит, расшифровка генетического кода была под силу только мощным компаниям или центрам по исследованию генетической последовательности. Сейчас, используя последние устройства для расшифровки от фирмы «Illumina » (San Diego , California ), человеческий геном может быть прочитан за 8 дней, и стоить это будет около 10 тыс. долл. Но и это не предел. Другая калифорнийская фирма, «Pacific Biosciences» и з Менло Парка, разработала способы, позволяющие прочитать геном всего с одной молекулы ДНК. Вполне возможно, что скоро расшифровка генома будет занимать минут 15 и стоить менее 1000 долл. Аналогичные разработки существуют и в «Oxford Nanopore Technologies » (Великобритания). Раньше фирмы использовали решетки проб ДНК (ДНК-чипы) и искали определенные генетические символы - SNP. Сейчас известно несколько десятков таких символов, но есть основания предполагать, что среди трех миллиардов «букв» генетического кода их гораздо больше.

До недавнего времени полностью было расшифровано всего несколько генокодов (в проекте «Геном человека» были использованы кусочки генокода множества людей, а затем собраны в единое целое). Среди них генокоды К. Вентера, Дж. Уотсона, д-ра Ст. Куэйка, двух корейцев, китайца, африканца, а также больного лейкемией, национальность которого ныне уже трудно установить. Теперь, с постепенным усовершенствованием техники чтения последовательностей генов, станет возможным расшифровка генокода все большего и большего числа людей. В будущем свой генокод сможет прочитать любой человек.

Кроме стоимости расшифровки, важным показателем является его точность. Считается, что приемлемым уровнем является не более одной ошибки в 10 000–100 000 символов. Сейчас уровень точности находится на уровне 1 ошибки в 20 000 символов.

На настоящий момент в США ведутся споры по поводу патентования «расшифрованных» генов. Однако многие исследователи считают, что патентование генов станет препятствием для развития науки. Главная стратегическая задача будущего сформулирована следующим образом: изучить однонуклеотидные вариации ДНК в разных органах и клетках отдельных индивидуумов и выявить различия между индивидуумами. Анализ таких вариаций даст возможность не только подойти к созданию индивидуальных генных «портретов» людей, что, в частности, позволит лучше лечить болезни, но и определить различия между популяциями, выявлять географические районы повышенного «генетического» риска, что поможет давать четкие рекомендации о необходимости очистки территорий от загрязнения и выявлять производства, на которых есть большая опасность поражения геномов персонала.

SNP - одиночный генетический символ, который меняется от человека к человеку. Его открыли специалисты «International HapMap Project », изучая такую мутацию генокода, как однонуклеотидный полиморфизм. Целью проекта по картированию участков ДНК, различных для разных этнических групп, был поиск уязвимости этих групп к отдельным заболеваниям и возможностей их преодоления. Эти исследования могут также подсказать, как человеческие популяции адаптировались к различным заболеваниям.


Международные проект «Геном человека» был начат в 1988 г. Это один из самых трудоемких и дорогостоящих проектов в истории науки. Если в 1990 г. на него было потрачено около 60 млн. долларов в целом, то в 1998 г. одно только правительство США израсходовало 253 млн. долларов, а частные компании – и того больше. В проекте задействованы несколько тысяч ученых из более чем 20 стран. С 1989 г. в нем участвует и Россия, где по проекту работает около 100 групп. Все хромосомы человека поделены между странами-участницами, и России для исследования достались 3-, 13- и 19-я хромосомы.

Основная цель проекта – выяснить последовательность нуклеотидных оснований во всех молекулах ДНК человека и установить локализацию, т.е. полностью картировать все гены человека. Проект включает в качестве подпроектов изучение геномов собак, кошек, мышей, бабочек, червей и микроорганизмов. Ожидается, что затем исследователи определят все функции генов и разработают возможности использования полученных данных.

Что же представляет собой основной предмет проекта – геном человека?

Известно, что в ядре каждой соматической клетки (кроме ядра ДНК есть еще и в митохондриях) человека содержится 23 пары хромосом, каждая хромосома представлена одной молекулой ДНК. Суммарная длина всех 46 молекул ДНК в одной клетке равна приблизительно 2 м, они содержат около 3,2 млрд. пар нуклеотидов. Общая длина ДНК во всех клетках человеческого тела (их примерно 5х1013) составляет 1011 км, что почти в тысячу раз больше расстояния от Земли до Солнца.

Как же помещаются в ядре такие длиннющие молекулы? Оказывается, в ядре существует механизм «насильственной» укладки ДНК в виде хроматина - уровни компактизации.

Первый уровень предполагает организацию ДНК с гистоновыми белками – образование нуклеосом. Две молекулы специальных нуклеосомных белков образуют октамер в виде катушки, на которую наматывается нить ДНК. На одной нуклеосоме размещается около 200 пар оснований. Между нуклеосомами остается фрагмент ДНК размером до 60 пар оснований, называемый линкером. Этот уровень укладки позволяет уменьшить линейные размеры ДНК в 6–7 раз.

На следующем уровне нуклеосомы укладываются в фибриллу (соленоид). Каждый виток составляет 6-7 нуклеосом, при этом линейные размеры ДНК уменьшаются до 1 мм, т.е. в 25-30 раз.

Третий уровень компактизации – петельная укладка фибрилл – образование петельных доменов, которые под углом отходят от основной оси хромосомы. Их можно увидеть в световой микроскоп как интерфазные хромосомы типа «ламповых щеток». Поперечная исчерченность, характерная для митотических хромосом, отражает в какой-то степени порядок расположения генов в молекуле ДНК.

Если у прокариот линейные размеры гена согласуются с размерами структурного белка, то у эукариот размеры ДНК намного превосходят суммарные размеры значимых генов. Это объясняется, во-первых, мозаичным, или экзон-интронным, строением гена: фрагменты, подлежащие транскрипции – экзоны, перемежаются незначащими участками – интронами. Последовательность генов сначала полностью транскрибируется синтезирующейся молекулой РНК, из которой затем вырезаются интроны, экзоны сшиваются и в таком виде информация с молекулы иРНК считывается на рибосоме. Второй причиной колоссальных размеров ДНК является большое количество повторяющихся генов. Некоторые повторяются десятки или сотни раз, а есть и такие, у которых встречается до 1 млн. повторов на геном. Например, ген, кодирующий рРНК повторяется около 2 тыс. раз.

Еще в 1996 г. считалось, что у человека около 100 тыс. генов, сейчас специалисты по биоинформатике предполагают, что в геноме человека не более 60 тыс. генов, причем на их долю приходится всего 3% общей длины ДНК клетки, а функциональная роль остальных 97% пока не установлена.

Каковы же достижения ученых за десять с небольшим лет работы над проектом?

Первым крупным успехом стало полное картирование в 1995 г. генома бактерии Haemophilus influenzae. Позднее были полностью описаны геномы еще более 20 бактерий, среди которых возбудители туберкулеза, сыпного тифа, сифилиса и др. В 1996 г. картировали ДНК первой эукариотической клетки – дрожжей, а в 1998 г. впервые был картирован геном многоклеточного организма – круглого червя Caenorhabolitis elegans. К 1998 г. установлены последовательности нуклеотидов в 30 261 гене человека, т.е. расшифрована примерно половина генетической информация человека.

Ниже приведены известные данные по количеству генов, вовлеченных в развитие и функционирование некоторых органов и тканей человека.

Название органа, ткани, клетки и количество генов

1. Слюнная железа 17

2. Щитовидная железа 584

3. Гладкая мускулатура 127

4. Молочная железа 696

5. Поджелудочная железа 1094

6. Селезенка 1094

7. Желчный пузырь 788

8. Тонкий кишечник 297

9. Плацента 1290

10. Скелетная мышца 735

11. Белая кровяная клетка 2164

12. Семенник 370

13. Кожа 620

14. Мозг 3195

15. Глаз 547

16. Легкие 1887

17. Сердце 1195

18. Эритроцит 8

19. Печень 2091

20. Матка 1859

За последние годы были созданы международные банки данных о последовательностях нуклеотидов в ДНК различных организмов и о последовательностях аминокислот в белках. В 1996 г. Международное общество секвенирования приняло решение о том, что любая вновь определенная последовательность нуклеотидов размером 1–2 тыс. оснований и более должна быть обнародована через Интернет в течение суток после ее расшифровки, в противном случае статьи с этими данными в научные журналы не принимаются. Любой специалист в мире может воспользоваться этой информацией.

В ходе выполнения проекта «Геном человека» было разработано много новых методов исследования, большинство из которых в последнее время автоматизировано, что значительно ускоряет и удешевляет работу по расшифровке ДНК. Эти же методы анализа могут использоваться и для других целей: в медицине, фармакологии, криминалистике и т.д.

Остановимся на некоторых конкретных достижениях проекта, в первую очередь, конечно, имеющих отношение к медицине и фармакологии.

В мире каждый сотый ребенок рождается с каким-либо наследственным дефектом. К настоящему времени известно около 10 тыс. различных заболеваний человека, из которых более 3 тыс. – наследственные. Уже выявлены мутации, отвечающие за такие заболевания, как гипертония, диабет, некоторые виды слепоты и глухоты, злокачественные опухоли. Обнаружены гены, ответственные за одну из форм эпилепсии, гигантизм и др. Ниже приведены некоторые болезни, возникающие в результате повреждения генов, структура которых полностью расшифрована к 1997 г.

Болезни, возникающие в результате повреждения генов

1. Хpoнический грануломатоз
2. Кистозный фиброз
3. Болезнь Вильсона
4. Ранний рак груди/яичника
5. Мышечная дистрофия Эмери-Дрейфуса
6. Атрофия мышц позвоночника
7. Альбинизм глаза
8. Болезнь Альцгеймера
9. Наследственный паралич
10. Дистония

Вероятно, в ближайшие годы станет возможной сверхранняя диагностика тяжелых заболеваний, а значит, и более успешная борьба с ними. Сейчас активно разрабатываются методы адресной доставки лекарств в пораженные клетки, замены больных генов здоровыми, включения и выключения боковых путей метаболизма за счет включения и выключения соответствующих генов. Уже известны примеры успешного применения генотерапии. Так, например, удалось добиться существенного облегчения состояния ребенка, страдающего тяжелым врожденным иммунодефицитом, путем введения ему нормальных копий поврежденного гена.

Кроме болезнетворных генов обнаружены еще некоторые гены, имеющие прямое отношение к здоровью человека. Выяснилось, что существуют гены, обуславливающие предрасположенность к развитию профессиональных заболеваний на вредных производствах. Так, на асбестовых производствах одни люди болеют и умирают от асбестоза, а другие устойчивы к нему. В будущем возможно создание специальной генетической службы, которая будет давать рекомендации по поводу возможной профессиональной деятельности с точки зрения предрасположенности к профессиональным заболеваниям.

Оказалось, что предрасположенность к алкоголизму или наркомании тоже может иметь генетическую основу. Открыто уже семь генов, повреждения которых связаны с возникновением зависимости от химических веществ. Из тканей больных алкоголизмом был выделен мутантный ген, который приводит к дефектам клеточных рецепторов дофамина – вещества, играющего ключевую роль в работе центров удовольствия мозга. Недостаток дофамина или дефекты его рецепторов напрямую связаны с развитием алкоголизма. В четвертой хромосоме обнаружен ген, мутации которого приводят к развитию раннего алкоголизма и уже в раннем детстве проявляются в виде повышенной подвижности ребенка и дефицита внимания.

Интересно, что мутации генов не всегда приводят к негативным последствиям – они иногда могут быть и полезными. Так, известно, что в Уганде и Танзании инфицированность СПИДом среди проституток доходит до 60–80%, но некоторые из них не только не умирают, но и рожают здоровых детей. Видимо, есть мутация (или мутации), защищающая человека от СПИДа. Люди с такой мутацией могут быть инфицированы вирусом иммунодефицита, но не заболевают СПИДом. В настоящее время создана карта, примерно отражающая распределение этой мутации в Европе. Особенно часто (у 15% населения) она встречается среди финно-угорской группы населения. Идентификация такого мутантного гена могла бы привести к созданию надежного способа борьбы с одним из самых страшных заболеваний нашего века.

Выяснилось также, что разные аллели одного гена могут обуславливать разные реакции людей на лекарственные препараты. Фармацевтические компании планируют использовать эти данные для производства определенных лекарств, предназначенных различным группам пациентов. Это поможет устранить побочные реакции от лекарств, точнее, понять механизм их действия, снизить миллионные затраты. Целая новая отрасль – фармакогенетика – изучает, как те или иные особенности строения ДНК могут ослабить или усилить воздействие лекарств.

Расшифровка геномов бактерий позволяет создавать новые действенные и безвредные вакцины и качественные диагностические препараты.

Конечно, достижения проекта «Геном человека» могут применяться не только в медицине или фармацевтике.

По последовательностям ДНК можно устанавливать степень родства людей, а по митохондриальной ДНК – точно устанавливать родство по материнской линии. Разработан метод «генетической дактилоскопии», который позволяет идентифицировать человека по следовым количествам крови, чешуйкам кожи и т.п. Этот метод с успехом применяется в криминалистике – уже тысячи людей оправданы или осуждены на основании генетического анализа. Сходные подходы можно использовать в антропологии, палеонтологии, этнографии, археологии и даже в такой, казалось бы, далекой от биологии области, как сравнительная лингвистика.

В результате проведенных исследований появилась возможность сравнивать геномы бактерий и различных эукариотических организмов. Выяснилось, что в процессе эволюционного развития у организмов увеличивается количество интронов, т.е. эволюция сопряжена с «разбавлением» генома: на единицу длины ДНК приходится все меньше информации о структуре белков и РНК (экзоны) и все больше участков, не имеющих ясного функционального значения (интроны). Это одна из больших загадок эволюции.

Раньше ученые–эволюционисты выделяли две ветви в эволюции клеточных организмов: прокариоты и эукариоты. В результате сравнения геномов пришлось выделить в отдельную ветвь архебактерии – уникальные одноклеточные организмы, сочетающие в себе признаки прокариот и эукариот.

В настоящее время также интенсивно изучается проблема зависимости способностей и талантов человека от его генов. Главная задача будущих исследований – это изучение однонуклеотидных вариаций ДНК в клетках разных органов и выявление различий между людьми на генетическом уровне. Это позволит создавать генные портреты людей и, как следствие, эффективнее лечить болезни, оценивать способности и возможности каждого человека, выявлять различия между популяциями, оценивать степень приспособленности конкретного человека к той или иной экологической обстановке и т.д.

Напоследок необходимо упомянуть об опасности распространения генетической информации о конкретных людях. В связи с этим в некоторых странах уже приняты законы, запрещающие распространение такой информации, и юристы всего мира работают над этой проблемой. Кроме того, проект «Геном человека» иногда связывают с возрождением евгеники на новом уровне, что тоже вызывает тревогу специалистов.

Анализ генома человека завершен.

В Вашингтоне 6 апреля 2000 г. состоялось заседание комитета по науке Конгресса США, на котором д-р Дж.Крейг Вентер заявил, что его компания, Celera Genomics, завершила расшифровку нуклеотидных последовательностей всех необходимых фрагментов генома человека. Он ожидает, что предварительная работа по составлению последовательностей всех генов (их около 80 тыс., и они содержат примерно 3 млрд. «букв» ДНК) будет завершена через 3–6 недель, т.е. гораздо раньше, чем планировалось. Скорее всего, окончательная расшифровка генома человека будет завершена к 2003 г.

Компания Celera включилась в исследования по проекту «Геном человека» 22 месяца назад. Используемые ею подходы сначала подвергались критике со стороны так называемого открытого консорциума участников проекта, однако завершенный ею в прошлом месяце подпроект по расшифровке генома плодовой мушки показал их действенность.

На этот раз никто не критиковал прогнозы К.Вентера, сделанные им в присутствии советника президента США по науке д-ра Н.Лэйна и представителя консорциума, крупнейшего специалиста по секвенированию генома д-ра Роберта Ватерстона.

Предварительная карта генома будет содержать около 90% всех генов, но, тем не менее, она будет большим подспорьем в работе ученых и врачей, поскольку позволит довольно точно отыскивать необходимые гены. Д-р Вентер заявил, что теперь собирается использовать свои 300 секвенаторов для анализа генома мыши, знание которого поможет понять, как работают гены человека.

Расшифрованный геном принадлежит мужчине, поэтому содержит как X-, так и Y-хромосомы. Имя этого человека не известно, и это не имеет значения, т.к. обширные данные по индивидуальной изменчивости ДНК собраны и продолжают собираться как компанией Celera, так и консорциумом исследователей. Между прочим, консорциум использует в своих исследованиях генетический материал, полученный от различных людей. Д-р Вентер охарактеризовал полученные консорциумом результаты как 500 тыс. расшифрованных, но не упорядоченных фрагментов, из которых очень трудно будет составить целые гены.

Д-р Вентер заявил, что после того, как структура генов будет определена, он устроит конференцию для того, чтобы привлечь сторонних экспертов к установлению положения генов в молекулах ДНК и определению их функций. После этого другие исследователи получат бесплатный доступ к данным по геному человека.

Между Вентером и консорциумом исследователей велись переговоры о совместной публикации полученных результатов, причем один из основных пунктов соглашения должен был предусматривать, что патентование генов возможно лишь после точного определения их функций и положения в ДНК.

Однако переговоры были прерваны из-за разногласий по поводу того, что считать завершением расшифровки генома. Проблема состоит в том, что в ДНК эукариот, в отличие от ДНК прокариот, есть фрагменты, которые не поддаются расшифровке современными методами. Размеры таких фрагментов могут быть от 50 до 150 тыс. оснований, но, к счастью, эти фрагменты содержат очень немного генов. В то же время и в участках ДНК, богатых генами, есть фрагменты, которые также не могут быть пока расшифрованы.

Определение положения и функций генов предполагается осуществить с помощью специальных компьютерных программ. Эти программы будут анализировать структуру генов и, сравнивая ее с данными по геномам других организмов, предлагать варианты их возможных функций. По мнению компании Celera, работу можно считать завершенной, если гены определены практически полностью и точно известно, как расшифрованные фрагменты располагаются на молекуле ДНК, т.е. в каком порядке. Этому определению удовлетворяют результаты Celera, в то время как результаты консорциума не позволяют однозначно определить положение расшифрованных участков относительно друг друга.

Компания Celera предполагает после составления полной карты генома человека сделать эти данные доступными для других исследователей по подписке, при этом для университетов плата за пользование банком данных будет очень низкой, 5–15 тыс. долларов в год. Это составит серьезную конкуренцию базе данных Genbank, принадлежащей университетам.

Участники заседания комитета по науке резко критиковали такие компании, как Incyte Pharmaceuticals и Human Genome Sciences, которые каждую ночь копировали данные консорциума, доступные по Интернету, а затем подавали заявки на патентование всех генов, обнаруженных ими в этих последовательностях.

На вопрос, не могут ли данные о геноме человека быть использованы для создания биологического оружия нового типа, например, опасного только для некоторых популяций, д-р Вентер ответил, что гораздо большую опасность представляют данные по геномам болезнетворных бактерий и вирусов. На вопрос одного из конгрессменов, не станет ли теперь реальностью целенаправленное изменение человеческой расы, д-р Вентер ответил, что для полного определения функций всех генов может потребоваться около ста лет, а до тех пор о направленных изменениях в геноме говорить не приходится.

Напомним, что в декабре 1999 г. исследователи Великобритании и Японии объявили об установлении структуры 22-й хромосомы. Это была первая декодированная хромосома человека. Она содержит 33 млн. пар оснований, и в ее структуре остались нерасшифрованными 11 участков (около 3% длины ДНК). Для этой хромосомы определены функции примерно половины генов. Установлено, например, что с дефектами этой хромосомы связано 27 различных заболеваний, среди которых такие, как шизофрения, миелоидная лейкемия и трисомия 22 – вторая по значению причина выкидышей у беременных.

В то время британские ученые резко критиковали методы секвенирования, используемые компанией Celera, считая, что они потребуют слишком длительного времени для расшифровки последовательностей и определения взаимного расположения их фрагментов. Тогда на основе известного объема декодированного материала делались прогнозы, что следующими будут картированы 7-, 20- и 21-й хромосомы.

Через неделю после объявления о завершении расшифровки нуклеотидных последовательностей в геноме человека, состоялось собрание Американской ассоциации за прогресс в науке, на которой министр по энергетике США Билл Ричардсон объявил, что ученые Объединенного института генома определили структуры 5-, 16- и 19-й хромосом человека.

Эти хромосомы содержат примерно 300 млн. пар оснований, что составляет 10–15 тыс. генов, или около 11% генетического материала человека. Пока удалось картировать 90% ДНК этих хромосом – остались не поддающиеся дешифровке участки, содержащие незначительное число генов.

На картах хромосом обнаружены генетические дефекты, которые могут приводить к некоторым заболеваниям почек, раку простаты и прямой кишки, лейкемии, гипертонии, диабету и атеросклерозу. По словам Ричардсона, ближе к лету информация о структуре хромосом будет доступна всем исследователям бесплатно.



Геном человека насчитывает примерно 38000 ге­нов, представляющих собой индивидуальные еди­ницы наследственности.

Линии герминативных клеток (половых, репродуктивных, клеток заро­дышевой линии) содержат одну копию генетиче­ского материала и называются гаплоидными, соматические клетки (не относящиеся к клеткам зародышевой линии) содержат две пол­ные копии и называются диплоидными. Гены объединены в длинные сегменты дезоксирибону­клеиновой кислоты (ДНК), которые в процессе клеточного деления совместно с белками образу­ют компактные сложные структуры - хромосомы. Каждая соматическая клетка имеет 46 хромо­сом (22 пары аутосом, или неполовых хромосом, и 1 пару половых хромосом - ХУ у мужчин и XX у женщин). Половые клетки (яйцеклетки, спермато­зоиды) содержат 22 аутосомы, 1 половую хромо­сому, т. е. всего 23 хромосомы. Слияние половых клеток приводит к образова­нию полного диплоидного набора из 46 хромосом, который вновь реализуется в клетках эмбриона.

Молекула генома человека имеет три структурных блока: пентозного сахара (дезоксирибоза), фос­фатной группы и че­тырех видов азотистых оснований - пуриновых (аденин и гуанин) или пиримидиновых (тимин и цитозин). Эти четыре типа оснований формируют алфавит генетического кода. Основной субъединицей ДНК служит нуклеотид, состоящий из молекулы дезоксирибозы, одной фосфат­ной группы и одного основания. Они соединяются в определенной последователь­ности - аденин с тимином, цитозин с гуанином. Различные длинные последователь­ности нуклеотидных оснований кодируют разные белки. Отдельные триплеты соответствуют транс­портным РНК, каждая из которых соответствует определенной аминокислоте. Каждый геном человека содержит около 3 млрд нуклеотидных пар, которые в совокупности кодируют весь набор белков организма человека.

Только небольшая часть ДНК клетки (10% об­щего содержания ДНК) активно функционирует во время метаболически активного периода клеточ­ного цикла. Некоторая часть неактивного генетиче­ского материала может иметь важное значение для регуляции экспрессии генов или для поддержания структуры и функции хромосом.

Большая часть генома человека содер­жится в ядрах клеток. Митохондрии (клеточные органеллы, продуцирующие энергию) содержат свой собственный уникальный геном. Митохондриальная хромосома имеет двухцепочную коль­цевую молекулу ДНК, включающую 16000 пар нуклеотидных оснований ДНК, последователь­ность которой полностью расшифрована. Белки, входящие в состав митохондрий, могут синтезиро­ваться в самих митохондриях на основе информа­ции, содержащейся в митохондриальном геноме, или в синтезироваться на основании генетической информации, содержащейся в ядерном геноме человека, и транспортироваться в органеллы. Все митохон­дрии передаются от матери (так как сперматозоид обычно не передает митохондрии в оплодотво­ренную яйцеклетку); митохондрии с различным геномом в пределах одной клетки представляют различные линии материнских клеток, от которых они произошли.

Структура и функции генома человека

Основная цель генома человека - продукция структурных протеинов и ферментов. Этот процесс включает ряд стадий, называемых транскрипцией, процес­сингом и трансляцией. Для передачи информации исходная молекула ДНК «расплетается» с обра­зованием одноцепочной ДНК, при этом одна или другая цепь (или обе) действует как матрица для копирования. Если это происходит во время репли­кации клетки, каждая цепь ДНК копируется с об­разованием двух новых двухцепочных дочерних молекул ДНК; этот процесс называется реплика­цией. Если процесс происходит во время метабо­лически активного периода клеточного цикла, ко­пируется только одна цепь ДНК с формированием одноцепочной матричной (информационной) РНК (мРНК); этот процесс называется транскрипцией. Код для каждого гена переписывается с ДНК на мРНК, включая информацию, необходимую для кодирования аминокислот (экзоны), и некодирую­щие нуклеотидные последовательности, располо­женные между экзонами (интроны).

Образующаяся в результате мРНК отличается от ДНК, так как содержит рибозу вместо дезокси- рибозы и пиримидиновое основание урацил вместо тимина. Первичный транскрипт мРНК перед тем как покинуть ядро подвергается процес­сингу, при котором из молекулы мРНК удаляются некодирующие участки-интроны, а оставшиеся ко­дирующие участки-экзоны соединяются в единую цепь с формированием функциональной мРНК, которая затем мигрирует в цитоплазму, где идет трансляция. Во время трансляции мРНК ре­гулирует продукцию белка на рибосоме путем фор­мирования комплементарных связей между тремя нуклеотидами, называемыми кодонами, и тремя до­полнительными нуклеотидами на молекуле транс­портной РНК — антикодона­ми. При продвижении рибосомы вдоль РНК от кодона к кодону ферменты объединяют соседние аминокислоты, связанные с молекулами тРНК, с формированием ковалентных пептидных связей. Структура полипептидных цепей и образующихся в конечном счете белков определяется нуклеотид­ными последовательностями мРНК.

Принципы наследственности были обозначены впервые в 1900-х годах, когда естественные получили развитие и ввели в обиход (с полным определением) понятия геном человека и ген, в частности. Их исследование дало возможность ученым открыть секрет наследственности, и стало толчком для изучения наследственных болезней и их природы.

Вконтакте

Геном человека: общие понятия

Чтобы разобраться, что такое гены и процессы наследования организмом определенных свойств и качеств, следует знать и понимать термины и основные положения. Краткое изложение основных понятий даст возможность более глубоко вникнуть в данную тему.

Гены человека – это части цепи (дезоксирибонуклеиновая кислота в виде макромолекул), которая задает последовательность определенных полипептидов (семейства аминокислот) и несет основную наследственную информацию от родителей к детям.

Говоря простым языком, определенный ген содержит информацию о строении белка и несет ее от родительского организма к детскому, повторяя строение полипептидов и передавая наследственность.

Геном человека – это обобщающее понятие, обозначающее некоторое количество определённых генов. Впервые его ввел Ганс Винклер в 1920-м, однако спустя время несколько изменилось его изначальное значение.

Вначале он обозначал определенное количество хромосом (непарных и одинарных), а спустя время выяснилось, что в геноме 23 парных хромосомы и митохондриальная дезоксирибонуклеиновая кислота.

Генетическая информация – это данные которые заключены в ДНК, и несущие порядок построения белков в виде кода из нуклеотидов. Стоит также упомянуть, что подобная информация находится внутри и вне границ .

Гены человека исследовались на протяжении многих лет, за которые было претворено в жизнь множество экспериментов . До сих пор проводятся опыты, которые дают ученым новую информацию.

Благодаря последним исследованиям стало ясно, что не всегда четкая и последовательная структура наблюдается в дезоксирибонуклеиновых кислотах.

Существуют так называемые прерывистые гены, связи которых прерываются, что делает неверными все предыдущее теории о постоянстве этих частиц. В них время от времени происходят изменения, которые влекут за собой изменения и в структуре дезоксирибонуклеиновых кислот.

История открытия

Впервые научный термин был обозначен только в 1909 году ученым Вильгельмом Иогансеном, который был выдающимся ботаником в Дании.

Важно! В 1912 году появилось слово «генетика», которое стало названием целого отдела . Именно он занимается изучением генов человека.

Исследование частицы началось задолго до 20 века (данных в каком точно году нет), и складывалось из нескольких этапов:

  1. В 1868 году известный ученый Дарвин выдвинул гипотезу о пангенезе. В ней он описывал отделение геммулы. Дарвин считал, что геммула – это определенная часть клетки, из которой затем образовываются половые клетки.
  2. Через несколько лет Гуго де Фриз сформировал свою собственную теорию, отличную от дарвиновской, в которой описал процесс пангенеза внутри клеток. Он считал, что в каждой клетке есть частица, и она ответственна за некоторые свойства наследования вида. Он обозначил эти частицы как «пангены». Отличия двух гипотез заключается в том, что Дарвин считал геммулы частями тканей и внутренних органов, независимо от вида животного, а де Фриз представлял свои пангены как признаки наследования внутри конкретного вида.
  3. В. Иогансен в 1900 году определил наследственный фактор как ген, взяв вторую часть от термина, использованного де Фризом. Он использовал слово для определения «зачатка», той частицы, которая является наследственной. При этом ученый подчеркивал независимость термина от ранее выдвинутых теорий.

Изучением наследственного фактора уже достаточно давно занимались биологи и зоологи, но только с начала 20-го века генетика начала развиваться с огромной скоростью, открывая для людей тайны наследования.

Расшифровка генома человека

С того момента, как ученые открыли наличие в организме человека гена, они стали исследовать вопрос информации, заключенной в нем. Уже более 80 лет ученые пытаются расшифровать ее. На сегодняшний день они добились в этом значительных успехов, что дало возможность влиять на наследственные процессы и менять структуру клеток у следующего поколения.

История расшифровки ДНК состоит из нескольких определяющих моментов:

  1. 19 век – начало изучения нуклеиновых кислот.
  2. 1868 год – Ф. Мишер впервые выделяет из клеток нуклеин или ДНК.
  3. В середине 20 века О. Эвери и Ф. Гриффит выясняют при помощи опыта, проведенного на мышах, что за процесс трансформации бактерий отвечает именно нуклеиновая кислота.
  4. Первый человеком, кто показал миру ДНК стал Р. Франклин. Спустя несколько лет после открытия нуклеиновой кислоты он делает фотографию ДНК, случайным образом используя рентген при исследовании структуры кристаллов.
  5. В 1953 году дано точное определение принципу воспроизводства жизни у всех видов.

Внимание ! С того времени, как впервые общественности предоставили двойную спираль ДНК, произошло множество открытий, давших возможность понять природу ДНК и механизмы ее работы.

Человеком, который открыл ген , принято считать Грегора Менделя, впервые обнаружившего определенные закономерности в наследственной цепи.

А вот расшифровка ДНК человека произошла на основе открытия другого ученого – Фредерика Сенгера, который разработал методы чтения последовательностей белковых аминокислот и последовательность построения самой ДНК.

Благодаря работе множества ученых за три последних века были выяснены процессы формирования, особенности, и сколько генов находится в геноме человека.

В 1990 году начался международный проект «Геном человека», которым руководил Джеймс Уотсон. Его целью было выяснить, в какой последовательности выстраиваются нуклеотиды в ДНК, и выявить около 25 000 генов в человеке. Благодаря этому проекту человек должен был получить полное представление о формировании ДНК и расположению всех его составляющих частей, а также механизм построения гена.

Стоит уточнить, что программа не ставила своей задачей определить всю последовательность нуклеиновой кислоты в клетках, а лишь только некоторых областей. Началась она в 1990 году, но только в 2000 был выпущен черновик работы, а полное исследование завершено — в 2003 году . Исследование последовательности длиться до сих пор и 8% гетерохроматиновых областей все еще не определены.

Цели и задачи

Как любой научный проект, «Геном человека» ставил перед собой конкретные цели и задачи. Изначально ученые собирались выявить последовательности 3 млрд нуклеотидов и более. Затем отдельные группы исследователей выразили желание попутно определить также последовательность биополимеров, которая бывает аминокислотной или нуклеотидной. В итоге главные цели проекта выглядели следующим образом:

  1. Создать карту генома;
  2. Создать карту человеческих хромосом;
  3. Выявить последовательность формирования полипептидов;
  4. Сформировать методологию хранения и анализа собранной информации;
  5. Создать технологию, которая поможет в достижении всех указанных выше целей.

Данный список задач упускает не менее важную, но не такую очевидную – это изучение этических, правовых и социальных последствий подобных исследований. Вопрос наследственности может вызывать разногласия среди людей и повлечь серьезные конфликты, поэтому ученые поставили за цель обнаружить решения этих конфликтов до их возникновения.

Достижения

Наследственные последовательности – это уникальное явление , которое наблюдается в организме каждого человека в той или иной форме.

Проект достиг всех поставленных задач раньше, чем исследователи предполагали. К концу проекта они расшифровали около 99,99 % ДНК, хотя ученые ставили перед собой задачу секвенировать только 95% данных. Сегодня, несмотря на успех проекта, остаются все еще неисследованные участки дезоксирибонуклеиновых кислот.

В итоге исследовательской работы было определено сколько генов в организме человека (около 20-25 тыс. генов в геноме), и все они охарактеризованы:

  • количество;
  • расположение;
  • структурно-функциональные особенности.

Геном человека — исследования, расшифровка

Расшифровка человеческого генома

Вывод

Все данные будут подробно изложены в генетической карте человеческого организма. Претворение в жизнь такого сложного научного проекта дало не только колоссальные теоретические знания для фундаментальных наук, но и оказало невероятное влияние на само понимание наследственности. Это в свою очередь, не могло не отразиться на процессах предупреждения и лечения наследственных болезней.

Данные, полученные учеными, помогли ускорить другие молекулярные исследования и способствовать эффективному поиску генетической основы в заболеваниях, передающихся по наследству, и предрасположенности к ним. Результаты смогут повлиять на обнаружение соответствующих лекарств для профилактики множества заболеваний: атеросклероза, сердечной ишемии, болезней психического и онкологического характера.

"хромосома" - слова, которые знакомы каждому школьнику. Но представление об этом вопросе довольно обобщенное, так как для углубления в биохимические дебри требуются специальные знания и желание все это понимать. А оно, если и присутствует на уровне любопытства, то быстро пропадает под тяжестью изложения материала. Попробуем разобраться в хитросплетениях в научно-полярной форме.

Ген - это наименьшая структурная и функциональная частица информации о наследственности у живых организмов. По сути он представляет собой небольшой участок ДНК, в котором содержится знание об определенной последовательности аминокислот для построения белка либо функциональной РНК (с которой также будет синтезирован белок). Ген определяет те признаки, которые будут наследоваться и передаваться потомками дальше по генеалогической цепи. У некоторых одноклеточных организмов существует перенос генов, который не имеет отношения к воспроизведению себе подобных, он называется горизонтальным.

"На плечах" генов лежит огромная ответственность за то, как будет выглядеть и работать каждая клетка и организм в целом. Они управляют нашей жизнью от момента зачатия до самого последнего вздоха.

Первый научный шаг вперед в изучении наследственности был сделан австрийским монахом Грегором Менделем, который в 1866 году опубликовал свои наблюдения о результатах при скрещивании гороха. Наследственный материал, который он использовал, четко показывал закономерности передачи признаков, таких как цвет и форма горошин, а также цветки. Этот монах сформулировал законы, которые сформировали начало генетики как науки. Наследование генов происходит потому, что родители отдают своему чаду по половинке всех своих хромосом. Таким образом, признаки мамы и папы, смешиваясь, образуют новую комбинацию уже имеющихся признаков. К счастью, вариантов больше, чем живых существ на планете, и невозможно отыскать двух абсолютно идентичных существ.

Мендель показал, что наследст-венные задатки не смешиваются, а передаются от родителей потомкам в виде дискретных (обособлен-ных) единиц. Эти единицы, представленные у особей парами (аллелями), остаются дискретными и передаются по-следующим поколениям в мужских и женских га-метах, каждая из которых содержит по одной едини-це из каждой пары. В 1909 году датский ботаник Иогансен назвал эти единицы генами. В 1912 году генетик из Соединенных Штатов Америки Морган показал, что они находятся в хромосомах.

С тех пор прошло больше полутора веков, и исследования продвинулись дальше, чем Мендель мог себе представить. На данный момент ученые остановились на мнении, что информация, находящаяся в генах, определяет рост, развитие и функции живых организмов. А может быть, даже и их смерть.

Классификация

Структура гена содержит в себе не только информацию о белке, но и указания, когда и как ее считывать, а также пустые участки, необходимые для разделения информации о разных белках и остановки синтеза информационной молекулы.

Существует две формы генов:

  1. Структурные - они содержат в себе информацию о строении белков или цепей РНК. Последовательность нуклеотидов соответствует расположению аминокислот.
  2. Функциональные гены отвечают за правильную структуру всех остальных участков ДНК, за синхронность и последовательность ее считывания.

На сегодняшний день ученые могут ответить на вопрос: сколько генов в хромосоме? Ответ вас удивит: около трех миллиардов пар. И это только в одной из двадцати трех. Геном называется наименьшая структурная единица, но она способна изменить жизнь человека.

Мутации

Случайное или целенаправленное изменение последовательности нуклеотидов, входящих в цепь ДНК, называется мутацией. Она может практически не влиять на структуру белка, а может полностью извратить его свойства. А значит, будут локальные или глобальные последствия такого изменения.

Сами по себе мутации могут быть патогенными, то есть проявляться в виде заболеваний, либо летальными, не позволяющими организму развиваться до жизнеспособного состояния. Но большинство изменений проходит незаметно для человека. Делеции и дупликации постоянно совершаются внутри ДНК, но не влияют на ход жизни каждого отдельного индивидуума.

Делеция - это потеря участка хромосомы, который содержит определенную информацию. Иногда такие изменения оказываются полезными для организма. Они помогают ему защититься от внешней агрессии, например вируса иммунодефицита человека и бактерии чумы.

Дупликация - это удвоение участка хромосомы, а значит, и совокупность генов, которые он содержит, также удваивается. Из-за повторения информации она хуже подвержена селекции, а значит, может быстрее накапливать мутации и изменять организм.

Свойства гена

У каждого человека имеется огромная Гены - это функциональные единицы в ее структуре. Но даже такие малые участки имеют свои уникальные свойства, позволяющие сохранять стабильность органической жизни:

  1. Дискретность - способность генов не смешиваться.
  2. Стабильность - сохранение структуры и свойств.
  3. Лабильность - возможность изменяться под действием обстоятельств, подстраиваться под враждебные условия.
  4. Множественный аллелизм - существование внутри ДНК генов, которые, кодируя один и тот же белок, имеют разную структуру.
  5. Аллельность - наличие двух форм одного гена.
  6. Специфичность - один признак = один ген, передающийся по наследству.
  7. Плейотропия - множественность эффектов одного гена.
  8. Экспрессивность - степень выраженности признака, который кодируется данным геном.
  9. Пенетрантность - частота встречаемости гена в генотипе.
  10. Амплификация - появление значительного количества копий гена в ДНК.

Геном

Геном человека - это весь наследственный материал, который находится в единственной клетке человека. Именно в нем содержатся указания о построении тела, работе органов, физиологических изменениях. Второе определение данного термина отражает структуру понятия, а не функцию. Геном человека - это совокупность генетического материала, упакованного в гаплоидном наборе хромосом (23 пары) и относящегося к конкретному виду.

Основу генома составляет молекула хорошо известная как ДНК. Все геномы содержат по крайней мере два вида информации: кодированная информация о структуре молекул-посредников (так называемых РНК) и белка (эта информация содержится в генах), а также инструкции, которые определяют время и место проявления этой информации при развитии организма. Сами гены занимают небольшую часть генома, но при этом являются его основой. Информация, записанная в генах, — своего рода инструкция для изготовления белков, главных строительных кирпичиков нашего тела.

Однако для полной характеристики генома недостаточно заложенной в нем информации о структуре белков. Нужны еще данные об элементах которые принимают участие в работе генов, регулируют их проявление на разных этапах развития и в разных жизненных ситуациях.

Но даже и этого мало для полного определения генома. Ведь в нем присутствуют также элементы, способствующие его самовоспроизведению (репликации), компактной упаковке ДНК в ядре и еще какие-то непонятные пока еще участки, иногда называемые «эгоистичными» (то есть будто бы служащими только для самих себя). По всем этим причинам в настоящий момент, когда заходит речь о геноме, обычно имеют в виду всю совокупность последовательностей ДНК, представленных в хромосомах ядер клеток определенного вида организмов, включая, конечно, и гены.

Размер и структура генома

Логично предположить, что ген, геном, хромосома отличаются у разных представителей жизни на Земле. Они могут быть как бесконечно маленькими, так и огромными и вмещать в себе миллиарды пар генов. Структура гена также будет зависеть от того, чей геном вы исследуете.

По соотношению между размерами генома и числом входящих в него генов можно выделить два класса:

  1. Компактные геномы, имеющие не более десяти миллионов оснований. У них совокупность генов строго коррелирует с размером. Наиболее характерны для вирусов и прокариотов.
  2. Обширные геномы состоят более чем из 100 миллионов пар оснований, не имеющих взаимосвязи между их длиной и количеством генов. Чаще встречаются у эукариотов. Большинство нуклеотидных последовательностей в этом классе не кодируют белков или РНК.

Исследования показали, что в геноме человека находится около 28 тысяч генов. Они неравномерно распределены по хромосомам, но значение этого признака остается пока загадкой для ученых.

Хромосомы

Хромосомы - это способ упаковки генетического материала. Они находятся в ядре каждой эукариотической клетки и состоят из одной очень длинной молекулы ДНК. Их легко можно увидеть в световой микроскоп в процессе деления. Кариотипом называется полный набор хромосом, который является специфичным для каждого отдельного вида. Обязательными элементами для них являются центромера, теломеры и точки репликации.

Изменения хромосом в процессе деления клетки

Хромосома - это последовательные звенья цепи передачи информации, где каждое следующее включает предыдущее. Но и они претерпевают определенные изменения в процессе жизни клетки. Так, например, в интерфазе (период между делениями) хромосомы в ядре расположены рыхло, занимают много места.

Когда клетка готовится к митозу (т. е. к процессу разделения надвое), хроматин уплотняется и скручивается в хромосомы, и теперь его становится видно в световой микроскоп. В метафазе хромосомы напоминают палочки, близко расположенные друг к другу и соединенные первичной перетяжкой, или центромерой. Именно она отвечает за формирование веретена деления, когда группы хромосом выстраиваются в линию. В зависимости от размещения центромеры существует такая классификация хромосом:

  1. Акроцентрические - в этом случае центромера расположена полярно по отношению к центру хромосомы.
  2. Субметацентрические, когда плечи (то есть участки, находящиеся до и после центромеры) неравной длины.
  3. Метацентрические, если центромера разделяет хромосому ровно посередине.

Данная классификация хромосом была предложена в 1912 году и используется биологами вплоть до сегодняшнего дня.

Аномалии хромосом

Как и с другими морфологическими элементами живого организма, с хромосомами тоже могут происходить структурные изменения, которые влияют на их функции:

  1. Анеуплоидия. Это изменение общего числа хромосом в кариотипе за счет добавления или удаления одной из них. Последствия такой мутации могут быть летальными для еще не родившегося плода, а также приводить к врожденным дефектам.
  2. Полиплоидия. Проявляется в виде увеличения количества хромосом, кратного половине их числа. Чаще всего встречается у растений, например водорослей, и грибов.
  3. Хромосомные аберрации, или перестройки, - это изменения в строении хромосом под воздействием факторов внешней среды.

Генетика

Генетика - это наука, изучающая закономерности наследственности и изменчивости, а также обеспечивающие их биологические механизмы. В отличие от многих других биологических наук она с момента своего возникновения стремилась быть точной наукой. Вся история генетики — это история создания и использования все более и более точных методов и подходов. Идеи и методы генетики играют важную роль в медицине, сельском хозяйстве, генетической инженерии, микробиологической промышленности.

Наследственность - способность организма обеспечивать в ряду морфологических, биохимических и физиологических признаков и особенностей. В процессе наследования воспроизводятся основные видоспецифические, групповые (этнические, популяционные) и семейные черты строения и функционирования организмов, их онтогенеза (индивидуального развития). Наследуются не только определенные структурно-функциональные характеристики организма (черты лица, некоторые особенности обменных процессов, темперамента и др.), но и физико-химические особенности строения и функционирования основных биополимеров клетки. Изменчивость — разнообразие признаков среди представителей определенного вида, а также свойство потомков приобретать отличия от родительских форм. Изменчивость вместе с наследственностью представляют собой два неразделимых свойства живых организмов.

Синдром Дауна

Синдром Дауна - генетическое заболевание, при котором кариотип состоит из 47 хромосом у человека вместо обычных 46. Это одна из форм анеуплоидии, о которой говорилось выше. В двадцать первой паре хромосом появляется добавочная, которая привносит лишнюю генетическую информацию в геном человека.

Название свое синдром получил в честь врача, Дона Дауна, который открыл и описал его в литературе как форму психического расстройства в 1866 году. Но генетическая подоплека была обнаружена почти на сто лет позже.

Эпидемиология

На данный момент кариотип в 47 хромосом у человека встречается один раз на тысячу новорожденных (ранее статистика была иной). Это стало возможным благодаря ранней диагностике данной патологии. Заболевание не зависит от расы, этнической принадлежности матери или ее социального положения. Оказывает влияние возраст. Шансы родить ребенка с синдромом Дауна возрастают после тридцати пяти лет, а после сорока соотношение здоровых детей к больным равняется уже 20 к 1. Возраст отца старше сорока лет также увеличивает шансы на рождение ребенка с анеуплоидией.

Формы синдрома Дауна

Наиболее частый вариант - появление дополнительной хромосомы в двадцать первой паре по ненаследственному пути. Он обусловлен тем, что во время мейоза эта пара не расходится по веретену деления. У пяти процентов заболевших наблюдается мозаицизм (дополнительная хромосома содержится не во всех клетках организма). Вместе они составляют девяносто пять процентов от общего количества человек с этой врожденной патологией. В остальных пяти процентах случаев синдром вызван наследственной трисомией двадцать первой хромосомы. Однако рождение двух детей с этим заболеванием в одной семье незначительно.

Клиника

Человека с синдромом Дауна можно узнать по характерным внешним признакам, вот некоторые из них:

Уплощенное лицо;
- укороченный череп (поперечный размер больше продольного);
- кожная складка на шее;
- складка кожи, которая прикрывает внутренний угол глаза;
- чрезмерная подвижность суставов;
- сниженный тонус мышц;
- уплощение затылка;
- короткие конечности и пальцы;
- развитие катаракты у детей старше восьми лет;
- аномалии развития зубов и твердого неба;
- врожденные пороки сердца;
- возможно наличие эпилептического синдрома;
- лейкозы.

Но однозначно поставить диагноз, основываясь только на внешних проявлениях, конечно, нельзя. Необходимо провести кариотипирование.

Заключение

Ген, геном, хромосома - кажется, что это просто слова, значение которых мы понимаем обобщенно и весьма отдаленно. Но на самом деле они сильно влияют на нашу жизнь и, изменяясь, заставляют меняться и нас. Человек умеет подстраиваться под обстоятельства, какими бы они ни оказались, и даже для людей с генетическими аномалиями всегда найдется время и место, где они будут незаменимы.