Какой высоты бывают волны океане. Как появляются блуждающие волны-убийцы

Бродячие волны, волны-убийцы, волны-монстры, столетние волны… все эти эпитеты служат для обозначения гигантских волн, которые встречаются в океане. Они настолько высокие, что способны перевернуть океанский лайнер. Высота бродячей волны - как минимум вдвое больше высоты обычной большой волны.

В эпоху Великих географических открытий, когда многие корабли, отправлявшиеся в плаванье, не возвращались обратно, по портовым кабакам пошли гулять невероятные истории о загадочном природном явлении. Юнги, крещёные штормом, и видавшие виды моряки рассказывали о жуткой и неведомой силе, которая появляется в открытом море из ниоткуда и разрушает корабли в одно мгновенье. С тех пор принципы судостроения изменились, управляемость, остойчивость и прочность кораблей значительно выросли. Раньше считалось, что волны-убийцы - это миф, но последние исследования доказали их существование. Согласно подсчетам, вероятность появления таких волн в океане составляет 1 к 200 000.

Давайте узнаем о ней подробнее …

На протяжении веков бывалые морские волки пугали своих слушателей жуткими рассказами о громадных волнах-убийцах высотой с гору. Но лишь сравнительно недавно океанологи и геофизики стали относиться к этим рассказам серьезно и пытаться понять, откуда берутся эти монстры и как от них уберечься. На помощь пришли математика и непрерывный космический мониторинг океана.

Хрестоматийная картина Айвазовского «Девятый вал» - о жертвах стихии - знакома, наверное, каждому. Разумеется, в число произведений известного мариниста эта тема попала не случайно: за многие столетия истории мореплавания фольклор оброс легендами о гигантских водяных стенах и провалах.

Как волна-убийца опрокидывает и топит суда, многие могли видеть в голливудском фильме-катастрофе «Идеальный шторм» (The Perfect Storm) - драматической истории о том, как в Северной Атлантике восточнее Ньюфаундленда в результате столкновения двух мощных штормовых фронтов бесследно исчезает рыболовецкая шхуна «Андреа Гейл», унося с собой жизни рыбаков.

По словам редких очевидцев, сумевших пережить буйство стихии, такие волны нередко возникают при вполне благоприятных погодных условиях, не предвещающих, казалось бы, никакой опасности.

Достоверных фактов о чудовищных волнах, неожиданно возникающих в открытом море, сравнительно немного, но тем не менее они накапливаются и требуют объяснения. Волны-убийцы совершенно не похожи на остальные: они в 3-5 раз превышают по высоте обычные волны, рождающиеся при сильном шторме.

Впервые официально волна-убийца была зафиксирована на норвежской газодобывающей платформе (платформа Дропнера) в 1995 году. Волну так и назвали - «волна Дропнера». Хотя она и не причинила платформе больших повреждений, ее высота составляла 26 метров - вдвое выше, чем в случае с любой другой большой волной в этом регионе.

Бродячие волны, в отличие от цунами, обычно встречаются очень далеко от берега. Для океанских штормов волны высотой 7 метров - обычное дело. Если шторм исключительно сильный, высота волн может достигать 15 метров. Но бродячие волны не рождаются в шторм и могут достигать высоты 30 метров и более (высота 10 этажного дома). Такая волна выглядит, как огромная, почти вертикальная стена воды. Если на пути бродячей волны оказывается корабль - надежд на спасение почти нет, он тонет за считанные минуты.

Но не только в океанах капитаны сталкиваются с волнами-убийцами. Североамериканские Великие озера не стали исключением. Именно там произошла одна из самых известных катастроф в морской истории. Великие Озера в Северной Америке являются своего родами морями, и об этом знает каждый мореход. Там возможны волны, подобные тем, что образуются в океане. Поэтому нет ничего удивительного в том, что на Великих Озерах появляются волны-убийцы.

Так, в американском озере Супериор существует феномен под названием «Три сестры». Иногда на поверхности озера возникают три огромных, идущих друг за другом волны.

Цунами – самые большие и мощные океанические волны, которые с ужасающей силой сметают все на своём пути. Особенностью столь опасного природного катаклизма является размер движущейся волны, ее огромная скорость, гигантское расстояние между гребнями, которое достигает десятки километров. Чрезвычайную опасность цунами представляет для прибрежной зоны. Приближаясь к берегу, волна набирает огромную скорость, сжимается перед препятствием, значительно вырастает в размере и наносит сокрушительный и непоправимый удар по зоне суши.

Чем же вызван этот огромный прилив воды, который не оставляет шансов на существование даже самым высоким и укрепленным сооружениям? Какими природными силами можно создать водное торнадо и лишить города и районы права на выживание? Движение тектонических плит и расколы в земной коре – самые злейшие предвестники обрушения гигантского потока.

Самое большое цунами в мире за всю историю человечества

Какая известна самая большая волна в мире? Полистаем страницы истории. Дату 9 июля 1958 года прекрасно помнят жители Аляски. Именно этот день стал роковым для фьорда Литуя, который находится в северо-восточной части залива Аляска. Предвестником исторического события было землетрясение, сила которого, по измерениям, равна 9,1 балла. Именно это и стало причиной ужасающего камнепада, который вызвал обрушение горных пород и волну невиданной величины.

Весь день 9 июля стояла ясная и солнечная погода. Уровень воды опустился на 1, 5 метра, рыбаки на суднах ловили рыбу (залив Литуя всегда был излюбленным местом заядлых рыбаков). Ближе к вечеру, около 22:00 по местному времени, оползень, скатившийся в воду с высоты 910 метров, потянул вслед за собой огромные камни, глыбы льда. Общий вес массы составил примерно 300 миллионов кубометров. Северная часть бухты залива Литуя была полностью затоплена водой. Вместе с этим гигантскую груду камней откинуло на противоположную сторону, в результате чего был разрушен весь зеленый массив побережья Фэруэтер.

Оползень такого масштаба спровоцировал появление огромной волны, высота которой была 524 метра! Это примерно дом в 200 этажей! Это была самая большая и самая высокая волна в мире. Гигантской силой потока океанской воды буквально смыло бухту Литуя. Приливная волна набирала скорость (к этому времени она разогналась уже до 160 км/час) и неслась в сторону острова Кенотафия. Страшные оползни одновременно спускались с гор к воде, неся столб пыли и камней. Волна вздыбилась такого размера, что под ней скрылось подножие горы.

Деревья и зеленые насаждения, покрывавшие склоны гор, вырывало с корнями и засасывало в толщу воды. Цунами то и дело металась из стороны в сторону внутри залива, покрывая собой точки отмели и сметая на своём пути лесные покровы высоких северных гор. От косы Ла-Гаусси, которая разделяла акваторию залива и бухту Гильберта, не осталось и следа. После того, как все утихло, на берегу можно было рассмотреть катастрофической величины трещины в земле, сильные разрушения и завалы. Постройки, возведенные рыбаками, были полностью уничтожены. Масштаб катастрофы невозможно было оценить.

Этой волной унесло жизни около трёхсот тысяч человек. Удалось спастись лишь баркасу, который каким-то невероятным чудом выбросило из бухты и перебросило через отмель. Оказавшись с другой стороны горы, рыбаки остались без судна, но были спасены спустя два часа. Тела рыбаков другого баркаса унесло в пучину воды. Они так и не были найдены.

Еще одна страшная трагедия

Страшные разрушения остались после нашествия цунами 26 декабря 2004 года для жителей побережья Индийского океана. Мощнейший толчок в океане стал причиной бедственной волны. В глубине Тихого океана, близ острова Суматра, произошёл разлом земной коры, который спровоцировал смещение дна на расстояние более 1000 километров. Самая большая волна, какая когда-либо накрывала побережье, образовалась от этого разлома. Сначала ее высота была не более 60 сантиметров. Но она ускорялась, и вот уже 20-метровый вал несся с безумной, невиданной скоростью в 800 километров в час в сторону островов Суматра и Таиланда на восток Индии и Шри-Ланки – на запад! За восемь часов страшной силы цунами, невиданная до ныне в истории, облетела все побережье Индийского океана, а за 24 часа и весь Мировой океан!

Самые большие разрушения случились на берегах Индонезии. Приливная волна погребла города и районы на десятки километров вглубь. Острова Таиланда стали братской могилой для десятков тысяч человек. У жителей прибрежных районов не было шансов на спасение, так как водное покрывало удерживало под собою города более 15-ти минут. Огромные человеческие жертвы стали следствием стихийного бедствия. Экономические потери также невозможно было сосчитать. Более 5 миллионов жителей вынуждены были покинуть свои жилища, более одного миллиона нуждались в помощи, двум миллионам человек требовалось новое жилье. Международные организации откликнулись и всячески помогали пострадавшим.

Бедствие в заливе Принца Уильяма

Сильные, невосполнимые потери причинило землетрясение 27 марта 1964 года в проливе Принца Уильяма (Аляска) в 9,2 балла по шкале измерения Рихтера. Им была охвачена огромная площадь 800 000 квадратных километров. Такую мощь толчка из глубины более 20-ти километров можно сравнить с одновременным разрывом 12 тысяч атомных бомб! Значительно пострадало западное побережье Соединенных Штатов Америки, которое буквально накрыло огромным цунами. Волна добралась до самой Антарктики и Японии. Были стерты с лица земли деревни и поселки, предприятия, город Вэлдэз.

Волна сметала все, что попадалось ей на пути: дамбы, бетонные блоки, дома, постройки, судна в порту. Высота волны достигала 67 метров! Это, конечно, не самая большая волна в мире, но разрушений она принесла немало. К счастью, смертоносным потоком унесло жизни примерно 150-ти человек. Число жертв могло быть значительно больше, но в связи с малонаселенностью этих мест погибло лишь 150 местных жителей. Учитывая площадь и гигантскую мощь потока, шансов выжить у них не оставалось.

Великое землетрясение Восточной Японии

Какая сила природы разрушила берега Японии и принесла непоправимые потери её жителям, можно только представить. После этой катастрофы последствия будут ощутимы еще много лет. На стыке двух наиболее крупных в мире литосферных плит произошло землетрясение, мощность которого равна 9,0 по шкале измерения Рихтера, и превышает примерно в два раза силу энергии толчков, вызванных землетрясением в Индийском океане в 2004 году. Трагическое событие огромного масштаба называют ещё «Великое землетрясение Восточной Японии». Буквально за 20 минут ужасающая волна, высота которой превышала 40 метров, добралась до берегов Японии, где находилось большое количество людей.

Жертвами цунами стали около 25 тысяч человек. Это была самая большая волна в истории жителей Востока. Но это было только начало катастрофы. Масштаб трагедии рос с каждым часом после атаки мощнейшим потоком атомной электростанции «Фокусима-1». Система электростанции из-за подземных толчков и ударов волнами вышла из рабочего режима. За сбоем последовало расплавление реакторов на энергетических блоках. Нынче зона в радиусе десятков километров – зона отчуждения и бедствия. Разрушены около 400 тысяч зданий и сооружений, уничтожены мосты, железнодорожные пути, автомобильные дороги, аэропорты, порты и судоходные станции. На восстановление страны после ужасной катастрофы, которую принесла самая высокая волна, уйдут годы.

Катастрофа на побережье Папуа – Новая Гвинея

Ещё одна катастрофа постигла побережье Папуа – Новая Гвинея в июле 1998 года. Землетрясение с силой 7,1 по шкале измерения, инициированное мощным оползнем, вызвало волну более 15 метров в высоту, которая лишила жизни более 200 тысяч человек, оставив без крова ещё тысячи жителей острова. До нашествия океанской воды здесь существовала маленькая бухта с названием Варупу, воды которой омывали два острова, где мирно жил, работал и торговал народ Варупу. Два мощных и неожиданных импульса из-под земли случились с интервалом в 30 минут.

Они привели в движение огромный вал, который вызвал сильные волны, снесшие с лица Новой Гвинеи несколько деревень на протяженности 30-ти километров. Жители еще семи населенных пунктов нуждались в оказании медицинской помощи и были госпитализированы. Уровень воды в море в столице Новой Гвинеи, Рабауле, поднялся на 6 сантиметров. Ранее не наблюдалось приливной волны такой величины, хоть в этом краю местные жители часто страдают от таких катастроф, как цунами и землетрясения. Гигантская волна разрушила и унесла под воду район площадью более 100 квадратных километров на глубину 4-х метров.

Цунами на Филиппинах

Ровно до 16 августа 1976 года существовал в океанической впадине Котабато небольшой по площади остров Минданао. Это было самое южное, живописное и экзотическое место среди всех островов Филиппин. Местные жители совсем не могли предугадать, что страшное землетрясение мощностью в 8 баллов по шкале Рихтера уничтожит это потрясающее, омываемое морями со всех сторон, место. Огромная сила образовала цунами в результате подземного толчка.

Волна как будто срезала всю береговую линию Минданао. Не успевшие скрыться 5 тысяч человек погибли под кровом морской воды. Примерно 2,5 тысячи жителей острова не были найдены, 9,5 тысяч получили различной степени увечья, более 90 тысяч потеряли свой кров и остались на улице. Это была самая сильная активность в истории Филиппинских островов. Ученые, исследовавшие детали катастрофы, установили, что мощь такого явления природы вызвала движения водной массы, что спровоцировало сдвиг островов Сулавеси и Борнео. Это было худшее и самое разрушительное событие за весь период существования острова Минданао.

Волнение — это колебательное движение воды. Оно воспринимается наблюдателем как движение волн по поверхности воды. На самом же деле водная поверхность совершает колебания вверх-вниз от среднего уровня положения равновесия. Форма волн при волнении постоянно изменяется в связи с движением частиц по замкнутым, почти круговым орбитам.

Каждая волна представляет собой плавное соединение возвышений и углублений. Основными частями волны являются: гребень — самая высокая часть; подошва - самая низкая часть; склон - профиль между гребнем и подошвой волны. Линия вдоль гребня волны называется фронтом волны (рис. 1).

Рис. 1. Основные части волны

Основные характеристики волн — это высота - разность уровней гребня и подошвы волны; длина - кратчайшее расстояние межу смежными гребнями или подошвами волн; крутизна - угол между склоном волны и горизонтальной плоскостью (рис. 1).

Рис. 1. Основные характеристики волны

Волны обладают очень большой кинетической энергией. Чем выше волна, тем больше в ней заключено кинетической энергии (пропорционально квадрату увеличения высоты).

Под влиянием силы Кориолиса справа по течению вдали от материка возникает водяной вал, а у суши создается депрессия.

По происхождению волны подразделяются следующим образом:

  • волны трения;
  • барические волны;
  • сейсмические волны или цунами;
  • сейши;
  • приливные волны.

Волны трения

Волны трения, в свою очередь, могут быть ветровыми (рис. 2) или глубинными. Ветровые волны возникают вследствие ветровые волнытрения на границе воздуха и воды. Высота ветровых волн не превышает 4 м, но при сильных и затяжных штормах она возрастает до 10-15 м и выше. Наиболее высокие волны — до 25 м — наблюдаются в полосе западных ветров Южного полушария.

Рис. 2. Ветровые волны и волны прибоя

Пирамидальные, высокие и крутые ветровые волны получили название толчея. Эти волны присущи центральным областям циклонов. Когда ветер стихает, волнение приобретает характер зыби , т. е. волнения по инерции.

Первичная форма ветровых волн - рябь. Она возникает при скорости ветра менее 1 м/с, а при скорости, большей 1 м/с, образуются сначала мелкие, а потом более крупные волны.

Волна близ берегов, в основном на мелководьях, основывающаяся на поступательных движениях, получила название прибоя (см. рис. 2).

Глубинные волны возникают на границе двух слоев воды с разными свойствами. Они часто возникают в проливах, с двумя этажами течения, близ устьев рек, у кромки тающих льдов. Эти волны перемешивают морскую воду и являются очень опасными для моряков.

Барическая волна

Барические волны возникают из-за быстрой смены атмосферного давления в местах происхождения циклонов, особенно тропических. Обычно эти волны одиночные и не приносят особого вреда. Исключение составляют случаи, когда они совпадают с высоким приливом. Таким бедствиям наиболее часто подвергаются Антильские острова, полуостров Флорида, побережья Китая, Индии, Японии.

Цунами

Сейсмические волны возникают под воздействием подводных толчков и прибрежных землетрясений. Это очень длинные и невысокие в открытом океане волны, но сила их распространения достаточно велика. Они движутся с очень большой скоростью. У побережий их длина сокращается, а высота резко возрастает (в среднем от 10 до 50 м). Их появление влечет за собой человеческие жертвы. Сначала морс отступает на несколько километров от берега, набирая силу для толчка, а потом волны с огромной скоростью выплескиваются на берег с интервалом 15-20 мин (рис. 3).

Рис. 3. Трансформация цунами

Японцы назвали сейсмические волны цунами , и этот термин используется во всем мире.

Сейсмический пояс Тихого океана является основным районом образования цунами.

Сейши

Сейши — это стоячие волны, которые возникают в заливах и внутренних морях. Они происходят по инерции после прекращения действия внешних сил — ветра, сейсмических толчков, резких изменений , выпадения интенсивных осадков и т. д. При этом в одном месте вода поднимается, а в другом — опускается.

Приливная волна

Приливные волны — это движения , совершаемые под влиянием приливообразующих сил Луны и Солнца. Обратная реакция морской воды на прилив - отлив. Полоса, осушаемая во время отлива, называется осушкой.

Существует тесная связь высоты приливов и отливов с фазами Луны. В новолуния и полнолуния наблюдаются самые высокие приливы и самые низкие отливы. Они называются сизигийными. В это время лунные и солнечные приливы, наступая одновременно, накладываются друг на друга. В промежутках между ними, в первую и последнюю четверги фазы Луны, наблюдаются самые низкие, квадратурные приливы.

Как уже было сказано во втором разделе, в открытом океане высота прилива невелика — 1,0-2,0 м, а у расчлененных берегов она резко возрастает. Максимальной величины прилив достигает на атлантическом побережье Северной Америки, в заливе Фанди (до 18 м). В России максимальная величина прилива — 12,9 м — отмечена в заливе Шелихова (Охотское море). Во внутренних морях приливы мало заметны, например, в Балтийском морс у Санкт-Петербурга прилив составляет 4,8 см, а вот по некоторым рекам прилив прослеживается на сотни и даже тысячи километров от устья, например, в Амазонке — до 1400 см.

Крутую приливную волну, поднимающуюся вверх по реке, называют бором. На Амазонке бор достигает высоты 5 м и ощущается на расстоянии 1400 км от устья реки.

Даже при спокойной поверхности в толще океанских вод происходит волнение. Это так называемые внутренние волны — медленные, но весьма значительные по размаху, достигающему порой сотен метров. Они возникают в результате внешнего воздействия на неоднородную по вертикали массу воды. К тому же так как температура, соленость и плотность океанской воды изменяются с глубиной не постепенно, а скачкообразно от одного слоя к другому, на границе между этими слоями и возникают специфические внутренние волны.

Морские течения

Морские течения — это горизонтальные поступательные движения водных масс в океанах и морях, характеризующиеся определенным направлением и скоростью. Они достигают нескольких тысяч километров в длину, десятков-сотен километров в ширину, сотен метров в глубину. По физико-химическим свойствам воды морских течений отличны от окружающих.

По продолжительности существования (устойчивости) морские течения подразделяют следующим образом:

  • постоянные , которые проходят в одних и тех же районах океана, имеют одно генеральное направление, более или менее постоянную скорость и устойчивые физико-химические свойства переносимых водных масс (Северное и Южное пассатные, Гольфстрим и др.);
  • периодические , у которых направление, скорость, температура подчинены периодическим закономерностям. Происходят они через равные промежутки времени в определенной последовательности (летнее и зимнее муссонные течения в северной части Индийского океана, приливно-отливные течения);
  • временные , вызываемые чаще всего ветрами.

По температурному признаку морские течения бывают:

  • теплые , которые имеют температуру выше, чем окружающая вода (например. Мурманское течение с температурой 2-3 °С среди вод О °С); они имеют направление от экватора к полюсам;
  • холодные , температура которых ниже окружающей воды (например, Канарское течение с температурой 15-16 °С среди вод с температурой около 20 °С); эти течения направлены от полюсов к экватору;
  • нейтральные , которые имеют температуру, близкую к окружающей среде (например, экваториальные течения).

По глубине расположения в толще воды различают течения:

  • поверхностные (до 200 м глубины);
  • подповерхностные , имеющие направление, противоположное поверхностному;
  • глубинные , движение которых совершается очень медленно — порядка нескольких сантиметров или первых десятков сантиметров в секунду;
  • придонные , регулирующие обмен вод между полярными — субполярными и экваториально-тропическими широтами.

По происхождению выделяют следующие течения:

  • фрикционные , которые могут быть дрейфовыми или ветровыми. Дрейфовые возникают под влиянием постоянных ветров, а ветровые создаются сезонными ветрами;
  • градиентно-гравитационные , среди которых выделяют стоковые , образующиеся в результате наклона поверхности, вызванного избытком вод вследствие их притока из океана и обильных осадков, и компенсационные , которые возникают благодаря оттоку вод, скудным осадкам;
  • инертные , которые наблюдаются после прекращения действия возбуждающих их факторов (например, приливные течения).

Система течений океана обусловлена общей циркуляцией атмосферы.

Если представить гипотетический океан, непрерывно простирающийся от Северного полюса к Южному, и наложить на него генерализированную схему атмосферных ветров, то с учетом отклоняющей силы Кориолиса получим шесть замкнутых колец -
круговоротов морских течений: Северное и Южное экваториальные, Северное и Южное субтропические, Субарктическое и Субантарктическое (рис. 4).

Рис. 4. Круговороты морских течений

Отступления от идеальной схемы вызваны наличием материков и особенностями их распределения по земной поверхности Земли. Однако, как и на идеальной схеме, в действительности на поверхности океана наблюдается зональная смена крупных — протяженностью в несколько тысяч километров — не полностью замкнутых циркуляционных систем: это экваториальная антициклоническая; тропические циклонические, северная и южная; субтропические антициклонические, северная и южная; антарктическая циркумполярная; высокоширотные циклонические; арктическая антициклоническая системы.

В Северном полушарии они движутся по часовой стрелке, в Южном — против. С запада на восток направлены экваториальные межпассатные противотечения.

В умеренных субполярных широтах Северного полушария существуют малые кольца течений вокруг барических минимумов. Движение вод в них направлено против часовой стрелки, а в Южном полушарии — с запада на восток вокруг Антарктиды.

Течения в зональных циркуляционных системах достаточно хорошо прослеживаются до глубины 200 м. С глубиной они меняют направление, слабеют и превращаются в слабые вихри. Взамен на глубине усиливаются меридиональные течения.

Самые мощные и глубокие из поверхностных течений играют важнейшую роль в глобальной циркуляции Мирового океана. Наиболее устойчивые поверхностные течения — это Северное и Южное пассатные течения Тихого и Атлантического океанов и Южное пассатное течение Индийского океана. Они имеют направление с востока на запад. Для тропических широт характерны теплые сточные течения, например Гольфстрим, Куросио, Бразильское и др.

Под действием постоянных западных ветров в умеренных широтах существуют теплые Северо-Атлантическое и Северо-

Тихоокеанское течения в Северном полушарии и холодное (нейтральное) течение Западных ветров — в Южном. Последнее образует кольцо в трех океанах вокруг Антарктиды. Замыкают большие круговороты в Северном полушарии холодные компенсационные течения: вдоль западных берегов в тропических широтах — Калифорнийское, Канарское, а в Южном — Перуанское, Бенгальское, Западно-Австралийское.

Наиболее известными течениями также являются теплое Норвежское течение в Арктике, холодное Лабрадорское в Атлантике, теплое Аляскинское и холодное Курило-Камчатское — в Тихом океане.

Муссонная циркуляция в северной части Индийского океана порождает сезонные ветровые течения: зимнее — с востока на запад и летнее — с запада на восток.

В Северном Ледовитом океане направление движения вод и льдов происходит с востока на запад (Трансатлантическое течение). Причины его — обильный речной сток рек Сибири, вращательное циклоническое движение (против часовой стрелки) над Баренцевым и Карским морями.

Помимо циркуляционных макросистем существуют вихри открытого океана. Их размер — 100-150 км, а скорость перемещения водных масс вокруг центра — 10-20 см/с. Эти мезосистемы называются синоптическими вихрями. Считается, что именно в них заключено не менее 90 % кинетической энергии океана. Вихри наблюдаются не только в открытом океане, но и в морских течениях типа Гольфстрим. Здесь они вращаются с еще большей скоростью, чем в открытом океане, их кольцевая система лучше выражена, поэтому их называют рингами.

Для климата и природы Земли, особенно прибрежных районов, значение морских течений велико. Теплые и холодные течения поддерживают разницу температур западных и восточных побережий материков, нарушая ее зональное распределение. Так, незамерзающий Мурманский порт находится за Полярным кругом, а на восточном побережье Северной Америки замерзает залив св. Лаврентия (48° с.ш.). Теплые течения способствуют выпадению осадков, холодные, напротив, уменьшают возможность их выпадения. Поэтому территории, омываемые теплыми течениями, имеют влажный климат, а холодными — сухой. При помощи морских течений осуществляются миграция растений и животных, перенос питательных веществ и газовый обмен. Течения учитывают и при мореплавании.

Известно, что волны являются порождением ветров. Они возникают вследствие того, что воздушные потоки взаимодействуют с верхними слоями толщи воды, перемещая их. В зависимости от скорости ветра, волна может перемещаться, преодолевая огромные расстояния. Как правило, из-за снижения уровня кинетической энергии волны не успевают добраться до суши. Чем слабее ветреные потоки, тем, соответственно, мельче волна.

Возникновение волн происходит закономерно. Здесь всё зависит от ветра: его скорости, площади охватываемого пространства. Как правило, отношение максимального значения высоты волны относится к её ширине как 7:1. Так, ураган средней силы может порождать волну высотой до двадцати метров. Такие волны выглядят ошеломляюще: они пенятся, издают чудовищный звук, перемещаясь. Наблюдение этой гигантской волны похоже на просмотр фильма ужасов со спецэффектами.

В 33-м году прошлого века моряки корабля «Ramapo» зафиксировали самую большую океаническую волну. Её высота составляла тридцать четыре метра! Волны такой высоты именуют «убийцами», так как они без труда могут поглотить огромные корабли. Учёные полагают, что данное значение высоты волны - не предел. Теоретически, максимально возможная высота волны составляет шестьдесят метров.

Кроме ветров, причиной возникновения волн могут быть оползни, извержения вулканов, землетрясения, падение метеоритов, взрывы ядерных бомб. Импульс высокой мощности порождает волну, которая называется «цунами». Эти волны характеризуются большой длиной. Дистанция между гребнями цунами может быть равна десяткам километров. Ввиду этого, высота таких волн в океане составляет, от силы, метр. При этом показатели скорости шокируют: цунами могут преодолевать восемьсот километров за один час. Из-за сжатия длины во время приближения цунами к суше увеличивается высота волны. Поэтому возле береговой линии значение высоты цунами в разы превосходит размеры больших ветровых волн.

Также цунами могут возникать из-за тектонических смещений, разломов океанического дна. При этом миллионы тонн воды начинают резкое движение, перемещаясь со скоростью реактивного самолёта. Такие цунами обескураживают: во время передвижения к береговой линии волна набирает гигантскую высоту, а затем накрывает землю водной стеной, поглощая всё своей мощью. Масштабы такой катастрофы сложно недооценить: цунами запросто может уничтожить целый город.

Наибольшая вероятность испытать на себе пагубное влияние цунами приходится на заливы, которые имеют довольно высокий берег. Такие места - настоящие ловушки для гигантских волн. Они способны притягивать цунами безо всякого предупреждения. С берега может быть видно, будто происходящее - прилив моря (либо отлив). В крайнем случае, можно подумать, что надвигается шторм. Но уже через несколько минут волна неописуемых масштабов может поглотить огромную территорию. Естественно, такая внезапность цунами не позволяет людям эвакуироваться. Сегодня в мире очень мало мест, в которых можно встретить службу оповещения о приближении цунами. Поэтому, как правило, огромные волны влекут за собой тысячи смертей и колоссальные разрушения суши. Можно вспомнить цунами, которое произошло в 2004 году в Таиланде: это была настоящая катастрофа.\

Помимо заливов с высокими берегами, к зонам риска относятся территории, на которых наблюдается повышенная сейсмическая активность. Японские острова - места, которые постоянно атакуют волны разных размеров. В 2011 году на побережье одного из островов (Япония, Хонсю) нашла волна высотой сорок метров. Тогда цунами вызвало землетрясение, которое было самым сильным в Японии за всё время. Землетрясение и цунами в том году забрало жизни пятнадцати тысяч людей. Многие считаются пропавшими без вести: их унесла волна.

Эта катастрофа, вызванная цунами - не единственная в истории Японии. В восемнадцатом веке (1741 год) произошло извержение вулкана, вследствие чего возникла огромная волна. Высота этого цунами составила девяносто метров. Затем, в 2004 году, из-за землетрясения, возникшего в Индийском океане, японский остров Ява, а также Суматра были подвержены нападению гигантской волны. В тот год цунами забрало жизни трёхсот тысяч жителей. Это было самое масштабное в мире (по количеству унесённых жизней) цунами.

В 1958 году цунами настигло залив Литуя, который находится на Аляске. Здесь была зафиксирована волна, высота которой составляла пятьсот двадцать четыре метра. Огромный оползень стал импульсом, толчком к возникновению этой чудовищной волны, которая двигалась со скоростью больше ста пятидесяти километров в час.

Чем обусловлено появление большинства волн в океанах и морях, о разрушительной энергии волн и о самых гигантских волнах, и больших цунами которые когда-либо видел человек.

Самая высокая волна

Чаще всего волны порождаются ветром: воздух перемещает поверхностные слои водной толщи с определенной скоростью. Некоторые волны могут разгоняться до 95 км/час, при этом волна может быть длиной до 300 метров, такие волны проходят огромные расстояния по океану, но чаще всего их кинетическая энергия гасится, расходуется еще до того, как они достигают суши. Если же ветер стихает, то и волны становятся мельче, глаже.

Образование волн в океане подчиняется определенным закономерностям.

Высота и длина волны зависит от скорости ветра, от продолжительности его воздействия, от площади охваченной ветром территории. Существует соответствие: наибольшая высота волны составляет одну седьмую часть от ее длины. Например, сильный бриз порождает волны высотой до 3 метров, обширный ураган - в среднем до 20 метров. И это уже по-настоящему чудовищные волны, с ревущими пенными шапками и прочими спецэффектами.


Самая высокая обычная волна в 34 метра была отмечена на территории течения Агульяс (Южная Африка) в 1933 году моряками с борта американского судна «Рамапо». Волны такой высоты называют «волнами-убийцами»: в провалах между ними может легко затеряться и погибнуть даже большой корабль.

В теории высота нормальных волн может достигать и 60 метров, но таковые пока не были зафиксированы на практике.


Помимо обычного ветрового происхождения, существуют и другие механизмы волнообразования. Причиной и эпицентром рождения волны может быть землетрясение, извержение вулкана, резкое изменение береговой линии (оползни), деятельность человека (например, испытание ядерного оружия) и даже падение в океан крупных небесных тел - метеоритов.

Самая большая волна

Это цунами – серийная волна, которая вызвана каким-либо мощным импульсом. Особенность волн цунами состоит в том, что они довольно длинные, расстояние между гребнями может достигать десятки километров. Поэтому в открытом океане цунами не представляет особой опасности, так как высота волн получается в среднем не более нескольких сантиметров, в рекордных случаях – метра полтора, зато скорость их распространения просто немыслимая, до 800 км / час. С корабля в открытом море они вообще не заметны. Разрушительную силу цунами приобретает, приближаясь к побережью: отражение от берега ведет к сжатию длины волны, а энергия-то никуда не девается. Соответственно, увеличивается ее (волны) амплитуда, то есть, высота. Несложно сделать вывод, что такие волны могут достигать намного большей высоты, чем ветровые волны.


Самые страшные цунами возникают из-за значительных нарушений рельефа морского дна, например, тектонических разломов или сдвигов, из-за которых миллиарды тонн воды начинают резко перемещаться на десятки тысяч километров со скоростью реактивного самолета. Катастрофы происходят, когда вся эта масса замедляется об берег, и ее колоссальная энергия сначала идет на наращивание высоты, а в итоге обрушивается на сушу всей своей мощью, водяной стеной.


Самые «цунамоопасные» места – заливы с высокими берегами. Это настоящие ловушки для цунами. И самое страшное, что цунами почти всегда приходит внезапно: с виду ситуация на море может быть неотличима от отлива или прилива, обычного шторма, люди не успевают или даже не мыслят эвакуироваться, и вдруг их настигает гигантская волна. Система оповещения мало где разработана.


Территории с повышенной сейсмической активностью – зоны особого риска и в наше время. Недаром название этого природного явления имеет японское происхождение.

Самое страшное цунами в Японии

Острова регулярно атакуются волнами разного калибра, и среди них встречаются поистине гигантские, влекущие за собой человеческие жертвы. Землетрясение у восточного побережья острова Хонсю в 2011 году вызвало цунами с высотой волны до 40 метров. Землетрясение оценивается как сильнейшее в описанной истории Японии. Волны нанесли удары по всему побережью, вместе с землетрясением они унесли жизни более 15 тысяч человек, многие тысячи пропали без вести.


Другая высочайшая волна в истории Японии обрушилась в 1741 году на запад острова Хоккайдо в результате извержения вулкана, ее высоту приблизительно оценивают в 90 метров.

Самое большое цунами в мире

В 2004 году на островах Суматра и Ява цунами, вызванное сильным землетрясением в Индийском океане, обернулось масштабнейшей катастрофой. Погибли, по разным данным, от 200 до 300 тысяч человек – треть миллиона жертв! К настоящему моменту именно это цунами считается самым разрушительным в истории.


А рекордсмен по высоте волны носит имя «Литуя». Это цунами, прокатившееся в 1958 году по заливу Литуя на Аляске со скоростью 160 км/час, было спровоцировано гигантским оползнем. Высота волны оценивалась в 524 метра.

Между тем, море далеко не всегда бывает опасным. Есть «дружелюбные» моря. Например, в Красное море не впадает ни одна река, но оно является самым чистым в мире. .
Подпишитесь на наш канал в Яндекс.Дзен