Кто заложил основы органической химии. Краткий очерк истории химии

Хиральность (химия)

Хиральность (молекулярная хиральность) - в химии свойство молекулы быть несовместимой со своим зеркальным отражением любой комбинацией вращений и перемещений в трёхмерном пространстве.

Энзимы (а они хиральны) часто различаются между двумя энантиомерами хирального субстрата. Представьте, что у энзима впадина в форме перчатки, которая связывает субстрат. Если перчатка как для правой руки, тогда один энантиомер войдёт вовнутрь и свяжется, в то время как другой энантиомер плохо войдёт, и мало шансов, что свяжется. D-форма аминокислот обычно сладкая на вкус, а L-форма обычно вкуса не имеет. Листья перечной мяты и семена тмина содержат L-карвон и D-карвон соответственно – энантиомеры карвона . Они пахнут по-разному, поскольку обонятельные рецепторы большинства людей также содержат хиральные молекулы, которые ведут себя по-разному в присутствии разных энантиомеров.

Хиральность в фармакологии

Множество хиральных лекарств сделаны с высокой энантиометрической чистотой в связи с побочными эффектами другого энантиомера (который может быть даже терапевтически неактивным).

  • Талидомид : талидомид рацемичен. Один энантиомер эффективен против тошноты, а другой тератогеничен. В этом случае назначение одного из энантиомеров беременному пациенту не поможет, поскольку оба энантиомера легко преобразуются друг в друга в организме. А если дать человеку другой энантиомер, то и D-, и L-изомеры будут присутствовать в плазме пациента.
  • Этамбутол : один энантиомер используется при лечении туберкулёза, другой вызывает слепоту.
  • Напроксен : один энантиомер лечит артрит, но другой вызывает отравление печени без анальгетического эффекта.
  • Расположение рецепторов стероидов также показывает специфичность стереоизомеров.
  • Активность пенициллина стереозависима. Антибиотик должен подражать D-аланиновым цепям, которые присутствуют в клеточных стенках бактерий, чтобы реагировать с энзимом транспептидазой и постепенно поглощать её.
  • Только L-анаприлин является мощным адренорецептором, а D-анаприлин – нет. Тем не менее, у обоих изомеров анаприлина есть местный анестезиальный эффект.
  • L-меторфан (левометорфан) – мощный опиоид-анальгетик, а D-изомер, декстрометорфан – диссоциативное средство для облегчения кашля.
  • S-карведилол , средство, реагирующее с адренорецепторами, в 100 раз сильнее блокирует β-рецепторы, чем R(+) изомер. Но оба изомера примерно одинаково блокируют α-рецепторы.
  • D-изомеры первитина и амфетамина – сильные стимуляторы ЦНС, а L-изомеры обоих средств лишены больших стимулирующих ЦНС свойств, но вместо этого стимулируют ПНС (периферическую нервную систему). Поэтому L-изомер первитина доступен как средство для применения в нос, а декстроизомер запрещён для использования в медицинских целях почти во всех (за редким исключением) странах мира и строго контролируется там, где он разрешён.
  • S-амлодипин, чистый оптически активный изомер амлодипина, отвечающий за блокаду кальциевых каналов и вазодилятацию.
  • левоцитиризин, RR-цитиризин, антигистаминный препарат, активный блокатор гистаминовых рецепторов в составе цитиризина.
  • S-пантапрозол, чистый оптически активный изомер пантапрозола, избирательно блокирующий протонную помпу париетальных клеток слизистой желудка.
  • R-рабепрозол, чистый оптически активный изомер рабепрозола, избирательно блокирующий протонную помпу париетальных клеток слизистой желудка.
  • дексибупрофен, чистый оптически активный изомер ибупрофена, избирательно блокирующий циклооксигеназу.
  • декскетопрофен, чистый оптически активный изомер кетопрофена, избирательно блокирующий циклооксигеназу.
  • эсэтодолак, чистый оптически активный изомер иэтодолака, избирательно и селективно блокирующий циклооксигеназу.
  • эзомепразол, чистый оптически активный изомер омепрозола, избирательно блокирующий протонную помпу париетальных клеток слизистой желудка.
  • S-метопролол, селективный блокатор бетта-адренорецепторов сердца и сосудов, выделенный из рацемического метопролола
  • левомицетин.
  • хинин.
  • хинидин.
  • L-лизин.
  • L-тироксин.
  • L-допа.
  • левотирацетам.
  • R-сибутрамин. Не применяется широко (вероятно, только в Индии), из за запрета FDA на использование рацемического сибутрамина для лечения ожирения из-за побочных эффектов. По данным индийских исследователей R-сибутрамин максимально лишён этих побочных эффектов, однако не доказана эффективность R-сибутрамина безопасно снижать вес.
  • L-карнитин. Используется в пищевых добавках.

Хиральность в неорганической химии

Многие комплексные соединения хиральны, например, хорошо известный комплекс 2+ , в котором три лиганда бипиридина принимают хиральное расположение в виде пропеллера. В этом случае атом рутения может считаться стереогеничным центром в комплексе с точечной хиральностью. Два энантиомера комплексов, таких как 2+ , могут обозначаться как Λ (левоповоротная закрутка пропеллера, описанного лигандами) и Δ (правоповоротная закрутка). Гексол – это хиральный кобальтосодержащий комплекс, открытый впервые Альфредом Вернером. Твёрдый гексол важен как первое вещество без углерода, отражающее оптическую активность.

Хиральность аминов

Третичные амины хиральны по принципу, схожему с углеродосодержащими веществами: атом азота несёт четыре разных замещающих группы, включаю одинокую пару. Тем не менее, энергетический барьер инверсии стереоцентра в общем равен около 30 кДж/моль, что значит, что два стереоизомера быстро превращаются друг в друга при комнатной температуре. В результате амины, такие, как NHRR’, не могут быть распознаны по виду, а NRR’R’’ могут быть распознаны, когда R, R’ и R’’ заключены в циклические структуры.

Хиральность в литературе

Хотя во времена Льюиса Кэрролла мало было известно о хиральности, его работа «Алиса в Зазеркалье » содержит предугадывающую отсылку к различным видам биологической деятельности энантиометрических лекарств: «Может, зазеркальное молоко непригодно для питья» - сказала Алиса своей кошке. В романе Джеймса Блиша «Спок должен умереть!» из серии «Звёздный путь» тахион, зеркальный мистеру Споку, как выяснится, украдёт химические реактивы из медицинского отсека и будет использовать их для преобразования определённых аминокислот и противоположно хиральные изомеры.

Ахиральность и прохиральность

Отсутствие хиральности обозначается термином «ахиральность». Ахиральные молекулы могут проявлять индуцированную оптическую активность. Молекулу называют прохиральной, если она может быть превращена в хиральную заменой единственного атома, например, атома водорода в СН 2 BrCl на фтор. При совмещении в одной молекуле хирального и прохирального фрагментов возникает явление диастереотопии ядер, которое наблюдается в спектрах ядерного магнитного резонанса . На этом основан один из методов обнаружения хиральности молекул.

См. также

Примечания

Ссылки

  • А. Борисова Химики сплющили углерод . Gazeta.ru (30.07.2010). - Содержит описание некоторых особенностей хиральности. Архивировано из первоисточника 22 августа 2011. Проверено 22 августа 2010.

Стереоизомеры, их виды

Определение 1

Стереоизомеры – это вещества, в молекулах которых атомы связаны между собой одинаково, но расположение их в пространстве различно.

Стереоизомеры подразделяют на:

  • Энантиомеры (оптические изомеры). Имеют одинаковые физико – химические свойства (плотность, температуру кипения и плавления, растворимость, спектральные свойства) в ахиральном окружении, но различную оптическую активность.
  • Диастеромеры – это соединения, которые могут содержать два и более хиральных центра.

Под хиральностью понимают способность объекта не соответствовать своему зеркальному отражению. То есть, молекулы, не обладающие зеркально – поворотной симметрией, являются хиральными.

Определение 2

Прохиральная молекула – это молекула, которая может быть превращена в хиральную единственным изменением любого ее фрагмента.

В хиральных и прохиральных молекулах некоторые группы ядер, на первый взгляд химически эквивалентные, являются магнитно неэквивалентными, что подтверждают спектры ядерного магнитного резонанса. Это явление называется диастереотопией ядер, может наблюдаться по спектрам ядерного магнитного резонанса при наличии в одной молекуле прохирального и хирального фрагментов.

Например, в прохиральной молекуле две группы OPF2 являются эквивалентными, но в каждой группе атомов $PF_2$ атомы фтора неэквивалентны.

Это проявляется в константе спин – спинового взаимодействия 2/$FF$.

Если молекула оптически активная , то неэквивалентность ядер Х в тетраэдрических группах –$MX_2Y$ (например, -$CH_2R$, -$SiH_2R$ и др.) или пирамидальных группах –$MX_2$ (например, -$PF_2$, -$NH_2$ и др.) не зависит от высоты барьера внутреннего вращения этих групп. При вращении плоских групп –$MX_2$ и тетраэдрических –$MX_3$ потенциальный барьер очень низок, в результате чего ядра $X$ становятся эквивалентными.

Построение названий хиральных молекул

Современная система построения названий для хиральных молекул предложена Ингольдом, Каном и Прелогом. Согласно этой системе, для всех возможных групп $A$, $B$, $C$, $D$ при асимметричном атоме углерода выясняется порядок старшинства. Чем больше атомный номер, тем он старше:

Если атомы одинаковые, то сравнивают второе окружение:

Предположим, что группы расположены по уменьшению старшинства: $A → B → C → D$. Развернем молекулу таким образом, чтобы младший заместитель $D$ был направлен за плоскость рисунка, от нас. Тогда понижение старшинства в остальных группах может происходить либо по часовой, либо против часовой стрелки.

Замечание 1

Если понижение старшинства происходит по часовой стрелке при обозначении изомера используют символ $R$ (правый), если против часовой стрелки – $S$ (левый). Понятия «левый» и «правый» не отражают реального направления вращения линейно поляризованного света.

Эмиль Фишер предложил $DL$ –номенклатуру, согласно которой правовращающийся энантиомер обозначается буквой $D$, а левовращающийся – $L$. Эта номенклатура широко используется для обозначения аминокислот и углеводов.

Стереоспецифичность физиологической активности оптических изомеров

Оптические изомеры проявляют разную физиологическую активность. Активные центры ферментов и рецепторы состоят из аминокислотных остатков, которые являются оптически активными элементами.

Рецептор распознает физиологически активную молекулу по принципу «ключ в замке». При присоединении молекулы субстрата, активный центр меняет свою геометрию.

Например, никотиновый алкалоид содержит один центр оптической изомерии и может существовать в виде двух энантиомеров. $S$ - изомер расположен справа и является ядом для человека (летальная доза 20 мг), $R$- изомер менее ядовит:

$L$ – глутаминовую кислоту

широко используют в качестве усилителя вкуса мяса при приготовлении консервов. $D$ - глутаминовая кислота такими свойствами не обладает.

В соединении

есть два асимметричных атома углерода, следовательно, возможно существование 4 изомеров ($2^n$). Но только один ($R,R$)-изомер – хлоромицетин - проявляет свойства антибиотика

Получение чистых оптических изомеров является важной химико – технологической проблемой.

Пути получения чистых энантиомеров.

Хиральная чистота живого. В вопросе о происхождении жизни одним из загадочных остается факт наличия абсолютной хиральной чистоты (от греч. cheir – рука): у живых существ – содержание в молекулах белков только «левых» аминокислот, а в нуклеиновых кислотах – «правых» сахаров. Подобное явление могло возникнуть только вследствие утраты предбиологической средой первичной зеркальной симметрии (равное содержание правых и левых изомеров аминокислот и сахаров). Неживой природе присуща тенденция установления зеркальной симметрии (рацемации).

Опыты последних лет показали, что только в хирально чистых растворах практически могли возникнуть биологически значимое удлинение цепочки полинуклеотидов и процесс саморепликации. Рацемический полинуклеотид не в состоянии реплицироваться, так как его основания направлены в разные стороны и у него нет спиральной организации. Живые системы организованы так, что тРНК из правых сахаров присоединяют к себе только левые аминокислоты. Поэтому возникновение жизни, по-видимому, исключалось до разрушения зеркальной симметрии предбиологической среды (В. Гольданский, Л. Морозов) и появления самореплицирующихся систем. Все живые организмы поддерживают свою хиральную чистоту, и эволюция не снабдила их средствами для обитания в рацемической среде.

Возникновение генетического кода. Аминокислоты и нуклеотиды в растворе случайно соединяются друг с другом с помощью пептидных (для аминокислот) или фосфодиэфирных (для нуклеотидов) связей в линейные структуры – большие полимеры. Так образуются полипептиды (белки) и полинуклеотиды (рибонуклеиновая и дезоксирибонуклеиновая кислоты). Как только полимер образовался, он будет стимулировать образование других полимеров. Полинуклеотиды при этом оказываются матрицей при реакции полимеризации, и таким образом они определяют последовательность нуклеотидов в новых полинуклеотидах. Например, полимер, состоящий из нуклеотидов полиуредиловой кислоты (poly U), оказывается матрицей для синтеза полимера, состоящего из нуклеотидов полиадениловой кислоты (poly А) в результате комплиментарного связывания соответствующих субъединиц. Новая молекула оказывается как бы слепком с исходной матрицы. По выражению Д. Уотсона, механизм комплиментарного матричного копирования «изящен и прост».

Не совсем понятно, почему именно урацил, аденин, цитозин и гуанин оказались теми буквами генетического алфавита, который смог закодировать информацию обо всем живом. Возможно, это чистая случайность, и на месте этих четырех нуклеотидов могли бы быть другие. Молекула РНК обладает также химической индивидуальностью – последовательность нуклеотидов определяет характер свертывания (конформации) молекулы в растворе, различные для каждой последовательности нуклеотидов трехмерные изгибы макромолекулы.

Молекула РНК одноцепочечная, а молекула ДНК имеет две цепочки. Двухцепочечная структура способна репарировать (исправлять) повреждения одной из цепей и поэтому ДНК – более надежный инструмент для хранения и передачи генетической информации, В ходе миллионов лет добиологической эволюции эта способность ДНК была замечена отбором. При возникновении достаточно сложной системы свойство хранения информации приняла ДНК, белки стали катализаторами реакций, а РНК сохранила функцию посредника между ДНК и белками.

Возможность сохранения и передачи информации посредством матричного принципа редупликации привела к возможности создания генотипа и генетического кода, уникальная пространственная структура молекулы (аналог фенотипа) определила возможность действия естественного отбора наиболее подходящих для конкретной ситуации макромолекул.

Природа «нашла» механизм генетического кода, испробовав на протяжении не менее миллиарда лет немыслимое число разнообразных комбинаций. Без такого механизма, позволяющего сохранять информацию и одновременно (в результате неизбежных время от времени ошибок копирования – мутаций) получать материал для ее изменения, жизнь никогда не возникла бы в той форме, в какой она представлена на Земле.

Все изложенное – не более как правдоподобные гипотезы возможных путей возникновения жизни, и здесь можно ожидать новых интересных открытий. Так, в последние годы показано, что давно известные бактерии, обитающие в горячих источниках, на дне океанов, в желудках некоторых жвачных животных, поглощающие углекислый газ, водород и выделяющие метан (метанообразующие бактерии), сохранили многие черты протобионтов.

В проблеме возникновения жизни на Земле еще много неясного. Занесена ли жизнь на Землю или она здесь возникла? Обнаружение в конце XX в. следов ископаемых прокариот (по-видимому, цианобактерий) в метеоритах вновь оживило интерес к гипотезе панспермии, выдвинутой еще в конце XIX в. С. Аррениусом и поддержанной В.И. Вернадским (он считал жизнь «вечным явлением»), а в наше время – известным микробиологом Г.А. Заварзиным. Однако, учитывая, что все больше фактов и расчетов указывает, что вся наша Вселенная образовалась в результате «большого взрыва» 12–20 млрд лет назад, то гипотеза панспермии не решает проблему возникновения жизни, а лишь переносит место ее возникновения с Земли на другие космические тела и несколько отодвигает срок возникновения жизни.

Другая нерешенная загадка в области происхождения жизни на Земле образно сформулирована Н.Н. Воронцовым: «Складывается впечатление, что буквально сразу после остывания земной коры на нашей планете возникла жизнь. Как будто бы к планете стоило поднести спичку, чтобы на ней вспыхнуло пламя жизни!» . Важным был не только сугубо химический, но и экологический аспект появления живого. Жизнь сразу же должна была существовать в виде экосистем. Неизбежное возрастание биоразнообразия (на протяжении сотен миллионов лет – «микробиального») должно было вести к увеличению устойчивости таких примитивных экосистем, быстрому росту их биопродуктивности и биомассы на планете. Раз возникнув (неважно каким образом), жизнь должна была (в геологическом масштабе времени – мгновенно) охватить всю планету.

Конечно, в происхождении жизни остается (и всегда будет оставаться) много вопросов. Прошел ли биологический обмен через коацерватное состояние или первоначально возникает генетический код? Почему некоторые редкие элементы в земной коре (молибден, магний) стали играть большую роль в биологическом обмене, чем обычные элементы (кремний, кальций)? Подобных вопросов много, они ждут своего объяснения. Но научно достоверной остается возможность возникновения жизни из неорганических веществ посредством действия физических факторов среды, и действия предбиологического отбора. Научно доказанной является возможность усложняющегося взаимодействия элементарных частиц и молекул, приводящего к возникновению самоинструктирующих макромолекул.

Энциклопедичный YouTube

    1 / 5

    ✪ Примеры хиральности, часть 1

    ✪ Введение в хиральность

    ✪ Асимметрия биологических молекул - Максим Франк-Каменецкий

    ✪ Центры хиральности и стереоизомеры

    ✪ Тривиальные и систематические названия. Приставки «изо-», «втор-» и «трет-»

    Субтитры

    В прошлом видео мы узнали, что такое хиральная молекула, хиральный углерод или хиральный атом. В этом видео я хотел бы проработать ряд примеров и посмотреть, сможем ли мы определить хиральные атомы и распознать хиральные молекулы. Давайте посмотрим на наши примеры. Что у нас здесь? Это хлороциклопентан. Первый вопрос: видим ли мы здесь хиральные атомы? Давайте посмотрим на определение, которое мы дали хиральным атомам. Оно исходит из ситуации с направленностью рук и невозможностью их совмещения в зеркальном отражении. Мы также сказали, что обычно это атомы углерода, связанные с четырьмя разными группами. Посмотрим, есть ли у нас атомы углерода, связанные с четырьмя разными группами. Все CH2 соединены с другими CH2, а Н2 можно представить как H и H. Таким образом, они соединены с двумя H из той же группы, поэтому ни один из углеродов в CH2 не подходит на роль хирального центра или хирального углерода. Все они связаны с двумя водородами и двумя другими очень похожими группами CH2, даже если взглянуть на всю группу, с которой связан каждый углерод. Все они определённо связаны с двумя водородами, поэтому тут точно не может быть четырёх разных групп. Если мы посмотрим на CH, то увидим, что можем разделить его таким образом. Мы можем отделить от него H вот так. Помимо того что связан с водородом, этот углерод связан ещё и с хлором, а также с... Не совсем понятно, отличается ли эта группа от вот этой, если смотреть на схему с такой стороны. Но если подойти сбоку, если наполовину перевернуть её вот так. Или, может быть, лучше будет повернуть молекулу в этом направлении, против часовой стрелки. Тогда у нас есть группа CH2 и теперь ещё одна группа CH2. Затем третья такая группа и, наконец, четвёртая группа CH2. Возвращаемся, где были раньше. Итак, у нас есть 4 CH2, и мы можем вернуться. Что случится, если мы пойдём этим путём? У вас есть 1, 2, 3, 4 группы CH2, и вы возвращаетесь, откуда начали. Таким образом, это нижняя группа, ну, в зависимости от того, как далеко вы захотите её растянуть, и эта верхняя группа являются одинаковыми группами. Поэтому это не хиральный центр, не хиральный центр, или хиральный углерод. Он не связан с четырьмя различными группами. Также это не хиральная молекула, потому что у неё нет хирального центра. Как можно увидеть, что это не хиральная молекула? Посмотрим, что было написано ранее. Можно увидеть, что это не хиральная молекула. Существует несколько способов это понять. Простейший способ - это представить себе зеркальное отражение. Выглядеть оно будет примерно так. Здесь у нас зеркало, вот тут у нас хлор. Затем CH, CH2, CH2, потом CH2, CH2. Так мы завершаем наш циклопентан. Существует ли в такой ситуации способ повернуть это изображение, чтобы получить такое же? На что станет похожа молекула, если мы возьмём и просто перевернём её на 180 градусов? Ну может быть, немного меньше, чем 180 градусов, Да, не совсем 180, но если мы перевернём её так, чтобы хлор оказался вот здесь, у нас получится точно такая же молекула. Вот что у нас получилось. Выглядит немного по-другому. Вот так это будет выглядеть. Давайте попробуем сделать похоже. Примерно так. Здесь у нас CH2. Давайте лучше нарисуем здесь, тут у нас есть немного больше места. Если мы ее вот так переворачиваем, то здесь у нас CH. Здесь у нас хлор, затем - CH2 и все другие CH2, CH2. И, наконец, CH2 ещё вот тут сверху. Если мы перевернём её наоборот, точнее почти на 180 градусов, она будет выглядеть вот так. Единственная разница между этой и вот этой молекулой в том, как мы нарисовали эту связь. Вместо того чтобы рисовать её вниз мы можем нарисовать её вверх вот так, и у нас получится абсолютно такая же молекула. Так что эта молекула также не хиральная. Давайте перейдём к следующей молекуле. Что это такое? Это бромфторхлорметан - просто чтобы попрактиковаться немного в названиях. Совершенно очевидно, что здесь мы имеем дело с четырьмя разными группами. Каждая из этих групп, в данном случае атомов, которые связаны с углеродом, различны, поэтому углерод является хиральным центром. Хиральный центр. Также должно быть очевидно, что это хиральная молекула. Если мы сделаем её зеркальное отражение, очень похожее на пример из первого видео по хиральности, то зеркальное отражение будет выглядеть так. Теперь бром справа, водород будет по-прежнему снизу, а фтор наверху. Не имеет значения, как вы будете вращать эту молекулу. Если вы попробуете перенести бром сюда, на это место, тогда водород окажется в этом положении, а хлор будет вот в таком положении. Не имеет значения, как вы попытаетесь поворачивать её, вращать или перемещать, вы никогда не сможете совместить эту молекулу вот с этой молекулой. Так что это хиральный центр, и это хиральная молекула. Существует название для этих двух версий. Мы дадим им названия позже. Это другая тема. Будет отдельное видео на эту тему. Но вот эти 2 версии бромфторхлорметана, они иногда имеют различное химическое применение. Они называются энантиомерами. Энантиомеры - это зеркальные изображения. Каждая пара энантиомеров - это зеркальное отображение друг друга. Они являются стереоизомерами. Ну это просто терминология. Стереоизомеры. Вам знакомо слово «изомер», оно обозначает, что в нашей молекуле есть одинаковые атомы. Но существуют различные типы изомеров. Существуют структурные изомеры. Это означает, что разные элементы соединяются с разными элементами. Стереоизомеры - это когда каждый элемент соединён только с одним элементом. Углерод, соединяется только с фтором, хлор с углеродом, водород соединяется с углеродом, и бром соединяется с углеродом, то есть каждый элемент соединён с одним элементом, но они представлены в трёхмерной организации. Мы имеем дело со стереочастью. Стереохимия изучает трёхмерную химию как понимание сути реальной трёхмерной конфигурации вещей. Стереоизомеры подразумевают, что есть одинаковые компоненты, одинаковые атомы. Они одинаково связаны друг с другом. Бром связан с углеродом, который связан с водородом. Это все действительно так. Но их трёхмерное положение отличается. В данном случае, когда они являются зеркальным отражением друг друга, мы их называем энантиомерами. Здесь, наверное, стоит кое-что прояснить. В нескольких предыдущих видео мы употребляли слово «конфигурация», а иногда использовали слово «конформация». В некоторых случаях мы будем использовать «конфигурация», а в некоторых - «конформация». Этот момент следовало бы немного прояснить. Когда мы говорим о конфигурации, мы на самом деле говорим об иной структуре. Переходя от одной конфигурации к другой, мы разрушаем связи и в некотором роде пересобираем их. Вот что такое разные конфигурации. Для того чтобы они могли стать одинаковыми, нам, возможно, придётся поменять бром и водород там, где они связаны с углеродом. Вот это разные конфигурации. Конформации - это просто разные формы или разные ориентации одной и той же молекулы. Когда мы говорили о конформации ванны у циклогексана, то этот циклогексан в конформации ванны и этот же циклогексан в конформации кресла - это одна и та же молекула с одними и теми же связями. Мы не нарушали и не меняли никаких связей. Они просто оказались немного повёрнутыми. Так получились 2 разные конформации. А вот это -2 разные конфигурации. Чтобы перейти от одной к другой, нам придётся перестроить связи. Давайте посмотрим на эту молекулу. Можем ли мы увидеть здесь стереоцентры или хиральные углероды, или хиральные атомы? Вот здесь у нас есть углерод. Посмотрим: здесь углерод соединяется с хлором, водородом и бромом, а это другой углерод. Здесь есть соединения с четырьмя различными элементами, поэтому это хиральный углерод. Иногда здесь пишут маленькую звёздочку. Если посмотрим на этот углерод, то увидим, что он соединён с фтором и другим углеродом, но он также соединен с 2-мя водородами. поэтому он не хиральный. 2 из элементов, с которыми он соединён, - одинаковые. Здесь даже можно заметить небольшую ось симметрии, проходящую через него. Вы можете перевернуть его, и получится то же самое. Это хиральный центр. Хиральный центр, или хиральный углерод, или хиральный атом, или ассиметричный углерод. Мы увидим, что можно называть его по-разному. Благодаря тому что молекула имеет хиральный центр, это видно, если мы попробуем сделать зеркальное отражение, то получится энантиомер. Она не совмещаема со своим зеркальным отображением. Можно попробовать нарисовать её. Нет необходимости каждый раз рисовать зеркальное изображение справа. Мы можем нарисовать слева. Зеркальное отображение будет выглядеть так. Здесь фтор, углерод, углерод, хлор. Здесь получаются 2 водорода, затем ещё 1 водород здесь, и вот здесь у нас будет бром. Неважно, будете вы переворачивать молекулы или делать что-то еще, вы никогда не сможете ее совместить вот с этой, поэтому здесь у нас 2 энантиомера. Они оба являются стереоизомерами по отношению друг к другу. И каждый из них является хиральной молекулой. Сейчас у нас уже заканчивается время, которое обычно отводится на видео, поэтому мы продолжим в следующем видео и постараемся успеть больше.

История

Хиральность молекул была открыта Л. Пастером в 1848 году. Пастер обратил внимание на то, что кристаллы, выпадающие из раствора рацемического тартрата натрия -аммония , имеют две формы, представляющие собой зеркальные отражения, которые не совмещаются друг с другом в пространстве. Напротив, кристаллы индивидуального правовращающего тартрата натрия-аммония имели одинаковую форму с малыми плоскостями, направленными в одну сторону. Пастер провёл подобные кристаллизации с тринадцатью энантиомерно чистыми соединениями (различными тартратами и винной кислотой), а также с шестью рацемическими тартратами и сделал вывод о существовании хиральности молекул и объяснил ранее неизвестный вид изомерии винных кислот - энантиомерию .

Структурная трактовка хиральности стала возможной после введения в 1874 году Я. Вант-Гоффом и Ж. Ле Белем концепции асимметрического атома углерода, то есть тетраэдрического атома углерода с четырьмя различными заместителями .

Понятие хиральности было введено лордом Кельвином в конце XIX в.

Я называю какую-либо геометрическую фигуру, или группу точек, хиральной и говорю, что она обладает хиральностью, если её изображение в идеальном плоском зеркале не может быть с ней совмещено.

Оригинальный текст (англ.)

I call any geometrical figure, or group of points, chiral, and say it has chirality, if its image in a plane mirror, ideally realized, cannot be brought to coincide with itself.

У. Т. Кельвин. Балтиморские лекции по молекулярной динамике и волновой теории света, 1904

Симметрия хиральных молекул

Виды хиральности

В зависимости от элемента молекулы, наличие которого приводит к возникновению хиральности, различают следующие виды хиральности:

Центральная хиральность

Основная статья: Центральная хиральность

Центральная хиральность возникает в результате наличия в молекуле центра хиральности (хирального центра), которым, как правило, является асимметрический атом углерода , имеющий 4 различных заместителя. Хиральными центрами могут быть также атомы , , , реже - . В хиральных производных адамантана центр хиральности находится в середине углеродного каркаса, где атомов нет вовсе .

Аксиальная (осевая) хиральность

Основная статья: Аксиальная хиральность

Аксиальная хиральность возникает в результате неплоского расположения заместителей относительно некоторой оси - оси хиральности . Ось хиральности существует в несимметрично замещённых алленах. sp -гибридный атом углерода в аллене имеет две взаимно перпендикулярные p -орбитали. Их перекрывание с p -орбиталями соседних атомов углерода приводит к тому, что заместители в аллене лежат во взаимно перпендикулярных плоскостях. Подобная ситуация наблюдается также в замещённых бифенилах , в которых вращение вокруг связи, соединяющей ароматические кольца , затруднено, а также в спироциклических соединениях.

Планарная хиральность

Основная статья: Планарная хиральность

Плоскость хиральности присутствует в производных ферроцена , замещённых парациклофанах и др. При помощи данного термина описывают хиральное расположение внеплоскостных элементов молекулы относительно плоскости хиральности .

Спиральная хиральность

Спиральная хиральность характерна для соединений, имеющих элементы в форме спирали, пропеллера или винта, например для гелиценов . Шесть ароматических колец в гексагелицене не могут уложиться в одной плоскости, поэтому образовывают спираль, которая может быть закручена влево или вправо. Данный вид хиральности наблюдается также в белках и нуклеиновых кислотах .

Топологическая хиральность

Топологическая хиральность связана с наличием структурной несимметричности, характерной для супрамолекул , например, катенанов , ротаксанов , молекулярных узлов .

Хиральность соединений со стереогенной парой электронов

Хиральность в биологии

Многие биологически активные молекулы обладают хиральностью, причём природные аминокислоты и сахара представлены в природе преимущественно в виде одного из энантиомеров : аминокислоты, в основном, имеют l -конфигурацию, а сахара - d -конфигурацию .

Две энантиомерные формы одной молекулы обычно имеют различную биологическую активность. Это связано с тем, что рецепторы , ферменты , антитела и другие элементы организма также обладают хиральностью, и структурное несоответствие между этими элементами и хиральными молекулами препятствует их взаимодействию. Например, ферменты , являющиеся хиральными молекулами, часто проявляют специфическую реакционную способность по отношению к одному из энантиомеров. Подобные примеры характерны и для лекарственных соединений. Так, биологической активностью обладает лишь один энантиомер ибупрофена - (S )-(+)-ибупрофен, в то время как его оптический антипод (R )-(−)-ибупрофен в организме неактивен .

Гомохиральность

Основная статья: Гомохиральность

За редкими исключениями, природные хиральные аминокислоты и моносахариды представлены в виде единственного изомера из двух возможных. Так, в состав белков входят практически исключительно l -аминокислоты, а ДНК и РНК построены только на основе d -углеводов . Данное свойство химических соединений называется гомохиральностью (хиральной чистотой). Происхождение и назначение данного явления до конца не установлены, однако его часто связывают с проблемой происхождения жизни .

Хиральность - несовместимость объекта со своим зеркальным отражением любой комбинацией вращений и перемещений в трехмерном пространстве. Речь идет только об идеальном плоском зеркале. В нем правша превращается в левшу и наоборот.

Хиральность типична для растений и животных, и сам термин происходит от греч. χείρ - рука.

Есть правые и левые ракушки и даже правые и левые клювы у клестов (рис. 1).

1. ru.wikipedia.org/wiki/Клёст-еловик#

«Зеркальность» распространена и в неживой природе (рис. 2).


2. http://scienceblogs.com

В последнее время стали модны «хиральные», т. е. зеркальные часы (обратите внимание на надпись на циферблате) (рис. 3).

3. www.bookofjoe.com

И даже в лингвистике есть место хиральности! Это палиндромы: слова и предложения-перевертыши, например: Я УДАРЮ ДЯДЮ, ТЁТЮ РАДУЯ, Я УДАРЮ ТЁТЮ, ДЯДЮ РАДУЯ или ЛЕЕНСОН - УДАВ, НО ОН В АДУ НОС НЕ ЕЛ!

Очень важна хиральность для химиков и фармацевтов. Химия занимается объектами в наномасштабе (модное слово «нано» происходит от греч. νάννος - карлик). Хиральности в химии посвящена монография, на обложке которой () - хиральные колонны и две хиральные молекулы гексагелицена (от helix - спираль).

А важность хиральности для медицины символизирует обложка июньского номера американского журнала Journal of Chemical Education за 1996 год (рис. 4).

4. http://pubs.acs.org

На боку добродушно виляющего хвостом пса изображена структурная формула пеницилламина. Пес смотрит в зеркало, а оттуда на него глядит страшный зверь с оскаленной клыкастой пастью, горящими огнем глазами и вставшей дыбом шерстью. На боку зверя изображена та же самая структурная формула в виде зеркального отображения первой. Название опубликованной в этом номере статьи о лекарственных хиральных средствах было не менее красноречивым: «Когда молекулы лекарств смотрятся в зеркало». Почему же «зеркальное отражение» так драматически изменяет облик молекулы? И как узнали, что две молекулы являются «зеркальными антиподами»?

Поляризация света и оптическая активность

Со времен Ньютона в науке шли споры о том, представляет ли свет собой волны или частицы. Ньютон полагал, что свет состоит из частиц с двумя полюсами - «северным» и «южным». Французский физик Этьен Луи Малюс, ввел понятие о поляризованном свете, с одним направлением «полюсов». Теория Малюса не подтвердилась, однако название осталось.

В 1816 году французский физик Огюстен Жан Френель высказал необычную для того времени идею о том, что световые волны - поперечные, как волны на поверхности воды.

Френель объяснил и явление поляризации света: в обычном свете колебания происходят хаотично, во всех направлениях, перпендикулярных направлению луча. Но, пройдя через некоторые кристаллы, например исландского шпата или турмалина, свет приобретает особые свойства: волны в нем колеблются только в одной плоскости. Образно говоря, луч такого света подобен шерстяной нитке, которую продернули через узкую щель между двумя острыми лезвиями бритвы. Если второй такой же кристалл поставить перпендикулярно первому, поляризованный свет через него не пройдет.

Отличить обычный свет от поляризованного можно с помощью оптических приборов - поляриметров; ими пользуются, например, фотографы: поляризационные фильтры помогают избавиться от бликов на фотографии, которые возникают при отражении света от поверхности воды.

Оказалось, что при прохождении поляризованного света через некоторые вещества плоскость поляризации поворачивается. Впервые это явление обнаружил в 1811 году французский физик Франсуа Доминик Араго у кристаллов кварца. Это связано со строением кристалла. Природные кристаллы кварца асимметричны, причем они бывают двух типов, которые отличаются по своей форме, как предмет от своего зеркального изображения. Эти кристаллы вращают плоскость поляризации света в противоположных направлениях; их назвали право- и левовращающими.


В 1815 году французский физик Жан Батист Био и немецкий физик Томас Иоганн Зеебек выяснили, что некоторые органические вещества, например сахар и скипидар, также обладают способностью вращать плоскость поляризации, причем не только в кристаллическом, но и в жидком, растворенном и даже газообразном состояниях. Оказалось, что каждый «цветовой луч» белого света поворачивается на разный угол. Сильнее всего поворачивается плоскость поляризации для фиолетовых лучей, меньше всего - для красных. Поэтому бесцветное вещество в поляризованном свете может стать окрашенным.

Как и в случае кристаллов, некоторые химические соединения могли существовать в виде как право-, так и левовращающих разновидностей. Однако оставалось неясным, с каким свойством молекул связано это явление: самый тщательный химический анализ не мог обнаружить между ними никаких различий! Такие разновидности веществ назвали оптическими изомерами, а сами соединения - оптически активными. Оказалось, что у оптически активных веществ есть и третий тип изомеров - оптически неактивные. Это обнаружил в 1830 году знаменитый шведский химик Йёнс Якоб Берцелиус: виноградная кислота С 4 Н 6 О 6 оптически неактивна, а винная кислота точно такого же состава обладает в растворе правым вращением. Но никто не знал, существует ли не встречающаяся в природе «левая» винная кислота - антипод правовращающей.

Открытие Пастера

Луи Пастер (https://ru.wikipedia.org)

Оптическую активность кристаллов физики связывали с их асимметричностью; полностью симметричные кристаллы, например кубические кристаллы поваренной соли, оптически неактивны. Причина же оптической активности молекул долгое время оставалась совершенно загадочной. Первое открытие, проливавшее свет на это явление, сделал в 1848 году никому тогда не известный французский ученый Луи Пастер. Еще в студенческие годы он заинтересовался химией и кристаллографией, работая под руководством вышеупомянутого Жана Батиста Био и видного французского химика-органика Жана Батиста Дюма. После окончания Высшей нормальной школы в Париже молодой (ему было всего 26 лет) Пастер работал лаборантом у Антуана Балара. Балар был уже известным химиком, который за 22 года до этого прославился открытием нового элемента - брома. Своему ассистенту он дал тему по кристаллографии, не предполагая, что это приведет к выдающемуся открытию.

В ходе исследования Пастер приготовил раствор натриево-аммониевой соли оптически неактивной виноградной кислоты и медленным выпариванием воды получил красивые призматические кристаллы этой соли. Кристаллы эти, в отличие от кристаллов виноградной кислоты, оказались асимметричными. У части кристалликов одна характерная грань находилась справа, а у других - слева, причем по форме два типа кристаллов были как бы зеркальным отражением друг друга.

Тех и других кристаллов получилось поровну. Зная, что в подобных случаях кристаллы кварца вращают в разные стороны, Пастер решил проверить, не будет ли наблюдаться это явление и на полученной им соли. Вооружившись увеличительным стеклом и пинцетом, Пастер аккуратно разделил кристаллы на две кучки. Их растворы, как и следовало ожидать, обладали противоположным оптическим вращением, а смесь растворов была оптически неактивной (правая и левая поляризации взаимно компенсировались). Пастер на этом не остановился. Из каждого из двух растворов с помощью сильной серной кислоты он вытеснил более слабую органическую кислоту. Можно было предположить, что в обоих случаях получится исходная виноградная кислота, которая оптически неактивна. Однако оказалось, что из одного раствора образовалась вовсе не виноградная, а известная правовращающая винная кислота, а из другого раствора получилась тоже винная кислота, но вращающая влево! Эти кислоты получили название d -винной (от лат. dexter - правый) и l -винной (от лат. laevus - левый). В дальнейшем направление оптического вращения стали обозначать знаками (+) и (-), а абсолютную конфигурацию молекулы в пространстве - буквами R и S. Итак, неактивная виноградная кислота оказалась смесью равных количеств известной «правой» винной кислоты и ранее неизвестной «левой». Именно поэтому равная смесь их молекул в кристалле или в растворе не обладает оптической активностью. Для такой смеси стали применять название «рацемат», от лат. racemus - виноград. Два антипода, дающие при смешении в равных количествах оптически неактивную смесь, получили название энантиомеров (от греч. έναντίος - противоположный).

Поняв значение своего эксперимента, Пастер выбежал из лаборатории и, встретив лаборанта физического кабинета, бросился к нему и воскликнул: «Я только что сделал великое открытие!» Кстати, Пастеру очень повезло с веществом: в дальнейшем химики обнаружили всего несколько подобных случаев кристаллизации при определенной температуре смеси оптически различных кристалликов, достаточно крупных, чтобы их можно было под лупой разделить пинцетом.

Пастер открыл еще два метода разделения рацемата на два антипода. Биохимический метод основан на избирательной способности некоторых микроорганизмов усваивать только один из изомеров. Во время посещения Германии один из аптекарей дал ему давно стоявшую склянку с виноградной кислотой, в которой завелась зеленая плесень. В своей лаборатории Пастер обнаружил, что бывшая когда-то неактивной кислота стала левовращающей. Оказалась, что зеленый плесневой грибок Penicillum glaucum «поедает» только правый изомер, оставляя левый без изменения. Такое же действие оказывает эта плесень на рацемат миндальной кислоты, только в данном случае она «поедает» левовращающий изомер, не трогая правовращающий.

Третий способ разделения рацематов был чисто химическим. Для него нужно было иметь оптически активное вещество, которое при взаимодействии с рацемической смесью по-разному связывалось бы к каждым из энантиомеров. В результате два вещества в смеси не будут антиподами (энантиомерами) и их можно будет разделить как два разных вещества. Это можно пояснить такой моделью на плоскости. Возьмем смесь двух антиподов - Я и R. Их химические свойства одинаковые. Внесем в смесь несимметричный (хиральный) компонент, например Z, который может реагировать с каким-либо участком в этих энантиомерах. Получим два вещества: ЯZ и ZR (или ЯZ и RZ). Эти структуры не являются зеркально симметричными, поэтому такие вещества будут чисто физически различаться (температурой плавления, растворимостью, еще чем-нибудь) и их можно разделить.

Пастер сделал еще много открытий, в числе которых прививки против сибирской язвы и бешенства, ввел методы асептики и антисептики.

Исследование Пастера, доказывающее возможность «расщепления» оптически неактивного соединения на антиподы - энантиомеры, первоначально вызвало у многих химиков недоверие, однако, как и последующие его работы, привлекло самое пристальное внимание ученых. Вскоре французский химик Жозеф Ашиль Ле Бель с помощью третьего пастеровского метода расщепил несколько спиртов на оптически активные антиподы. Немецкий химик Иоганн Вислиценус установил, что существуют две молочные кислоты: оптически неактивная, образующаяся в скисшем молоке (молочная кислота брожения), и правовращающая, которая появляется в работающей мышце (мясомолочная кислота). Подобных примеров становилось всё больше, и требовалась теория, объясняющая, чем же отличаются друг от друга молекулы антиподов.

Теория Вант-Гоффа

Якоб Хендрик Вант-Гофф (https://ru.wikipedia.org)

Такую теорию создал молодой голландский ученый Якоб Хендрик Вант-Гофф, который в 1901 году получил первую в истории Нобелевскую премию по химии. Согласно его теории, молекулы, как и кристаллы, могут быть хиральными - «правыми» и «левыми», являясь зеркальным отражением друг друга. Простейший пример - молекулы, в которых имеется так называемый асимметрический атом углерода, окруженный четырьмя разными группами. Это можно продемонстрировать на примере простейшей аминокислоты аланина. Две изображенные молекулы невозможно совместить в пространстве никакими поворотами.

Многие ученые отнеслись к теории Вант-Гоффа недоверчиво. А известный немецкий химик-органик, выдающийся экспериментатор, профессор Лейпцигского университета Адольф Кольбе разразился резкой до неприличия статьей в Journal für praktische Chemie с ехидным названием «Zeiche der Zeit» («Приметы времени»). Он сравнивал теорию Вант-Гоффа с «отбросами человеческого ума», с «кокоткой, наряженной в модные одежды и покрывшей лицо белилами и румянами, чтобы попасть в порядочное общество, в котором для нее нет места». Кольбе писал, что «некоему доктору Вант-Гоффу, занимающему должность в Утрехтском ветеринарном училище, очевидно, не по вкусу точные химические исследования. Он счел более приятным сесть на Пегаса (вероятно, взятого напрокат из ветеринарного училища) и поведать миру то, что узрел с химического Парнаса… Настоящих исследователей поражает, как почти неизвестные химики берутся так уверенно судить о высочайшей проблеме химии - вопросе о пространственном положении атомов, который, пожалуй, никогда не будет решен… Такой подход к научным вопросам недалек от веры в ведьм и духов. А таких химиков следовало бы исключить из рядов настоящих ученых и причислить к лагерю натурфилософов, совсем немногим отличающихся от спиритов ».

Со временем теория Вант-Гоффа получила полное признание. Каждый химик знает, что, если в смеси поровну «правых» и «левых» молекул, вещество в целом будет оптически неактивным. Именно такие вещества и получаются в колбе в результате обычного химического синтеза. И только в живых организмах, при участии асимметричных агентов, например ферментов, образуются асимметричные соединения. Так, в природе преобладают аминокислоты и сахара́ только одной конфигурации, а образование их антиподов подавлено. В некоторых случаях разные энантиомеры можно различить и без всяких приборов - когда они по-разному взаимодействуют с асимметрическими рецепторами в нашем организме. Яркий пример - аминокислота лейцин: ее правовращающий изомер сладкий, а левовращающий - горький.

Конечно, тут же возникает вопрос о том, как же появились на Земле первые оптически активные химические соединения, например та же природная правовращающая винная кислота, или как возникли «асимметричные» микроорганизмы, питающиеся только одним из энантиомеров. Ведь в отсутствие человека некому было осуществлять направленный синтез оптически активных веществ, некому было разделять кристаллы на правые и левые! Однако подобные вопросы оказались настолько сложными, что однозначного ответа на них нет и поныне. Ученые сходятся лишь в том, что существуют асимметричные неорганические или физические агенты (асимметричные катализаторы, поляризованный солнечный свет, поляризованное магнитное поле), которые могли дать начальный толчок асимметрическому синтезу органических веществ. Похожее явление мы наблюдаем и в случае асимметрии «вещество - антивещество», поскольку все космические тела состоят только из вещества, а отбор произошел на самых ранних стадиях образования Вселенной.

Хиральные лекарства

Химики часто относятся к энантиомерам как к одному соединению, поскольку их химические свойства идентичны. Однако их биологическая активность может быть совершенно различной. Человек - существо хиральное. И это относится не только к его внешнему виду. «Правые» и «левые» лекарства, взаимодействуя с хиральными молекулами в организме, например с ферментами, могут действовать по-разному. «Правильное» лекарство подходит к своему рецептору как ключ к замку и запускает желаемую биохимическую реакцию. Действие же «неправильного» антипода можно уподобить попытке пожать правой рукой левую руку своего гостя. Необходимость в оптически чистых энантиомерах объясняется также тем, что часто только один из них обладает требуемым терапевтическим эффектом, тогда каквторой антипод может в лучшем случае быть бесполезным, а в худшем - вызвать нежелательные побочные
эффекты или даже быть токсичным. Это стало очевидным после нашумевшей трагической истории с талидомидом - лекарственным средством, которое назначали в 1960-е годы беременным женщинам как эффективное снотворное и успокаивающее. Однако со временем проявилось его побочное тератогенное (от греч. τέρας - чудовище) действие, и
на свет появилась масса младенцев с врожденными уродствами. Лишь в конце 1980-х годов выяснилось, что причиной несчастий был только один из энантиомеров талидомида - правовращающий - и только левовращающий изомер является мощным транквилизатором. К сожалению, такое различие в действии лекарственных форм раньше не было известно, поэтому продаваемый талидомид был рацемической смесью обоих антиподов. Они отличаются взаимным расположением в пространстве двух фрагментов молекулы.

Еще один пример. Пеницилламин, структура которого была нарисована на собаке и волке на об-ложке журнала, - довольно простое производное аминокислоты цистеина. Это вещество применяют при острых и хронических отравлениях медью, ртутью, свинцом, другими тяжелыми металлами, так как оно обладает способностью давать прочные комплексы с ионами этих металлов; образующиеся комплексы удаляются почками. Применяют пеницилламин также при различных формах ревматоидного артрита, в ряде других случаев. При этом применяют только «левую» форму препарата, так как «правая» токсична и может привести к слепоте.

Бывает и так, что каждый энантиомер обладает своим специфическим действием. Так, левовращающий S-тироксин (лекарственный препарат левотроид) - это природный гормон щитовидной железы. А право-вращающий R-тироксин (декстроид) понижает содержание холестерина в крови. Некоторые производители придумывают для подобных случаев торговые названия-палиндромы, например, darvon и novrad для синтетического наркотического анальгетика и препарата от кашля соответственно.


В настоящее время многие лекарственные средства выпускаются в виде оптически чистых соединений. Их получают тремя методами: разделением рацемических смесей, модификацией природных оптически активных соединений и прямым синтезом. Последний также требует хиральных источников, поскольку любые другие традиционные методы синтеза дают рацемат. Это, кстати, одна из причин очень высокой стоимости некоторых лекарств, поскольку направленный синтез только одного из них - сложная задача. Поэтому не удивительно, что из множества синтетических хиральных препаратов, выпускаемых во всем мире, лишь небольшая часть является оптически чистой, остальные - рацематы.

Илья Леенсон,
канд. хим. наук, ст. науч. сотр. химического факультета МГУ