Нам провести сокращение обыкновенной. Сокращение алгебраических дробей

Чтобы понять, как сокращать дроби, сначала рассмотрим один пример.

Сократить дробь — значит, разделить числитель и знаменатель на одно и то же . И 360, и 420 оканчиваются на цифру, поэтому можем сократить эту дробь на 2. В новой дроби и 180, и 210 тоже делятся на 2, сокращаем и эту дробь на 2. В числах 90 и 105 сумма цифр делится на 3, поэтому оба эти числа делятся на 3, сокращаем дробь на 3. В новой дроби 30 и 35 оканчиваются на 0 и 5, значит, оба числа делятся на 5, поэтому сокращаем дробь на 5. Получившаяся дробь шесть седьмых — несократимая. Это — окончательный ответ.

К этому же ответу можем прийти другим путем.

И 360, и 420 оканчиваются нулем, значит, они делятся на 10. Сокращаем дробь на 10. В новой дроби и числитель 36, и знаменатель 42 делятся на 2. Сокращаем дробь на 2. В следующей дроби и числитель 18, и знаменатель 21 делятся на 3, значит, сокращаем дробь на 3. Пришли к результату — шесть седьмых.

И еще один вариант решения.

В следующий раз рассмотрим примеры сокращения дробей.

Сокращение дробей нужно для того, чтобы привести дробь к более простому виду, например, в ответе полученном в результате решения выражения.

Сокращение дробей, определение и формула.

Что такое сокращение дробей? Что значит сократить дробь?

Определение:
Сокращение дробей – это разделение у дроби числитель и знаменатель на одно и то же положительное число не равное нулю и единице. В итоге сокращения получается дробь с меньшим числителем и знаменателем, равная предыдущей дроби согласно .

Формула сокращения дробей основного свойства рациональных чисел.

\(\frac{p \times n}{q \times n}=\frac{p}{q}\)

Рассмотрим пример:
Сократите дробь \(\frac{9}{15}\)

Решение:
Мы можем разложить дробь на простые множители и сократить общие множители.

\(\frac{9}{15}=\frac{3 \times 3}{5 \times 3}=\frac{3}{5} \times \color{red} {\frac{3}{3}}=\frac{3}{5} \times 1=\frac{3}{5}\)

Ответ: после сокращения получили дробь \(\frac{3}{5}\). По основному свойству рациональных чисел первоначальная и получившееся дробь равны.

\(\frac{9}{15}=\frac{3}{5}\)

Как сокращать дроби? Сокращение дроби до несократимого вида.

Чтобы нам получить в результате несократимую дробь, нужно найти наибольший общий делитель (НОД) для числителя и знаменателя дроби.

Есть несколько способов найти НОД мы воспользуемся в примере разложением чисел на простые множители.

Получите несократимую дробь \(\frac{48}{136}\).

Решение:
Найдем НОД(48, 136). Распишем числа 48 и 136 на простые множители.
48=2⋅2⋅2⋅2⋅3
136=2⋅2⋅2⋅17
НОД(48, 136)= 2⋅2⋅2=6

\(\frac{48}{136}=\frac{\color{red} {2 \times 2 \times 2} \times 2 \times 3}{\color{red} {2 \times 2 \times 2} \times 17}=\frac{\color{red} {6} \times 2 \times 3}{\color{red} {6} \times 17}=\frac{2 \times 3}{17}=\frac{6}{17}\)

Правило сокращения дроби до несократимого вида.

  1. Нужно найти наибольший общий делитель для числители и знаменателя.
  2. Нужно поделить числитель и знаменатель на наибольший общий делитель в результате деления получить несократимую дробь.

Пример:
Сократите дробь \(\frac{152}{168}\).

Решение:
Найдем НОД(152, 168). Распишем числа 152 и 168 на простые множители.
152=2⋅2⋅2⋅19
168=2⋅2⋅2⋅3⋅7
НОД(152, 168)= 2⋅2⋅2=6

\(\frac{152}{168}=\frac{\color{red} {6} \times 19}{\color{red} {6} \times 21}=\frac{19}{21}\)

Ответ: \(\frac{19}{21}\) несократимая дробь.

Сокращение неправильной дроби.

Как сократить неправильную дробь?
Правила сокращения дробей для правильных и неправильных дробей одинаковы.

Рассмотрим пример:
Сократите неправильную дробь \(\frac{44}{32}\).

Решение:
Распишем на простые множители числитель и знаменатель. А потом общие множители сократим.

\(\frac{44}{32}=\frac{\color{red} {2 \times 2 } \times 11}{\color{red} {2 \times 2 } \times 2 \times 2 \times 2}=\frac{11}{2 \times 2 \times 2}=\frac{11}{8}\)

Сокращение смешанных дробей.

Смешанные дроби по тем же правилам что и обыкновенные дроби. Разница лишь в том, что мы можем целую часть не трогать, а дробную часть сократить или смешанную дробь перевести в неправильную дробь, сократить и перевести обратно в правильную дробь.

Рассмотрим пример:
Сократите смешанную дробь \(2\frac{30}{45}\).

Решение:
Решим двумя способами:
Первый способ:
Распишем дробную часть на простые множители, а целую часть не будем трогать.

\(2\frac{30}{45}=2\frac{2 \times \color{red} {5 \times 3}}{3 \times \color{red} {5 \times 3}}=2\frac{2}{3}\)

Второй способ:
Переведем сначала в неправильную дробь, а потом распишем на простые множители и сократим. Полученную неправильную дробь переведем в правильную.

\(2\frac{30}{45}=\frac{45 \times 2 + 30}{45}=\frac{120}{45}=\frac{2 \times \color{red} {5 \times 3} \times 2 \times 2}{3 \times \color{red} {3 \times 5}}=\frac{2 \times 2 \times 2}{3}=\frac{8}{3}=2\frac{2}{3}\)

Вопросы по теме:
Можно ли сокращать дроби при сложении или вычитании?
Ответ: нет, нужно сначала сложить или вычесть дроби по правилам, а только потом сокращать. Рассмотрим пример:

Вычислите выражение \(\frac{50+20-10}{20}\) .

Решение:
Часто допускают ошибку сокращая одинаковые числа в числителе и знаменателе в нашем случаем число 20, но их сокращать нельзя пока не выполните сложение и вычитание.

\(\frac{50+\color{red} {20}-10}{\color{red} {20}}=\frac{60}{20}=\frac{3 \times 20}{20}=\frac{3}{1}=3\)

На какие числа можно сокращать дробь?
Ответ: можно сокращать дробь на наибольший общий делитель или обычный делитель числителя и знаменателя. Например, дробь \(\frac{100}{150}\).

Распишем на простые множители числа 100 и 150.
100=2⋅2⋅5⋅5
150=2⋅5⋅5⋅3
Наибольшим общим делителем будет число НОД(100, 150)= 2⋅5⋅5=50

\(\frac{100}{150}=\frac{2 \times 50}{3 \times 50}=\frac{2}{3}\)

Получили несократимую дробь \(\frac{2}{3}\).

Но необязательно всегда делить на НОД не всегда нужна несократимая дробь, можно сократить дробь на простой делитель числителя и знаменателя. Например, у числа 100 и 150 общий делитель 2. Сократим дробь \(\frac{100}{150}\) на 2.

\(\frac{100}{150}=\frac{2 \times 50}{2 \times 75}=\frac{50}{75}\)

Получили сократимую дробь \(\frac{50}{75}\).

Какие дроби можно сокращать?
Ответ: сокращать можно дроби у которых числитель и знаменатель имеют общий делитель. Например, дробь \(\frac{4}{8}\). У числа 4 и 8 есть число, на которое они оба делятся это число 2. Поэтому такую дробь можно сократить на число 2.

Пример:
Сравните две дроби \(\frac{2}{3}\) и \(\frac{8}{12}\).

Эти две дроби равны. Рассмотрим подробно дробь \(\frac{8}{12}\):

\(\frac{8}{12}=\frac{2 \times 4}{3 \times 4}=\frac{2}{3} \times \frac{4}{4}=\frac{2}{3} \times 1=\frac{2}{3}\)

Отсюда получаем, \(\frac{8}{12}=\frac{2}{3}\)

Две дроби равны тогда и только тогда, когда одна из них получена путем сокращения другой дроби на общий множитель числителя и знаменателя.

Пример:
Сократите если возможно следующие дроби: а) \(\frac{90}{65}\) б) \(\frac{27}{63}\) в) \(\frac{17}{100}\) г) \(\frac{100}{250}\)

Решение:
а) \(\frac{90}{65}=\frac{2 \times \color{red} {5} \times 3 \times 3}{\color{red} {5} \times 13}=\frac{2 \times 3 \times 3}{13}=\frac{18}{13}\)
б) \(\frac{27}{63}=\frac{\color{red} {3 \times 3} \times 3}{\color{red} {3 \times 3} \times 7}=\frac{3}{7}\)
в) \(\frac{17}{100}\) несократимая дробь
г) \(\frac{100}{250}=\frac{\color{red} {2 \times 5 \times 5} \times 2}{\color{red} {2 \times 5 \times 5} \times 5}=\frac{2}{5}\)

На этом уроке мы изучим основное свойство дроби, узнаем, какие дроби являются равными друг другу. Научимся сокращать дроби, определять, является ли дробь сократимой или нет, попрактикуемся в сокращении дробей и узнаем, когда стоит использовать сокращение, а когда нет.

Lorem ipsum dolor sit amet, consectetur adipisicing elit. Adipisci autem beatae consectetur corporis dolores ea, eius, esse id illo inventore iste mollitia nemo nesciunt nisi obcaecati optio similique tempore voluptate!

Adipisci alias assumenda consequatur cupiditate, ex id minima quam rem sint vitae? Animi dolores earum enim fugit magni nihil odit provident quaerat. Aliquid aspernatur eos esse magnam maiores necessitatibus, nulla?

Эта информация доступна зарегистрированным пользователям

Основное свойство дроби

Представьте себе такую ситуацию.

За столом 3 человека и 5 яблок. Делятся 5 яблок на троих. Каждому достается по \(\mathbf{\frac{5}{3}}\) яблока.

А за соседним столом еще 3 человека и тоже 5 яблок. Каждому опять по \(\mathbf{\frac{5}{3}}\)

При этом всего 10 яблок и 6 человек. Каждому по \(\mathbf{\frac{10}{6}}\)

Но это одно и то же.

\(\mathbf{\frac{5}{3} = \frac{10}{6}}\)

Эти дроби эквивалентны.

Можно увеличить в два раза количество людей и в два раза количество яблок. Результат будет тем же самым.

В математике это формулируется так:

Если числитель и знаменатель дроби умножить или разделить на одно и то же число (не равное 0), то новая дробь будет равна исходной .

Это свойство иногда называют «основным свойством дроби ».

$$\mathbf{\frac{a}{b} = \frac{a\cdot c}{b\cdot c} = \frac{a:d}{b:d}}$$

Например, Путь от города до деревни- 14 км.

Мы идем по дороге и определяем пройденный путь по километровым столбикам. Пройдя шесть столбиков, шесть километров, мы понимаем, что прошли \(\mathbf{\frac{6}{14}}\) пути.

Но если мы не видим столбиков (может, их не установили), можно путь считать по электрическим столбам вдоль дороги. Их 40 штук на каждый километр. То есть всего 560 на всем пути. Шесть километров- \(\mathbf{6\cdot40 = 240}\) столбов. То есть мы прошли 240 из 560 столбов- \(\mathbf{\frac{240}{560}}\)

\(\mathbf{\frac{6}{14} = \frac{240}{560}}\)

Пример 1

Отметьте точку с координатами (5; 7 ) на координатной плоскости Y . Она будет соответствовать дроби \(\mathbf{\frac{5}{7}}\)

Соедини начало координат с получившейся точкой. Построй другую точку, которая имеет координаты в два раза больших предыдущих. Какую дробь ты получил? Будут ли они равны?

Решение

Дробь на координатной плоскости можно отмечать точкой. Чтобы изобразить дробь \(\mathbf{\frac{5}{7}}\), отметим точку с координатой 5 по оси Y и 7 по оси X . Проведем прямую из начала координат через нашу точку.

На этой же прямой будет лежать и точка, соответствующая дроби \(\mathbf{\frac{10}{14}}\)

Они являются эквивалентными: \(\mathbf{\frac{5}{7} = \frac{10}{14}}\)

Разберемся в том, что такое сокращение дробей, зачем и как сокращать дроби, приведем правило сокращения дробей и примеры его использования.

Yandex.RTB R-A-339285-1

Что такое "сокращение дробей"

Сократить дробь

Сократить дробь - значит разделить ее числитель и знаменатель на общий делитель, положительный и отличный от единицы.

В результате такого действия получится дробь с новым числителем и знаменателем, равная исходной дроби.

К примеру, возьмем обыкновенную дробь 6 24 и сократим ее. Разделим числитель и знаменатель на 2 , в результате чего получим 6 24 = 6 ÷ 2 24 ÷ 2 = 3 12 . В этом примере мы сократили исходную дробь на 2 .

Приведение дробей к несократимому виду

В предыдущем примере мы сократили дробь 6 24 на 2 , в результате чего получили дробь 3 12 . Нетрудно заметить, что эту дробь можно сократить еще. Как правило, целью сокращения дробей является получение в итоге несократимой дроби. Как привести дробь к несократимому виду?

Это можно сделать, если сократить числитель и знаменатель на их наибольший общий делитель (НОД). Тогда, по свойству наибольшего общего делителя, в числителе и в знаменателе будут взаимно простые числа, и дробь окажется несократимой.

a b = a ÷ Н О Д (a , b) b ÷ Н О Д (a , b)

Приведение дроби к несократимому виду

Чтобы привести дробь к несократимому виду нужно ее числитель и знаменатель разделить на их НОД.

Вернемся к дроби 6 24 из первого примера и приведем ее к несократимому виду. Наибольший общий делитель чисел 6 и 24 равен 6 . Сократим дробь:

6 24 = 6 ÷ 6 24 ÷ 6 = 1 4

Сокращение дробей удобно применять, чтобы не работать с большими цифрами. Вообще, в математике существует негласное правило: если можно упростить какое-либо выражение, то нужно это делать. Под сокращением дроби чаще всего подразумевают ее приведение к несократимому виду, а не просто сокращение на общий делитель числителя и знаменателя.

Правило сокращения дробей

Чтобы сокращать дроби достаточно запомнить правило, которое состоит из двух шагов.

Правило сокращения дробей

Чтобы сократить дробь нужно:

  1. Найти НОД числителя и знаменателя.
  2. Разделить числитель и знаменатель на их НОД.

Рассмотрим практические примеры.

Пример 1. Сократим дробь.

Дана дробь 182 195 . Сократим ее.

Найдем НОД числителя и знаменателя. Для этого в данном случае удобнее всего воспользоваться алгоритмом Евклида.

195 = 182 · 1 + 13 182 = 13 · 14 Н О Д (182 , 195) = 13

Разделим числитель и знаменатель на 13 . Получим:

182 195 = 182 ÷ 13 195 ÷ 13 = 14 15

Готово. Мы получили несократимую дробь, которая равна исходной дроби.

Как еще можно сокращать дроби? В некоторых случаях удобно разложить числитель и знаменатель на простые множители, а потом из верхней и нижней частей дроби убрать все общие множители.

Пример 2. Сократим дробь

Дана дробь 360 2940 . Сократим ее.

Для этого представим исходную дробь в виде:

360 2940 = 2 · 2 · 2 · 3 · 3 · 5 2 · 2 · 3 · 5 · 7 · 7

Избавимся от общих множителей в числителе и знаменателе, в результате чего получим:

360 2940 = 2 · 2 · 2 · 3 · 3 · 5 2 · 2 · 3 · 5 · 7 · 7 = 2 · 3 7 · 7 = 6 49

Наконец, рассмотрим еще один способ сокращения дробей. Это так называемое последовательное сокращение. С использованием этого способа сокращение производится в несколько этапов, на каждом из которых дробь сокращается на какой-то очевидный общий делитель.

Пример 3. Сократим дробь

Сократим дробь 2000 4400 .

Сразу видно, что числитель и знаменатель имеют общий множитель 100 . Сокращаем дробь на 100 и получаем:

2000 4400 = 2000 ÷ 100 4400 ÷ 100 = 20 44

20 44 = 20 ÷ 2 44 ÷ 2 = 10 22

Получившийся результат снова сокращаем на 2 и получаем уже несократимую дробь:

10 22 = 10 ÷ 2 22 ÷ 2 = 5 11

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Без знания того, как сократить дробь, и наличия устойчивого навыка в решении подобных примеров очень непросто изучать в школе алгебру. Чем дальше, тем больше на базовые знания о сокращении обыкновенных дробей накладывается новой информации. Сначала появляются степени, потом множители, которые позже становятся многочленами.

Как тут не запутаться? Основательно закреплять умения в предыдущих темах и постепенно готовиться к знаниям о том, как сократить дробь, усложняющуюся год от года.

Базовые знания

Без них не удастся справиться с заданиями любого уровня. Чтобы понять, нужно уяснить два простых момента. Первый: сокращать можно только множители. Этот нюанс оказывается очень важным при появлении многочленов в числителе или знаменателе. Тогда нужно четко различать, где находится множитель, а где стоит слагаемое.

Второй момент говорит о том, что любое число можно представить в виде множителей. Причем результатом сокращения является такая дробь, числитель и знаменатель которых уже невозможно сократить.

Правила сокращения обыкновенных дробей

Для начала стоит проверить, делится ли числитель на знаменатель или наоборот. Тогда именно на это число нужно провести сокращение. Это самый простой вариант.

Вторым является анализ внешнего вида чисел. Если оба заканчиваются на один или несколько нолей, то их можно сократить на 10, 100 или тысячу. Здесь же можно заметить, являются ли числа четными. Если да, то смело можно сокращать на два.

Третьим правилом того, как сократить дробь, становится разложение на простые множители числителя и знаменателя. В это время нужно активно использовать все знания о признаках делимости чисел. После такого разложения остается только найти все повторяющиеся, перемножить их и произвести сокращение на получившееся число.

Как быть, если в дроби стоит алгебраическое выражение?

Здесь появляются первые трудности. Потому что именно здесь появляются слагаемые, которые могут быть идентичны множителям. Их очень хочется сократить, а нельзя. До того как сократить алгебраическую дробь, ее нужно преобразовать так, чтобы она имела множители.

Для этого потребуется выполнить несколько действий. Возможно, потребуется пройти их все, а может, уже первое даст подходящий вариант.

    Проверить, не отличаются ли числитель и знаменатель или какое-либо выражение в них на знак. В этом случае необходимо просто вынести за скобки минус единицу. Так получаются одинаковые множители, которые можно сократить.

    Посмотреть, можно ли вынести из многочлена за скобки общий множитель. Возможно, так получится скобка, которую также можно сократить, или это будет вынесенный одночлен.

    Попробовать провести группировку одночленов с тем, чтобы потом в них вынести общий множитель. После этого может оказаться, что появятся множители, которые можно сократить, или снова повторить вынесение за скобки общих элементов.

    Попытаться рассмотреть в записи формулы сокращенного умножения. С их помощью легко удастся преобразовать многочлен в множители.

Последовательность действий с дробями со степенями

Для того чтобы без проблем разобраться в вопросе о том, как сократить дробь со степенями, необходимо твердо запомнить основные действия с ними. Первое из них связано с умножением степеней. В этом случае, если основания одинаковые, показатели необходимо сложить.

Второе — деление. Опять же у тех, которые имеют одинаковые основания, показатели потребуется вычесть. Причем вычитать нужно из того числа, которое стоит в делимом, а не наоборот.

Третье — возведение в степень степени. В этой ситуации показатели перемножаются.

Для успешного сокращения потребуется также умение приводить степени к одинаковым основаниям. То есть видеть, что четыре — это два в квадрате. Или 27 — куб трех. Потому что сократить 9 в квадрате и 3 в кубе сложно. Но если преобразовать первое выражение как (3 2) 2 , то сокращение пройдет успешно.