Тепловой баланс земной поверхности. Большая советская энциклопедия - тепловой баланс земли

Радиационный баланс представляет собой разность между приходом и расходом лучистой энергии, поглощаемой и излучаемой поверхностью Земли.

Радиационный баланс - алгебраическая сумма потоков радиации в определённом объёме или на определённой поверхности. Говоря о радиационном балансе атмосферы или системы «Земля – атмосфера», чаще всего подразумевают радиационный баланс земной поверхности, определяющий теплообмен на нижней границе атмосферы. Он представляет собой разность между поглощённой суммарной солнечной радиацией и эффективным излучением земной поверхности.

Радиационный баланс представляет собой разность между приходом и расходом лучистой энергии, поглощаемой и излучаемой поверхностью Земли.

Радиационный баланс является важнейшим климатическим фактором, так как от его величины в сильной степени зависит распределение температуры в почве и прилегающих к ней слоях воздуха. От него зависят физические свойства масс воздуха, перемещающихся по Земле, а также интенсивность испарения и таяния снега.

Распределение годовых значений радиационного баланса на поверхности земного шара неодинаково: в тропических широтах эти значения доходят до 100... 120 ккал/(см2-год), а максимальные (до 140 ккал/(см2 год)) наблюдаются у северо-западных берегов Австралии). В пустынных и засушливых районах значения радиационного баланса ниже по сравнению с районами достаточного и избыточного увлажнения на тех же широтах. Это вызывается повышением альбедо и увеличением эффективного излучения в связи с большой сухостью воздуха и малой облачностью. В умеренных широтах значения радиационного баланса быстро уменьшаются по мере возрастания широты вследствие убывания суммарной радиации.

В среднем за год суммы радиационного баланса для всей поверхности земного шара оказываются положительными, за исключением районов с постоянным ледяным покровом (Антарктика, центральная часть Гренландии и др.).

Энергия, измеряемая величиной радиационного баланса, частично затрачивается на испарение, частично передается воздуху и, наконец, некоторое количество энергии уходит в почву и идет на ее нагревание. Таким образом, общий приход-расход тепла для поверхности Земли, называемый тепловым балансом, можно представить в виде следующего уравнения:

Здесь В - радиационный баланс, М - поток тепла между поверхностью Земли и атмосферой, V - затрата тепла на испарение (или выделение тепла при конденсации), Т - теплообмен между поверхностью почвы и глубинными слоями.

Рисунок 16 – Воздействие солнечной радиации на поверхность Земли

В среднем за год почва практически отдает тепла в воздух столько же, сколько и получает, поэтому в годовых выводах теплооборот в почве равен нулю. Затраты тепла на испарение распределяются на поверхности земного шара весьма неравномерно. На океанах они зависят от количества солнечной энергии, поступающей на поверхность океана, а также от характера океанических течений. Теплые течения увеличивают расход тепла на испарение, холодные же уменьшают его. На материках затраты тепла на испарение определяются не только количеством солнечной радиации, но и запасами влаги, содержащейся в почве. При недостатке влаги, вызывающем сокращение испарения, затраты тепла на испарение снижаются. Поэтому в пустынях и полупустынях они значительно уменьшаются.

Практически единственным источником энергии для всех физических процессов, развивающихся в атмосфере, является солнечная радиация. Главная особенность радиационного режима атмосферы т. н. парниковый эффект: атмосфера слабо поглощает коротковолновую солнечную радиацию (большая её часть достигает земной поверхности), но задерживает длинноволновое (целиком инфракрасное) тепловое излучение земной поверхности, что значительно уменьшает теплоотдачу Земли в космическое пространство и повышает её температуру.

Приходящая в атмосферу солнечная радиация частично поглощается в атмосфере главным образом водяным паром, углекислым газом, озоном и аэрозолями и рассеивается на частицах аэрозоля и на флуктуациях плотности атмосферы. Вследствие рассеяния лучистой энергии Солнца в атмосфере наблюдается не только прямая солнечная, но и рассеянная радиация, в совокупности они составляют суммарную радиацию. Достигая земной поверхности, суммарная радиация частично отражается от неё. Величина отражённой радиации определяется отражательной способностью подстилающей поверхности, т. н. альбедо. За счёт поглощённой радиации земная поверхность нагревается и становится источником собственного длинноволнового излучения, направленного к атмосфере. В свою очередь, атмосфера также излучает длинноволновую радиацию, направленную к земной поверхности (т. н. противоизлучение атмосферы) ив мировое пространство (т. н. уходящее излучение). Рациональный теплообмен между земной поверхностью и атмосферы определяется эффективным излучением - разностью между собственным излучением поверхности Земли и поглощённым ею противоизлучением атмосферы. Разность между коротковолновой радиацией, поглощённой земной поверхностью, и эффективным излучением называется радиационным балансом.

Преобразования энергии солнечной радиации после её поглощения на земной поверхности и в атмосфере составляют тепловой баланс Земли. Главный источник тепла для атмосферы земная поверхность, поглощающая основную долю солнечной радиации. Поскольку поглощение солнечной радиации в атмосфере меньше потери тепла из атмосферы в мировое пространство длинноволновым излучением, то радиационный расход тепла восполняется притоком тепла к атмосфере от земной поверхности в форме турбулентного теплообмена и приходом тепла в результате конденсации водяного пара в атмосфере. Так как итоговая величина конденсации во всей атмосфере равна количеству выпадающих осадков, а также величине испарения с земной поверхности, приход конденсационного тепла в атмосфере численно равен затрате тепла на испарение на поверхности Земли.

Чтобы правильно оценивать степень нагрева и охлаждения различных земных поверхностей, рассчитывать испарение на , определять изменения влагозапаса в почве, разрабатывать методы по прогнозированию замерзания , а также оценивать влияние мелиоративных работ на климатические условия приземного слоя воздуха, необходимы данные о тепловом балансе земной поверхности.

Земная поверхность непрерывно получает и теряет тепло в результате воздействия разнообразных потоков коротковолновой и длинноволновой радиации. Поглощая в большей или меньшей степени суммарную радиацию и встречное излучение , земная поверхность нагревается и излучает длинноволновую радиацию, а значит, теряет тепло. Величиной, характеризующей потерю тепла земной
поверхностью, является эффективное излучение. Оно равно разности между собственным излучением земной поверхности и встречным излучением атмосферы. Поскольку встречное излучение атмосферы всегда несколько меньше земного, то эта разность положительна. В дневные часы эффективное излучение перекрывается поглощенной коротковолновой радиацией. Ночью же, при отсутствии коротковолновой солнечной радиации, эффективное излучение понижает температуру земной поверхности. В облачную погоду в связи с увеличением встречного излучения атмосферы эффективное излучение гораздо меньше, чем в ясную. Меньше и ночное охлаждение земной поверхности. В средних широтах земная поверхность теряет через эффективное излучение примерно половину того количества тепла, которое они получает от поглощенной радиации.

Приход и расход лучистой энергии оценивают величиной радиационного баланса земной поверхности. Он равен разности между поглощенной и эффективным излучением, от него зависит тепловое состояние земной поверхности - ее нагревание или охлаждение. Днем почти все время положителен, т. е. приход тепла превышает расход. Ночью радиационный баланс отрицателен и равен эффективному излучению. Годовые значения радиационного баланса земной поверхности, за исключением самых высоких широт, повсюду положительны. Этот избыток тепла расходуется на нагревание атмосферы путем турбулентной теплопроводности, на испарение, на теплообмен с более глубокими слоями почвы или воды.

Если рассматривать температурные условия за длительный период (год или лучше ряд лет), то земная поверхность, атмосфера в отдельности и система «Земля - атмосфера» находятся в состоянии теплового равновесия. Их средняя температура из года в год мало меняется. В соответствии с законом сохранения энергии можно считать, что алгебраическая сумма потоков тепла, приходящих на земную поверхность и уходящих от нее равна нулю. Это и есть уравнение теплового баланса земной поверхности. Его смысл состоит в том, что радиационный баланс земной поверхности уравновешивается нерадиационной передачей тепла. В уравнении теплового баланса, как правило, не учитываются (ввиду их малости) такие потоки, как тепло, переносимое выпадающими осадками, расход энергии на фотосинтез, приход тепла от окисления биомассы, а также расход тепла на таяние льда или снега, приход тепла от замерзания воды.

Тепловой баланс системы «Земля — атмосфера» за длительный период также равен нулю, т. е. Земля как планета находится в тепловом равновесии: приходящая на верхнюю границу атмосферы солнечная радиация уравновешивается уходящей в космос радиацией с верхней границы атмосферы.

Если принять приходящую на верхнюю границу атмосферы за 100%, то из этого количества 32% рассеивается в атмосфере. Из них 6% уходит обратно в мировое пространство. Следовательно, к земной поверхности в виде рассеянной радиации поступает 26%; 18% радиации поглощается озоном, аэрозолями и идет на нагревание атмосферы; 5% поглощается облаками; 21% радиации уходит в космос в результате отражения от облаков. Таким образом, приходящая к земной поверхности радиация составляет 50%, из которых на долю прямой радиации приходится 24%; 47% поглощается земной поверхностью, а 3% приходящей радиации отражается обратно в мировое пространство. В результате с верхней границы атмосферы в космическое пространство уходит 30% солнечной радиации. Эту величину называют планетарным альбедо Земли. Для системы «Земля атмосфера» через верхнюю границу атмосферы уходит обратно в космос 30% отраженной и рассеянной солнечной радиации, 5% земного излучения и 65% излучения атмосферы, т. е. всего 100%.

Земля получает тепло, поглощая коротковолновую солнечную радиацию в атмосфере, и особенно на земной поверхности. Солнечная радиация является практически единственным источником поступления тепла в систему «атмосфера--земля». Другие источники тепла (тепло, выделяемое при распаде радиоактивных элементов внутри Земли, гравитационное тепло и др.) в сумме дают лишь одну пятитысячную долю того тепла, которое поступает на верхнюю границу атмосферы от солнечной радиации Sо и при cоставлении уравнения теплового баланса их можно не учитывать.

Теряется тепло с уходящей в мировое пространство коротковолновой радиацией, отразившейся от атмосферы Soa и от земной поверхности SОП, и за счет эффективного излучения земной поверхностью длинноволновой радиации Еэ и излучения атмосферы Еa.

Таким образом, на верхней границе атмосферы тепловой баланс Земли как планеты складывается из лучистого (радиационного) теплообмена:

SO - Soa - Sоп - Eэ - Еa = ?Sэ, (1)

где?Sэ, изменение теплосодержания системы «атмосфера -- Земля» за период времени?т.

Рассмотрим слагаемые этого уравнения за годовой период. Поток солнечной радиации при среднем расстоянии Земли от Солнца приблизительно равен 42,6-10° Дж/(м2-год). Из этого потока на Землю поступает количество энергии, равное произведению солнечной постоянной I0 на площадь поперечного сечения Земли рR2, т.е., I0 рR2, где R -- средний радиус Земли. Под влиянием вращения Земли эта энергия распределяется по всей поверхности земного шара, равной 4рR2. Следовательно, среднее значение потока солнечной радиации на горизонтальную поверхность Земли без учета ослабления ее атмосферой составляет Iо рR2/4рR3 = Iо/4, или 0,338кВт/м2. За год на каждый квадратный метр поверхности внешней границы атмосферы в среднем поступает около 10,66- 109 Дж, или 10,66 ГДж солнечной энергии, т. е. Iо = 10,66 ГДж/(м2*год).

Рассмотрим расходную часть уравнения (1). Поступившая на внешнюю границу атмосферы солнечная радиация частично проникает в атмосферу, а частично отражается атмосферой и земной поверхностью в мировое пространство. По новейшим данным среднее альбедо Земли оценивается в 33%: оно складывается из отражения от облаков (26%) и отражения от подстилающей поверхности (7:%). Тогда отраженная облаками радиация Soa= 10,66*0,26 = 2,77 ГДж/(м2*год), земной поверхностью -- SОП = 10,66*0,07 = 0,75 ГДж/(м2*год) и в целом Земля отражает 3,52 ГДж/(м2*год).

Земная поверхность, нагретая в результате поглощения солнечной радиации, становится источником длинноволнового излучения, нагревающего атмосферу. Поверхность всякого тела, имеющего температуру выше абсолютного нуля, непрерывно излучает тепловую энергию. Не являются исключением земная поверхность и атмосфера. Согласно закону Стефана -- Больцмана интенсивность излучения зависит от температуры тела п его лучеиспускательной способности:

E = вуТ4, (2)

где Е-интенсивность излучения, или собственное излучение, Вт/м2; в -лучеиспускательная способность тела относительно абсолютно черного тела, для которого в = 1; у -- постоянная Стефана -- Больцмана, равная 5,67*10-8 Вт/(м2*К4); Т -- абсолютная температура тела.

Значения в для различных поверхностей колеблются от 0,89 (гладкая водная поверхность) до 0,99 (густая зеленая трава). В среднем для земной поверхности в принимают равным 0,95.

Абсолютные температуры земной поверхности заключены между 190 и 350 К. При таких температурах испускаемая радиация имеет длины волн 4--120 мкм и, следовательно вся она инфракрасная и не воспринимается глазом.

Собственное излучение земной поверхности - Е3, рассчитанное по формуле (2), равно 12,05 ГДж/(м2*год), что на 1,39ГДж/(м2*год), или на 13% превосходит поступившую на верхнюю границу атмосферы солнечную радиацию S0. Столь большая отдача радиации земной поверхностью приводила бы к быстрому ее охлаждению, если бы этому не препятствовал процесс поглощения солнечной и атмосферной радиации поверхностью Земли. Инфракрасная земная радиация, или собственное излучение земной поверхности, в интервале длин волн от 4,5 до 80 мкм интенсивно поглощается.водяными парами атмосферы и только в интервале 8,5 -- 11 мкм проходит сквозь атмосферу и уходит в мировое пространство. В свою очередь, водяные пары атмосферы также излучают невидимую инфракрасную радиацию, большая часть которой направлена вниз к земной поверхности, а остальная часть уходит в мировое пространство. Атмосферную радиацию, приходящую к земной поверхности, называют встречным излучением атмосферы.

Из встречного излучения атмосферы земная поверхность поглощает 95% его величины, так как по закону Кирхгофа лучеиспускательная способность тела равна его лучепоглотительной способности. Таким образом, встречное излучение атмосферы является для земной поверхности важным источником тепла в дополнение к поглощенной солнечной радиации. Прямому определению встречное излучение атмосферы не поддается и рассчитывается косвенными методами. Поглощенное земной поверхностью встречное излучение атмосферы Eзa= 10,45 ГДж/(м2 *год). По отношению к S0 оно составляет 98%.

Встречное излучение всегда меньше земного. Поэтому земная поверхность теряет тепло за счет положительной разности между собственным и встречным излучением. Разность между собственным излучением земной поверхности и встречным излучением атмосферы называют эффективном излучением (Еэ):

Еэ = Ез - Езa (3)

солнечный теплообмен земной

Эффективное излучение представляет собой чистую потерю лучистой энергии, а следовательно, и тепла с земной поверхности. Это уходящее в космос тепло составляет 1,60 ГДж/(м2 *год), или 15% от поступившей на верхнюю границу атмосферы солнечной радиации (на рис. 9.1 стрелка Ез). В умеренных широтах земная поверхность теряет через эффективное излучение примерно половину того количества тепла, которое она получает от поглощенной радиации.

Излучение атмосферы носит более сложный характер, чем излучение земной поверхности. Во-первых, по закону Кирхгофа энергию излучают лишь те газы, которые ее поглощают, т. е. водяной пар, углекислый газ и озон. Во-вторых, излучение каждого из этих газов носит сложный избирательный характер. Поскольку содержание водяного пара с высотой уменьшается, то наиболее сильно излучающие слои атмосферы лежат на высотах 6 -- 10 км. Длинноволновое излучение атмосферы в мировое пространство Еa=5,54 ГДж/(м2*год), что составляет 52% от притока солнечной радиации к верхней границе атмосферы. Длинноволновое излучение земной поверхности и атмосферы, поступающее в космос, называется уходящей радиацией ЕУ. В сумме она равна 7,14 ГДж/(м2*год), или 67% от притока солнечной радиации.

Подставляя в уравнение (1) найденные значения Sо, Sоа, Sоп, Еэ и Еа, получим - ?Sз = 0, т. е. уходящая радиация вместе с отраженной и рассеянной коротковолновой радиацией Sоз компенсируют приток солнечной радиации к Земле. Иными словами, Земля вместе с атмосферой теряет столько же радиации, сколько получает, и, следовательно, находится в состоянии радиационного равновесия.

Тепловое равновесие Земли подтверждается многолетними наблюдениями за температурой: средняя температура Земли от года к году меняется мало, а от одного многолетнего периода к другому остается почти неизменной.

ТЕПЛОВОЙ БАЛАНС ЗЕМНОЙ ПОВЕРХНОСТИ

ТЕПЛОВОЙ БАЛАНС ЗЕМНОЙ ПОВЕРХНОСТИ алгебраическая сумма потоков тепла, приходящих на земную поверхность и уходящих от нее. Выражается уравнением:

где R - радиационный баланс земной поверхности; P - турбулентный поток тепла между земной поверхностью и атмосферой; LE - затрата тепла на испарение; В - поток тепла от земной поверхности в глубь почвы или воды или обратно. Соотношение компонентов баланса изменяется во времени в зависимости от свойств подстилающей поверхности и географические широты места. Характер теплового баланса земной поверхности и его энергетический уровень определяют особенности и интенсивность большинства экзогенных процессов. Данные о тепловом балансе земной поверхности играют большую роль в изучении изменений климата, географических зональности, термического режима организмов.

Экологический энциклопедический словарь. - Кишинев: Главная редакция Молдавской советской энциклопедии . И.И. Дедю . 1989 .


  • ТЕПЛОВОЕ ИЗЛУЧЕНИЕ
  • ТЕПЛОВОЙ БАЛАНС СИСТЕМЫ ЗЕМЛЯ-АТМОСФЕРА

Смотреть что такое "ТЕПЛОВОЙ БАЛАНС ЗЕМНОЙ ПОВЕРХНОСТИ" в других словарях:

    тепловой баланс земной поверхности - Алгебраическая сумма потоков тепла, приходящих к земной поверхности и излучаемых ею … Словарь по географии

    Тепловой баланс Земли, соотношение прихода и расхода энергии (лучистой и тепловой) на земной поверхности, в атмосфере и в системе Земля атмосфера. Основным источником энергии для подавляющего большинства физических, химических и биологических… …

    ТЕПЛОВОЙ БАЛАНС - земной поверхности алгебраическая сумма потоков тепла, приходящих на земную поверхность и уходящих от нее. Выражается уравнением: R + P + LE + B=0, где R радиационный баланс земной поверхности; P турбулентный поток тепла между земной… … Экологический словарь

    I Тепловой баланс сопоставление прихода и расхода (полезно использованной и потерянной) теплоты в различных тепловых процессах (См. Тепловой процесс). В технике Т. б. используется для анализа тепловых процессов, осуществляющихся в паровых … Большая советская энциклопедия

    Большой Энциклопедический словарь

    Сопоставление прихода и расхода тепловой энергии при анализе тепловых процессов. Составляется как при изучении природных процессов (тепловой баланс атмосферы, океана, земной поверхности и Земли в целом и др.), так и в технике в различных тепловых … Энциклопедический словарь

    Сопоставление прихода и расхода тепловой энергии при анализе тепловых процессов. Составляется как при изучении природных процессов (Т. б. атмосферы, океана, земной поверхности и Земли в целом и др.), так и в технике в разл. тепловых устройствах… … Естествознание. Энциклопедический словарь

    - (франц. balance, от balancer качать). 1) равновесие. 2) в бухгалтерии сведение счетов по приходу и расходу сумм для выяснения положения дела. 3) результат сравнения ввозной и вывозной торговли какой либо страны. Словарь иностранных слов, вошедших … Словарь иностранных слов русского языка

    Атмосферы и подстилающей поверхности, сумма прихода и расхода лучистой энергии, поглощаемой и излучаемой атмосферой и подстилающей поверхностью (См. Подстилающая поверхность). Для атмосферы Р. б. состоит из приходной части поглощённой… … Большая советская энциклопедия

    Земля (от общеславянского зем пол, низ), третья по порядку от Солнца планета Солнечной системы, астрономический знак Å или, ♀. I. Введение З. занимает пятое место по размеру и массе среди больших планет, но из планет т. н. земной группы, в… … Большая советская энциклопедия

ТЕПЛОВОЙ БАЛАНС ЗЕМЛИ

баланс Земли, соотношение прихода и расхода энергии (лучистой и тепловой) на земной поверхности, в атмосфере и в системе Земля - атмосфера. Основным источником энергии для подавляющего большинства физических, химических и биологических процессов в атмосфере, гидросфере и в верхних слоях литосферы является солнечная радиация, поэтому распределение и соотношение составляющих Т. б. характеризуют её преобразования в этих оболочках.

Т. б. представляют собой частные формулировки закона сохранения энергии и составляются для участка поверхности Земли (Т. б. земной поверхности); для вертикального столба, проходящего через атмосферу (Т. б. атмосферы); для такого же столба, проходящего через атмосферу и верхние слои литосферы или гидросферу (Т. б. системы Земля - атмосфера).

Уравнение Т. б. земной поверхности: R + P + F0 + LE 0 представляет собой алгебраическую сумму потоков энергии между элементом земной поверхности и окружающим пространством. В число этих потоков входит радиационный баланс (или остаточная радиация) R - разность между поглощённой коротковолновой солнечной радиацией и длинноволновым эффективным излучением с земной поверхности. Положительная или отрицательная величина радиационного баланса компенсируется несколькими потоками тепла. Так как температура земной поверхности обычно не равна температуре воздуха, то между подстилающей поверхностью и атмосферой возникает поток тепла Р. Аналогичный поток тепла F 0 наблюдается между земной поверхностью и более глубокими слоями литосферы или гидросферы. При этом поток тепла в почве определяется молекулярной теплопроводностью, тогда как в водоёмах теплообмен, как правило, имеет в большей или меньшей степени турбулентный характер. Поток тепла F 0 между поверхностью водоёма и его более глубокими слоями численно равен изменению теплосодержания водоёма за данный интервал времени и переносу тепла течениями в водоёме. Существенное значение в Т. б. земной поверхности обычно имеет расход тепла на испарение LE, который определяется как произведение массы испарившейся воды Е на теплоту испарения L. Величина LE зависит от увлажнения земной поверхности, её температуры, влажности воздуха и интенсивности турбулентного теплообмена в приземном слое воздуха, которая определяет скорость переноса водяного пара от земной поверхности в атмосферу.

Уравнение Т. б. атмосферы имеет вид: Ra + Lr + P + Fa D W.

Т. б. атмосферы слагается из её радиационного баланса R a ; прихода или расхода тепла Lr при фазовых преобразованиях воды в атмосфере (г - сумма осадков); прихода или расхода тепла Р, обусловленного турбулентным теплообменом атмосферы с земной поверхностью; прихода или расхода тепла F a, вызванного теплообменом через вертикальные стенки столба, который связан с упорядоченными движениями атмосферы и макротурбулентностью. Кроме того, в уравнение T. б. атмосферы входит член DW, равный величине изменения теплосодержания внутри столба.

Уравнение Т. б. системы Земля - атмосфера соответствует алгебраической сумме членов уравнений Т. б. земной поверхности и атмосферы. Составляющие Т. б. земной поверхности и атмосферы для различных районов земного шара определяются путём метеорологических наблюдений (на актинометрических станциях, на специальных станциях Т. б., на метеорологических спутниках Земли) или путём климатологических расчётов.

Средние широтные величины составляющих Т. б. земной поверхности для океанов, суши и Земли и Т. б. атмосферы приведены в таблицах 1, 2, где величины членов Т. б. считаются положительными, если соответствуют приходу тепла. Так как эти таблицы относятся к средним годовым условиям, в них не включены члены, характеризующие изменения теплосодержания атмосферы и верхних слоев литосферы, поскольку для этих условий они близки к нулю.

Для Земли как планеты, вместе с атмосферой, схема Т. б. представлена на рис. На единицу поверхности внешней границы атмосферы поступает поток солнечной радиации, равный в среднем около 250 ккал/см 2 в год, из которых около отражается в мировое пространство, а 167 ккал/см 2 в год поглощает Земля (стрелка Q s на рис.). Земной поверхности достигает коротковолновая радиация, равная 126 ккал/см 2 в год; 18 ккал/см 2в год из этого количества отражается, а 108 ккал/см 2 в год поглощается земной поверхностью (стрелка Q). Атмосфера поглощает 59 ккал/см 2 в год коротковолновой радиации, то есть значительно меньше, чем земная поверхность. Эффективное длинноволновое излучение поверхности Земли равно 36 ккал/см 2 в год (стрелка I) , поэтому радиационный баланс земной поверхности равен 72 ккал/см 2 в год. Длинноволновое излучение Земли в мировое пространство равно 167 ккал/см 2 в год (стрелка Is) . Таким образом, поверхность Земли получает около 72 ккал/см 2 в год лучистой энергии, которая частично расходуется на испарение воды (кружок LE) и частично возвращается в атмосферу посредством турбулентной теплоотдачи (стрелка Р) .

Табл. 1 . - Тепловой баланс земной поверхности, ккал/см 2 год

Широта, градусы

Земля в среднем

70-60 северной широты

0-10 южной широты

Земля в целом

Данные о составляющих Т. б. используются при разработке многих проблем климатологии, гидрологии суши, океанологии; они применяются для обоснования численных моделей теории климата и для эмпирической проверки результатов применения этих моделей. Материалы о Т. б. играют большую роль в изучении изменений климата, их применяют также в расчётах испарения с поверхности речных бассейнов, озёр, морей и океанов, в исследованиях энергетического режима морских течений, для изучения снежных и ледяных покровов, в физиологии растений для исследования транспирации и фотосинтеза, в физиологии животных для изучения термического режима живых организмов. Данные о Т. б. были использованы и для изучения географической зональности в работах советского географа А. А. Григорьева.

Табл. 2 . - Тепловой баланс атмосферы, ккал/см 2 год

Широта, градусы

70-60 северной широты

0-10 южной широты

Земля в целом

Лит.: Атлас теплового баланса земного шара, под ред. М. И. Будыко, М., 1963; Будыко М. И., Климат и жизнь, Л., 1971; Григорьев А. А., Закономерности строения и развития географической среды, М., 1966.

М. И. Будыко.

Большая советская энциклопедия, БСЭ. 2012

Смотрите еще толкования, синонимы, значения слова и что такое ТЕПЛОВОЙ БАЛАНС ЗЕМЛИ в русском языке в словарях, энциклопедиях и справочниках:

  • ЗЕМЛИ
    СЕЛЬСКОХОЗЯЙСТВЕННОГО НАЗНАЧЕНИЯ - земли, предоставленные для нужд сельского хозяйства или предназначенные для этих …
  • ЗЕМЛИ в Словаре экономических терминов:
    РЕКРЕАЦИОННОГО НАЗНАЧЕНИЯ - выделенные в установленном порядке земли, предназначенные и используемые для организованного массового отдыха и туризма населения. К ним …
  • ЗЕМЛИ в Словаре экономических терминов:
    ПРИРОДООХРАННОГО НАЗНАЧЕНИЯ - земли заказников (за исключением охотничьих) ; запретных и нерестоохранных полос; земли, занятые лесами, выполняющими защитные функции; другие …
  • ЗЕМЛИ в Словаре экономических терминов:
    ПРИРОДНО-ЗАПОВЕДНОГО ФОНДА - земли заповедников, памятников природы, природных (национальных) и дендрологических, ботанических садов. В состав З.п.-з.ф. включаются земельные участки с …
  • ЗЕМЛИ в Словаре экономических терминов:
    ПОРЧА - см. ПОРЧА ЗЕМЛИ …
  • ЗЕМЛИ в Словаре экономических терминов:
    ОЗДОРОВИТЕЛЬНОГО НАЗНАЧЕНИЯ - земельные участки, обладающие природными лечебными факторами (минеральными источниками, залежами лечебных грязей, климатическими и другими условиями) , благоприятными …
  • ЗЕМЛИ в Словаре экономических терминов:
    ОБЩЕГО ПОЛЬЗОВАНИЯ - в городах, поселках и сельских населенных пунктах - земли, используемые в качестве путей сообщения (площади, улицы, переулки, …
  • ЗЕМЛИ в Словаре экономических терминов:
    НОРМАТИВНАЯ ЦЕНА - см НОРМАТИВНАЯ ЦЕНА ЗЕМЛИ …
  • ЗЕМЛИ в Словаре экономических терминов:
    НАСЕЛЕННЫХ ПУНКТОВ - см ГОРОДСКИЕ ЗЕМЛИ …
  • ЗЕМЛИ в Словаре экономических терминов:
    МУНИЦИПАЛИЗАЦИЯ - см МУНИЦИПАЛИЗАЦИЯ ЗЕМЛИ …
  • ЗЕМЛИ в Словаре экономических терминов:
    ЛЕСНОГО ФОНДА - земли, покрытые лесом, а тж. не покрытые лесом, но предоставленные для нужд лесного хозяйства и лесной …
  • ЗЕМЛИ в Словаре экономических терминов:
    ИСТОРИКО-КУЛЬТУРНОГО НАЗНАЧЕНИЯ - земли, на которых (и в которых) располагаются памятники истории и культуры, достопримечательные места, в том числе объявленные …
  • ЗЕМЛИ в Словаре экономических терминов:
    ЗАПАСА - все земли, не предоставленные в собственность, владение, пользование и аренду К ним тж. относятся земли, право собственности, владения …
  • ЗЕМЛИ в Словаре экономических терминов:
    ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА - земли федерального значения, предоставляемые безвозмездно в постоянное (бессрочное) пользование предприятиям и учреждениям железнодорожного транспорта для осуществления возложенных …
  • ЗЕМЛИ в Словаре экономических терминов:
    ДЛЯ НУЖД ОБОРОНЫ - земли, предоставленные для размещения и постоянной деятельности войсковых частей, учреждений, военно-учебных заведений, предприятий и организаций Вооруженных …
  • ЗЕМЛИ в Словаре экономических терминов:
    ГОРОДСКИЕ - см. ГОРОДСКИЕ ЗЕМЛИ …
  • ЗЕМЛИ в Словаре экономических терминов:
    ВОДНОГО ФОНДА - земли, занятые водоемами, ледниками, болотами, за исключением тундровой и лесотундровой зон, гидротехническими и другими водохозяйственными сооружениями; а …
  • БАЛАНС в Словаре экономических терминов:
    ТРУДОВЫХ РЕСУРСОВ - баланс наличия и использования трудовых ресурсов, составленный с учетом их пополнения и выбытия, сферы занятости, производительности …
  • БАЛАНС в Словаре экономических терминов:
    ТОРГОВЫЙ ПАССИВНЫЙ - см ПАССИВНЫЙ ТОРГОВЫЙ БАЛАНС …
  • БАЛАНС в Словаре экономических терминов:
    ТОРГОВЫЙ АКТИВНЫЙ - см АКТИВНЫЙ ТОРГОВЫЙ …
  • БАЛАНС в Словаре экономических терминов:
    ТОРГОВЫЙ - см ТОРГОВЫЙ БАЛАНС; ВНЕШНЕТОРГОВЫЙ …
  • БАЛАНС в Словаре экономических терминов:
    ТЕКУЩИХ ОПЕРАЦИЙ - баланс, показывающий чистый экспорт государства, равный объему экспорта товаров и услуг за вычетом импорта с добавлением чистого …
  • БАЛАНС в Словаре экономических терминов:
    СВОДНЫЙ - см. СВОДНЫЙ БАЛАНС …
  • БАЛАНС в Словаре экономических терминов:
    САЛЬДОВЫЙ - см. САЛЬДОВЫЙ БАЛАНС …
  • БАЛАНС в Словаре экономических терминов:
    РАСЧЕТНЫЙ - см РАСЧЕТНЫЙ …
  • БАЛАНС в Словаре экономических терминов:
    РАЗДЕЛИТЕЛЬНЫЙ - см РАЗДЕЛИТЕЛЬНЫЙ БАЛАНС …
  • БАЛАНС в Словаре экономических терминов:
    РАБОЧЕГО ВРЕМЕНИ - баланс, характеризующий ресурсы рабочего времени работников предприятия и их использование на разные виды работ. Представляется в виде …
  • БАЛАНС в Словаре экономических терминов:
    ПЛАТЕЖНЫЙ ТЕКУЩИЙ см БАЛАНС ТЕКУЩИХ ОПЕРАЦИЙ …
  • БАЛАНС в Словаре экономических терминов:
    ПЛАТЕЖНЫЙ ПО ТЕКУЩИМ ОПЕРАЦИЯМ - см. ПЛАТЕЖНЫЙ БАЛАНС ПО ТЕКУЩИМ ОПЕРАЦИЯМ …
  • БАЛАНС в Словаре экономических терминов:
    ПЛАТЕЖНЫЙ ПАССИВНЫЙ. см. ПАССИВНЫЙ ПЛАТЕЖНЫЙ БАЛАНС …
  • БАЛАНС в Словаре экономических терминов:
    ПЛАТЕЖНЫЙ ВНЕШНЕТОРГОВЫЙ - см ВНЕШНЕТОРГОВЫЙ ПЛАТЕЖНЫЙ БАЛАНС …
  • БАЛАНС в Словаре экономических терминов:
    ПЛАТЕЖНЫЙ АКТИВНЫЙ - см АКТИВНЫЙ ПЛАТЕЖНЫЙ БАЛАНС …
  • БАЛАНС в Словаре экономических терминов:
    ПЛАТЕЖНЫЙ - см ПЛАТЕЖНЫЙ …
  • БАЛАНС в Словаре экономических терминов:
    ПЛАТЕЖЕЙ ПО КЛИРИНГОВЫМ РАСЧЕТАМ - баланс безналичных расчетов по платежным обязательствам или взаимным требованиям …
  • БАЛАНС в Словаре экономических терминов:
    ПАССИВНЫЙ ТОРГОВЫЙ (ПЛАТЕЖНЫЙ) - см ПАССИВНЫЙ ТОРГОВЫЙ (ПЛАТЕЖНЫЙ) …
  • БАЛАНС в Словаре экономических терминов:
    ОСНОВНЫХ СРЕДСТВ - баланс, в котором сопоставляются наличные основные средства с учетом их износа и выбытия и вновь вводимые средства …
  • БАЛАНС в Словаре экономических терминов:
    МЕЖОТРАСЛЕВОЙ - см. МЕЖОТРАСЛЕВОЙ …
  • БАЛАНС в Словаре экономических терминов:
    МАТЕРИАЛЬНЫЙ - см МАТЕРИАЛЬНЫЙ …
  • БАЛАНС в Словаре экономических терминов:
    ЛИКВИДАЦИОННЫЙ - см ЛИКВИДАЦИОННЫЙ …
  • БАЛАНС в Словаре экономических терминов:
    ДОХОДОВ И РАСХОДОВ - финансовый баланс, в разделах которого указаны источники и величины доходов и расходов в течение определенного периода …
  • БАЛАНС в Большой советской энциклопедии, БСЭ:
    (франц. balance, буквально - весы, от лат. bilanx - имеющий две весовые чаши), 1) равновесие, уравновешивание. 2) Система показателей, которые …
  • ЗЕМЛИ
    древнерусские области, образовавшиеся около старых городов. З., часто на очень значительном протяжении от города, составляла собственность его жителей и всегда …
  • БАЛАНС в Энциклопедическом словаре Брокгауза и Евфрона:
    Баланс бухгалтерский. В бухгалтерии Б. устанавливается равновесиемежду дебетом в кредитом, причем различают счет Б. входящего, если имоткрываются коммерческие книги, и …
  • БАЛАНС в Энциклопедическом словарике:
    I а, мн. нет, м. 1. Соотношение взаимно связанных показателей какой-нибудь деятельности, процесса. Б. производства и потребления. а Торговый баланс …