Уравнения с двумя корнями. Методы решения иррациональных уравнений

Каждое новое действие в математике мгновенно порождает обратное ему. Когда-то давно древние греки обнаружили, что квадратный кусок земли длиной и шириной в 2 метра будет иметь площадь 2*2 = 4 квадратных метра (в дальнейшем будет обозначаться m^2) . А теперь наоборот, если бы грек знал, что его участок земли квадратный и имеет площадь 4 m^2, как бы он узнал, какая длина и ширина его участка? Была введена операция, являющейся обратной к операции возведения в квадрат и стала называться извлечением квадратного корня. Люди стали понимать, что 2 в квадрате (2^2) равно 4. И наоборот, квадратный корень из 4 (далее будет обозначаться √(4)) будет равен двойке. Модели усложнялись, записи, описывающие процессы с корнями, также усложнялись. Многократно возникал вопрос, как решить уравнение с корнем.

Пусть некоторая величина x при умножении самой на себя один раз даёт 9. Это можно записать как x*x=9. Или же через степень: x^2=9. Чтобы найти х, следует извлечь корень из 9, что уже в какой-то степени является уравнением с радикалом: x=√(9) . Корень можно извлекать устно или использовать для этого калькулятор. Далее следует рассмотреть обратную задачу. Некая величина, при извлечении из неё квадратного корня, даёт значение 7. Если записать это в виде иррационального уравнения, получится: √(x) = 7. Для решения такой задачи необходимо обе части выражения возвести в квадрат. Учитывая, что √(x) *√(x) =x, получается x = 49. Корень сразу готов в чистом виде. Далее следует разобрать более сложные примеры уравнения с корнями.

Пусть от некой величины отняли 5, затем выражение возвели в степень 1/2. В итоге было получено число 3. Теперь данное условие необходимо записать как уравнение: √(x-5) =3. Далее следует умножить каждую часть уравнения саму на себя: x-5 = 3. После возведения во вторую степень, выражение было избавлено от радикалов. Теперь стоит решить простейшее линейное уравнение, перенеся пятёрку в правую часть и поменяв её знак. x = 5+3. x = 8. К сожалению, не все жизненные процессы можно описать такими простыми уравнениями. Очень часто можно встретить выражения с несколькими радикалами, иногда степень корня может быть выше второй. Для таких тождеств не существует единого алгоритма решений. К каждому уравнению стоит искать особый подход. Приводится пример, в котором уравнение с корнем имеет третью степень.

Корень кубический будет обозначаться 3√. Найти объём контейнера, имеющего форму куба со стороной 5 метров. Пусть объём равен x m^3. Тогда кубический корень из объёма будет равен стороне куба и равняться пяти метрам. Получено уравнение: 3√(x) =5. Для его решения необходимо возвести обе части в третью степень, x = 125. Ответ: 125 кубометров. Дальше пример уравнения с суммой корней. √(x) +√(x-1) =5. Сначала необходимо возвести обе части в квадрат. Для этого стоит вспомнить формулу сокращенного умножения для квадрата суммы: (a+b) ^2=a^2+2*ab+b^2. Применив к уравнению, получается: x + 2*√(x) *√(x-1) +x-1 = 25. Далее корни оставляются в левой части, а всё остальное переносится в правую: 2*√(x) *√(x-1) = 26 - 2x. Удобно поделить обе части выражения на 2: √((x) (x-1)) = 13 - x. Получено более простое иррациональное уравнение.

Далее снова следует возвести обе части в квадрат: x*(x-1) = 169 - 26x + x^2. Надо раскрыть скобки и привести подобные слагаемые: x^2 - x = 169 - 26x + x^2. Вторая степень пропадает, отсюда 25x = 169. x = 169/25 = 6,6. Выполнив проверку, подставив полученный корень в изначальное уравнение: √(6,6) +√(6,6-1) = 2,6 + √(5,6) = 2,6 + 2,4 = 5, можно получить удовлетворительный ответ. Также очень важно понимать, что выражение с корнем чётной степени не может быть отрицательным. Действительно, умножая любое число само на себя чётное число раз, невозможно получить значение меньше нуля. Поэтому такие уравнения, как √(x^2+7x-11) = -3 можно смело не решать, а писать что уравнение корней не имеет. Как упоминалось выше, решение уравнений с радикалами может иметь самые разнообразные формы.

Простой пример уравнения, где необходимо проводить замену переменных. √(y) - 5*4√(y) +6 = 0, где 4√(y) - корень четвёртой степени из y. Предлагаемая замена выглядит следующим образом: x = 4√(y) . Проведя таковую, получится: x^2 - 5x + 6 = 0. Получено приведённое квадратное уравнение. Его дискриминант: 25 - 4*6 = 25 - 24 = 1. Первый корень x1 будет равен (5 + √1) /2 = 6/2 = 3. Второй корень x2 = (5 - √1) /2 = 4/2 = 2. Также можно найти корни, воспользовавшись следствием из теоремы Виета. Корни найдены, следует провести обратную замену. 4√(y) = 3, отсюда y1 = 1,6. Также 4√(y) = 2, извлекая корень 4 степени получается что y2 = 1,9. Значения вычислены на калькуляторе. Но их можно и не делать, оставив ответ в виде радикалов.

Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где коэффициенты a , b и c — произвольные числа, причем a ≠ 0.

Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

  1. Не имеют корней;
  2. Имеют ровно один корень;
  3. Имеют два различных корня.

В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант .

Дискриминант

Пусть дано квадратное уравнение ax 2 + bx + c = 0. Тогда дискриминант — это просто число D = b 2 − 4ac .

Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

  1. Если D < 0, корней нет;
  2. Если D = 0, есть ровно один корень;
  3. Если D > 0, корней будет два.

Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:

Задача. Сколько корней имеют квадратные уравнения:

  1. x 2 − 8x + 12 = 0;
  2. 5x 2 + 3x + 7 = 0;
  3. x 2 − 6x + 9 = 0.

Выпишем коэффициенты для первого уравнения и найдем дискриминант:
a = 1, b = −8, c = 12;
D = (−8) 2 − 4 · 1 · 12 = 64 − 48 = 16

Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
a = 5; b = 3; c = 7;
D = 3 2 − 4 · 5 · 7 = 9 − 140 = −131.

Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
a = 1; b = −6; c = 9;
D = (−6) 2 − 4 · 1 · 9 = 36 − 36 = 0.

Дискриминант равен нулю — корень будет один.

Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.

Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.

Корни квадратного уравнения

Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:

Основная формула корней квадратного уравнения

Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D < 0, корней нет — ничего считать не надо.

  1. x 2 − 2x − 3 = 0;
  2. 15 − 2x − x 2 = 0;
  3. x 2 + 12x + 36 = 0.

Первое уравнение:
x 2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2) 2 − 4 · 1 · (−3) = 16.

D > 0 ⇒ уравнение имеет два корня. Найдем их:

Второе уравнение:
15 − 2x − x 2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2) 2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ уравнение снова имеет два корня. Найдем их

\[\begin{align} & {{x}_{1}}=\frac{2+\sqrt{64}}{2\cdot \left(-1 \right)}=-5; \\ & {{x}_{2}}=\frac{2-\sqrt{64}}{2\cdot \left(-1 \right)}=3. \\ \end{align}\]

Наконец, третье уравнение:
x 2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 · 1 · 36 = 0.

D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

Неполные квадратные уравнения

Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:

  1. x 2 + 9x = 0;
  2. x 2 − 16 = 0.

Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:

Уравнение ax 2 + bx + c = 0 называется неполным квадратным уравнением, если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.

Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид ax 2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.

Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax 2 + c = 0. Немного преобразуем его:

Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (−c /a ) ≥ 0. Вывод:

  1. Если в неполном квадратном уравнении вида ax 2 + c = 0 выполнено неравенство (−c /a ) ≥ 0, корней будет два. Формула дана выше;
  2. Если же (−c /a ) < 0, корней нет.

Как видите, дискриминант не потребовался — в неполных квадратных уравнениях вообще нет сложных вычислений. На самом деле даже необязательно помнить неравенство (−c /a ) ≥ 0. Достаточно выразить величину x 2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.

Теперь разберемся с уравнениями вида ax 2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:

Вынесение общего множителя за скобку

Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:

Задача. Решить квадратные уравнения:

  1. x 2 − 7x = 0;
  2. 5x 2 + 30 = 0;
  3. 4x 2 − 9 = 0.

x 2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.

5x 2 + 30 = 0 ⇒ 5x 2 = −30 ⇒ x 2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 = −1,5.

Методические разработки к элективному курсу

«Методы решений иррациональных уравнений»»

ВВЕДЕНИЕ

Предлагаемый элективный курс «Методы решений иррациональных уравнений» предназначен для учащихся 11 класса общеобразовательной школы и является предметно-ориентированным, направлен на расширение теоретических и практических знаний учащихся. Элективный курс построен с опорой на знания и умения, получаемые учащимися при изучении математики в средней школе.

Специфика данного курса заключается в том, что он предназначен в первую очередь для учащихся, желающих расширить, углубить, систематизировать, обобщить свои математические знания, изучить единые методы и приемы решения иррациональных уравнений. В программу включены вопросы, частично выходящие за рамки ныне действующих программ по математике и нестандартные методы, которые позволяют более эффективно решать разные задачи.

Большинство заданий ЕГЭ требуют от выпускников владения различными методами решения разного рода уравнений и их систем. Материал, связанный с уравнениями и системами уравнений, составляет значительную часть школьного курса математики. Актуальность выбора темы элективного курса определяется значимостью темы «Иррациональные уравнения» в школьном курсе математики и, вместе с тем, нехваткой времени на рассмотрение нестандартных методов и подходов к решению иррациональных уравнений, которые встречаются в заданиях группы «С» ЕГЭ.

Наряду с основой задачей обучения математике -обеспечение прочного и сознательного овладения учащимися системой математических знаний и умений – данный элективный курс предусматривает формирование устойчивого интереса к предмету, развитие математических способностей, повышение уровня математической культуры учащихся, создает базу для успешной сдачи ЕГЭ и продолжения обучения в ВУЗах.

Цель курса:

Повысить уровень понимания и практической подготовки при решении иррациональных уравнений;

Изучить приёмы и методы решения иррациональных уравнений;

Формировать умение анализировать, выделять главное, формировать элементы творческого поиска на основе приёмов обобщения;

Расширить знания учащихся по данной теме, совершенствовать умения и навыки решения различных задач для успешной сдачи ЕГЭ.

Задачи курса:

Расширение знаний о методах и способах решения алгебраических уравнений;

Обобщение и систематизация знаний при обучении в 10-11 классах и подготовке к ЕГЭ;

Развитие умения самостоятельно приобретать и применять знания;

Приобщение учащихся к работе с математической литературой;

Развитие логического мышления учащихся, их алгоритмической культуры и математической интуиции;

Повышение математической культуры ученика.

Программа элективного курса предполагает изучение различных методов и подходов при решении иррациональных уравнений, отработку практических навыков по рассматриваемым вопросам. Курс рассчитан на 17 часов.

Программа усложнена, превосходит обычный курс обучения, способствует развитию абстрактного мышления, расширяет область познания учащегося. Вместе с тем она сохраняет преемственность с действующими программами, являясь их логическим продолжением.

Учебно-тематический план

п/п

Тема занятий

Кол-во часов

Решение уравнений с учетом области допустимых значений

Решение иррациональных уравнений путем возведения в натуральную степень

Решение уравнений методом введения вспомогательных переменных (метод замены)

Решение уравнения с радикалом третьей степени.

Тождественные преобразования при решении иррациональных уравнений

Нетрадиционные задачи. Задачи группы «С» ЕГЭ

Формы контроля: домашние контрольные, самостоятельные работы, рефераты и исследовательские работы.

В результате обучения данного элективного курса учащиеся должны уметь решать различные иррациональные уравнения, используя стандартные и нестандартные методы и приемы;

    усвоить алгоритм решения стандартных иррациональных уравнений;

    уметь использовать свойства уравнений для решения нестандартных заданий;

    уметь выполнять тождественные преобразования при решении уравнений;

    иметь четкое представление о темах единого государственного экзамена, об основных методах их решений;

    приобрести опыт в выборе методов для решения нестандартных задач.

ОСНОВНАЯ ЧАСТЬ.

Уравнения, в которых неизвестная величина находится под знаком радикала, называются иррациональными.

К простейшим иррациональным уравнениям относятся уравнения вида:

Основная идея решения иррационального уравнения состоит в сведении его к рациональному алгебраическому уравнению, которое либо равносильно исходному иррациональному уравнению, либо является его следствием. При решении иррациональных уравнений речь всегда идет об отыскании действительных корней.

Рассмотрим некоторые способы решения иррациональных уравнений.

1.Решение иррациональных уравнений с учетом области допустимых значений (ОДЗ).

Область допустимых значений иррационального уравнения состоит из тех значений неизвестных, при которых неотрицательными являются все выражения, стоящие под знаком радикала четной степени.

Иногда знание ОДЗ позволяет доказать, что уравнение не имеет решений, а иногда позволяет найти решения уравнения непосредственной подстановкой чисел из ОДЗ .

Пример1 . Решить уравнение .

Решение . Найдя ОДЗ этого уравнения, приходим к выводу, что ОДЗ исходного уравнения – одноэлементное множество . Подставив х=2 в данное уравнение, приходим к выводу, что х=2 – корень исходного уравнения.

Ответ : 2 .

Пример2.

Уравнение не имеет решений, т.к. при каждом допустимом значении переменной сумма двух неотрицательных чисел не может быть отрицательна.

Пример 3.
+ 3 =
.

ОДЗ:

ОДЗ уравнения пустое множество.

Ответ: уравнение корней не имеет.

Пример4. 3
−4

=−(2+
).

ОДЗ:

ОДЗ:
. Проверкой убеждаемся, что х=1 - корень уравнения.

Ответ: 1.

Докажите, что уравнение не имеет

корней.

1.
= 0.

2.
=1.

3. 5
.

4.
+
=2.

5.
=
.

Решите уравнение.

1. .

2. = 0.

3.
= 92.

4. = 0.

5.
+
+(х+3)(2005−х)=0.

2. Возведение обеих частей уравнения в натуральную степень , то есть переход от уравнения

(1)

к уравнению

. (2)

Справедливы следующие утверждения:

1) при любом уравнение (2) является следствием уравнения (1);

2) если (n – нечетное число), то уравнения (1) и (2) равносильны ;

3) если (n – четное число), то уравнение (2) равносильно уравнению

, (3)

а уравнение (3) равносильно совокупности уравнений

. (4)

В частности, уравнение

(5)

равносильно совокупности уравнений (4).

Пример 1 . Решить уравнение

.

Уравнение равносильно системе

откуда следует, что х=1 , а корень не удовлетворяет второму неравенству. При этом грамотное решение не требует проверки.

Ответ: х=1 .

Пример 2 . Решить уравнение .

Решая первое уравнение этой системы, равносильное уравнению , получим корни и . Однако при этих значениях x не выполняется неравенство , и потому данное уравнение не имеет корней.

Ответ : корней нет.

Пример 3 . Решить уравнение

Уединив первый радикал, получаем уравнение

равносильное исходному.

Возводя обе части этого уравнения в квадрат, так как они обе положительны, получаем уравнение

,

которое является следствием исходного уравнения. Возводя обе части этого уравнения в квадрат при условии, что , приходим к уравнению

.

Это уравнение имеет корни , . Первый корень удовлетворяет исходному условию , а второй – не удовлетворяет.

Ответ : х=2 .

Если уравнение содержит два и более радикалов, то их сначала уединяют, а потом возводят в квадрат.

Пример 1.

Уединив первый радикал, получим уравнение , равносильное данному. Возведем в квадрат обе части уравнения:

Выполнив необходимые преобразования, полученное уравнение возведем в квадрат



Выполнив проверку, замечаем, что

не входит в область допустимых значений.

Ответ: 8.

Ответ: 2

Ответ: 3; 1,4 .

3. Многие иррациональные уравнения решаются методом введения вспомогательных переменных.

Удобным средством решения иррациональных уравнений иногда является метод введения новой переменной, или «метод замены». Метод обычно применяется в случае, если в уравнении неоднократно встречается некоторое выражение , зависящее от неизвестной величины. Тогда имеет смысл обозначить это выражение какой-нибудь новой буквой и попытаться решить уравнение сначала относительно введенной неизвестной, а потом уже найти исходную неизвестную.

Удачный выбор новой переменной делает структуру уравнения более прозрачной. Новая переменная иногда очевидна, иногда несколько завуалирована, но «ощущается», а иногда «проявляется» лишь в процессе преобразований.

Пример 1.

Пусть
t>0, тогда

t =
,

t 2 +5t-14=0,

t 1 =-7, t 2 =2. t=-7 не удовлетворяет условию t>0, тогда

,

х 2 -2х-5=0,

х 1 =1-
, х 2 =1+
.

Ответ: 1-
; 1+
.

Пример 2. Решить иррациональное уравнение

Замена:

Обратная замена: /

Ответ:

Пример 3. Решите уравнение .

Сделаем замены: , . Исходное уравнение перепишется в виде , откуда находим, что а = 4b и . Далее, возводя обе части уравнения в квадрат, получаем: Отсюда х = 15 . Осталось сделать проверку:

- верно!

Ответ: 15.

Пример 4 . Решить уравнение

Положив , получим существенно более простое иррациональное уравнение . Возведем обе части уравнения в квадрат: .

; ;

; ; , .

Проверка найденных значений, их подстановка в уравнение показывает, что – корень уравнения, а – посторонний корень.

Возвращаясь к исходной переменной x , получаем уравнение , то есть квадратное уравнение , решив которое находим два корня: ,. Оба корня удовлетворяют исходному уравнению.

Ответ : , .

Замена особенно полезна, если в результате достигается новое качество, например, иррациональное уравнение превращается в рациональное.

Пример 6 . Решить уравнение .

Перепишем уравнение так: .

Видно, что если ввести новую переменную , то уравнение примет вид , откуда - посторонний корень и .

Из уравнения получаем , .

Ответ : , .

Пример 7 . Решить уравнение .

Введем новую переменную , .

В результате исходное иррациональное уравнение принимает вид квадратного

,

откуда учитывая ограничение , получаем . Решая уравнение , получаем корень . Ответ : 2,5.

Задания для самостоятельного решения.

1.
+
=
.

2.
+
=.

3.
.

5.
.

4.Метод введения двух вспомогательных переменных.

Уравнения вида (здесь a , b , c , d некоторые числа, m , n натуральные числа) и ряд других уравнений часто удается решить при помощи введения двух вспомогательных неизвестных: и , где и последующего перехода к эквивалентной системе рациональных уравнений .

Пример 1 . Решить уравнение .

Возведение обеих частей этого уравнения в четвертую степень не обещает ничего хорошего. Если же положить , , то исходное уравнение переписывается так: . Поскольку мы ввели две новые неизвестные, надо найти еще одно уравнение, связывающее y и z . Для этого возведем равенства , в четвертую степень и заметим, что . Итак, надо решить систему уравнений

Возведением в квадрат получаем:

После подстановки имеем: или . Тогда система имеет два решения: , ; , , а система не имеет решений.

Остается решить систему двух уравнений с одним неизвестным

и систему Первая из них дает , вторая дает .

Ответ : , .

Пример 2.

Пусть







Ответ:

5. Уравнения с радикалом третьей степени.
При решении уравнений, содержащих радикалы 3-й степени, бывает полезно пользоваться сложением тождествами:

Пример 1. .
Возведём обе части этого уравнения в 3-ю степень и воспользуемся выше приведённым тождеством:

Заметим, что выражение стоящее в скобках равно 1, что следует из первоначального уравнения. Учитывая это и приводя подобные члены, получим:
Раскроем скобки, приведём подобные члены и решим квадратное уравнение. Его корни и . Если считать (по определению), что корень нечётной степени можно извлекать и из отрицательных чисел, то оба полученных числа являются решениями исходного уравнения.
Ответ: .

6.Умножение обеих частей уравнения на сопряженное одной из них выражение.

Иногда иррациональное уравнение удается решить довольно быстро, если обе его части умножить на удачно подобранную функцию. Конечно, при умножении обеих частей уравнения на некоторую функцию могут появиться посторонние решения, ими могут оказаться нули самой этой функции. Поэтому предлагаемый метод требует обязательного исследования получающихся значений.

Пример 1. Решите уравнение

Решение: Выберем функцию

Умножим обе части уравнения на выбранную функцию:

Приведем подобные слагаемые и получим равносильное уравнение

Сложим исходное уравнение и последнее, получим

Ответ: .

7.Тождественные преобразования при решении иррациональных уравнений

При решении иррациональных уравнений часто приходится применять тождественные преобразования, связанные с использованием известных формул. К сожалению, эти действия иногда столь же небезопасны, так же как возведение в четную степень, – могут приобретаться или теряться решения.

Рассмотрим несколько ситуаций, в которых эти проблемы наступают, и научимся их распознать и предотвращать.

I. Пример 1 . Решить уравнение .

Решение. Здесь применима формула .

Только необходимо задуматься о безопасности ее применения. Нетрудно видеть, что ее левая и правая части имеют разные области определения и что это равенство верно лишь при условии . Поэтому исходное уравнение равносильно системе

Решая уравнение этой системы, получим корни и . Второй корень не удовлетворяет совокупности неравенств системы и, следовательно, является посторонним корнем исходного уравнения.

Ответ: -1 .

II .Следующее опасное преобразование при решении иррациональных уравнений, определяется формулой .

Если пользоваться этой формулой слева направо, расширяется ОДЗ и можно приобрести посторонние решения. Действительно, в левой части обе функции и должны быть неотрицательны; а в правой неотрицательным должно быть их произведение.

Рассмотрим пример, где реализуется проблема с использованием формулы .

Пример 2 . Решить уравнение .

Решение. Попробуем решить это уравнение разложением на множители

Заметим, что при этом действии оказалось потерянным решение , так как оно подходит к исходному уравнению и уже не подходит к полученному: не имеет смысла при . Поэтому это уравнение лучше решать обычным возведением в квадрат

Решая уравнение этой системы, получим корни и . Оба корня удовлетворяют неравенству системы.

Ответ: , .

III .Существует еще более опасное действие – сокращение на общий множитель.

Пример 3 . Решить уравнение .

Неверное рассуждение: Сократим обе части уравнения на , получим .

Нет ничего более опасного и неправильного, чем это действие. Во-первых, подходящее решение исходного уравнения было потеряно; во-вторых, было приобретено два посторонних решения . Получается, что новое уравнение не имеет ничего общего с исходным! Приведем правильное решение.

Решение . Перенесем все члены в левую часть уравнения и разложим ее на множители

.

Это уравнение равносильно системе

которая имеет единственное решение .

Ответ: 3 .

ЗАКЛЮЧЕНИЕ.

В рамках изучения элективного курса показаны нестандартные приемы решения сложных задач, которые успешно развивают логическое мышление, умение найти среди множества способов решения тот, который комфортен для ученика и рационален. Этот курс требует от учащихся большой самостоятельной работы, способствует подготовке учащихся к продолжению образования, повышения уровня математической культуры.

В работе были рассмотрены основные методы решения иррациональных уравнений, некоторые подходы к решению уравнений высших степеней, использование которых предполагается при решении заданий ЕГЭ, а также при поступлении в ВУЗы и продолжении математического образования. Также было раскрыто содержание основных понятий и утверждений, относящихся к теории решения иррациональных уравнений. Определив самый распространённый метод решения уравнений, выявили его применение в стандартных и не стандартных ситуациях. Кроме того, были рассмотрены типичные ошибки при выполнении тождественных преобразований и способы их преодоления.

При прохождении курса учащиеся получат возможность овладеть различными методами и приемами решения уравнений, при этом научатся систематизировать и обобщать теоретические сведения, самостоятельно заниматься поиском решения некоторых проблем и в связи с этим составлять ряд задач и упражнений по данным темам. Выбор сложного материала поможет школьникам проявить себя в исследовательской деятельности.

Положительной стороной курса является возможность дальнейшего применения учащимися изученного материала при сдаче ЕГЭ, поступлении в ВУЗы.

Отрицательной стороной является то, что не каждый учащийся в состоянии овладеть всеми приемами данного курса, даже имея на то желание, ввиду трудности большинства решаемых задач.

ЛИТЕРАТУРА:

    Шарыгин И.Ф. « Математика для поступающих в вузы».-3-е изд.,-М.:Дрофа, 2000.

    Уравнения и неравенства. Справочное пособие./ Вавилов В.В., Мельников И.И., Олехник С.Н., Пасиченко П.И. –М.: Экзамен,1998.

    Черкасов О.Ю., Якушев А.Г. «Математика: интенсивный курс подготовки к экзамену». – 8-е изд., испр. и доп. – М.:Айрис, 2003. – (Домашний репетитор)

    Балаян Э.Н. Комплексные упражнения и варианты тренировочных заданий к ЕГЭ по математике. Ростов на – Дону: Изд-во «Феникс», 2004.

    Сканави М.И. «Сборник задач по математике для поступающих в вузы». - М., «Высшая школа»,1998.

    Игусман О.С. «Математика на устном экзамене». - М.,Айрис,1999.

    Экзаменационные материалы для подготовки к ЕГЭ – 2008 – 2012.

    В.В.Кочагин, М.Н.Кочагина «ЕГЭ – 2010. Математика. Репетитор» Москва «Просвещение» 2010г.

    В.А.Гусев, А.Г.Мордкович «Математика. Справочные материалы» Москва «Просвещение» 1988г.

Конспект урока

«Методы решения иррациональных уравнений»

11 класс физико-математического профиля.

Зеленодольского муниципального района РТ»

Валиева С.З.

Тема урока: Методы решения иррациональных уравнений

Цель урока: 1.Изучить различные способы решения иррациональных уравнений.


  1. Развивать умение обобщать, правильно отбирать способы решения иррациональных уравнений.

  2. Развивать самостоятельность, воспитывать грамотность речи

Тип урока: семинар.
План урока:


  1. Организационный момент

  2. Изучение нового материала

  3. Закрепление

  4. Домашнее задание

  5. Итог урока

Ход урока
I . Организационный момент: сообщение темы урока, цели урока.

На предыдущем уроке мы рассмотрели решение иррациональных уравнений, содержащих квадратные корни, возведением их в квадрат. При этом мы получаем уравнение-следствие, что приводит иногда к появлению посторонних корней. И тогда обязательной частью решения уравнения является проверка корней. Также рассмотрели решение уравнений, используя определение квадратного корня. В этом случае проверку можно не делать. Однако при решении уравнений не всегда следует сразу приступать к «слепому» применению алгоритмов решения уравнения. В заданиях Единого государственного экзамена имеется довольно много уравнений, при решении которых необходимо выбрать такой способ решения, который позволяет решить уравнения проще, быстрее. Поэтому необходимо знать и другие методы решения иррациональных уравнений, с которыми мы сегодня и познакомимся. Предварительно класс был разделен на 8 творческих групп, и им было дано на конкретных примерах раскрыть суть того или иного метода. Слово даем им.


II. Изучение нового материала.

Из каждой группы 1 ученик объясняет ребятам способ решения иррациональных уравнений. Весь класс слушают и конспектируют их рассказ.

1 способ. Введение новой переменной.

Решить уравнение: (2х + 3) 2 - 3

4х 2 + 12х + 9 - 3

4х 2 - 8х - 51 - 3

, t ≥0

х 2 – 2х – 6 = t 2 ;

4t 2 – 3t – 27 = 0

х 2 – 2х – 15 =0

х 2 – 2х – 6 =9;

Ответ: -3; 5.

2 способ. Исследование ОДЗ.

Решить уравнение

ОДЗ:


х = 2. Проверкой убеждаемся, что х = 2 является корнем уравнения.

3 способ. Умножение обеих частей уравнения на сопряженный множитель.

+
(умножим обе части на -
)

х + 3 – х – 8 = 5(-)


2=4, отсюда х=1. Проверкой убеждаемся, что х = 1 является корнем данного уравнения.


4 способ. Сведение уравнения к системе с помощью введения переменной.

Решить уравнение

Пусть = u,
=v.

Получим систему:

Решим методом подстановки. Получим u = 2, v = 2. Значит,

получим х = 1.

Ответ: х = 1.

5 способ. Выделение полного квадрата.

Решить уравнение

Раскроем модули. Т.к. -1≤сos0,5x≤1, то -4≤сos0,5x-3≤-2, значит, . Аналогично,

Тогда получим уравнение

x = 4πn, nZ.

Ответ: 4πn, nZ.

6 способ. Метод оценки

Решить уравнение

ОДЗ: х 3 - 2х 2 - 4х + 8 ≥ 0, по определению правая часть -х 3 + 2х 2 + 4х - 8 ≥ 0

получим
т.е. х 3 - 2х 2 - 4х + 8 = 0. Решив уравнение разложением на множители, получим х = 2, х = -2

7 способ: Использование свойств монотонности функций.

Решить уравнение . Функции строго возрастают. Сумма возрастающих функций есть возрастающая и данное уравнение имеет не более одного корня. Подбором находим х = 1.

8 способ. Использование векторов.

Решить уравнение . ОДЗ: -1≤х≤3.

Пусть вектор
. Скалярное произведение векторов - есть левая часть. Найдем произведение их длин . Это есть правая часть. Получили
, т.е. векторы а и в – коллинеарны. Отсюда
. Возведем обе части в квадрат. Решив уравнение, получим х = 1 и х =
.


  1. Закрепление. (каждому ученику раздаются листы с заданиями)
Фронтальная устная работа

Найти идею решения уравнений (1-10)

1.
(ОДЗ - )

2.
х = 2

3. х 2 – 3х +
(замена)

4. (выделение полного квадрата)

5.
(Сведение уравнения к системе с помощью введения переменной.)

6.
(умножением на сопряженное выражение)

7.
т.к.
. То данное уравнение не имеет корней.

8. Т.к. каждое слагаемое неотрицательно, приравниваем их к нулю и решаем систему.

9. 3

10. Найдите корень уравнения (или произведение корней, если их несколько) уравнения.

Письменная самостоятельная работа с последующей проверкой

решить уравнения под номерами 11,13,17,19


Решить уравнения:

12. (х + 6) 2 -

14.


  • Метод оценки

  • Использование свойств монотонности функций.

  • Использование векторов.

    1. Какие из этих методов используются при решении уравнений других типов?

    2. Какой из этих методов вам понравился больше всего и почему?

    1. Домашнее задание: Решить оставшиеся уравнения.
    Список литературы:

    1. Алгебра и начала математического анализа: учеб. для 11 кл. общеобразоват. учреждений / С.М.Никольский, М.К.Потапов, Н.Н.Решетников, А.В.Шевкин. М: Прсвещение, 2009

    1. Дидактические материалы по алгебре и началам анализа для 11 класса /Б.М. Ивлев, С.М. Саакян, С.И. Шварцбурд. – М.: Просвещение, 2003.

    2. Мордкович А. Г. Алгебра и начала анализа. 10 – 11 кл.: Задачник для общеобразоват. учреждений. – М.: Мнемозина, 2000.

    3. Ершова А. П., Голобородько В. В. Самостоятельные и контрольные работы по алгебре и началам анализа для 10 – 11 классов. – М.: Илекса, 2004

    4. КИМы ЕГЭ 2002 – 2010 г. г
    6. Алгебраический тренажер. А.Г.Мерзляк, В.Б.Полонский, М.С. Якир. Пособие для школьников и абитуриентов. Москва.: «Илекса» 2001г.
    7. Уравнения и неравенства. Нестандартные методы решения. Учебно – методическое пособие. 10 – 11 классы. С.Н.Олейник, М.К. Потапов, П.И.Пасиченко. Москва. «Дрофа». 2001г.

    Хотя пугающий вид символа квадратного корня и может заставить съежиться человека, не сильного в математике, задачи с квадратным корнем не такие уж и трудные, как это может вначале показаться. Простые задачи с квадратным корнем довольно часто можно решить так же легко, как обычные задачи с умножением или делением. С другой стороны, более сложные задачи могут потребовать некоторых усилий, но с правильным подходом даже они не составят вам труда. Начните решать задачи с корнем уже сегодня, чтобы научиться этому радикально новому математическому умению!

    Шаги

    Часть 1

    Понимание квадратов чисел и квадратных корней
    1. Возведите число в квадрат, умножив его само на себя. Для того чтобы понять квадратные корни, лучше начать с квадратов чисел. Квадраты чисел довольно просты: возведение числа в квадрат означает умножение его само на себя. Например, 3 в квадрате это то же самое, что и 3 × 3 = 9, а 9 в квадрате это то же самое, что и 9 × 9 = 81. Квадраты помечаются написанием небольшой цифры «2» справа над возводящим в квадрат числом. Пример: 3 2 , 9 2 , 100 2 и так далее.

      • Попробуйте сами возвести в квадрат еще несколько чисел, чтобы опробовать эту концепцию. Помните, возведение числа в квадрат означает, что это число следует умножить само на себя. Это можно сделать даже для отрицательных чисел. В таком случае результат всегда будет положительным. Например: -8 2 = -8 × -8 = 64 .
    2. Когда речь идет о квадратных корнях, то здесь идет обратный процесс возведению в квадрат. Символ корня (√, его также называют радикалом) по существу означает противоположность символа 2 . Когда вы видите радикал, вы должны спросить себя: «Какое число может умножиться само на себя, чтобы получилось число под корнем?». Например, если вы видите √(9), тогда вы должны найти число, которое при возведении в квадрат давало бы число девять. В нашем случае этим числом будет три, потому что 3 2 = 9.

      • Рассмотрим еще один пример и найдем корень из 25 (√(25)). Это означает, что нам необходимо найти число, которое бы в квадрате давало нам 25. Так как 5 2 = 5 × 5 = 25, можно сказать, что √(25) = 5.
      • Вы также может думать об этом, как об «аннулировании» возведения в квадрат. Например, если нам необходимо найти √(64), квадратный корень 64, то давайте думать об этом числе, как о 8 2 . Так как символ корня «отменяет» возведение в квадрат, то мы можем сказать, что √(64) = √(8 2) = 8.
    3. Знайте разницу между идеальным и не идеальным возведением в квадрат. До этих пор ответами на наши задачи с корнем были хорошие и круглые числа, но это не всегда так. Ответами задач с квадратным корнем могут быть очень длинные и неудобные числа с десятичной дробью. Числа, корень которых представляет собой целые числа (другими словами, числа которые не являются дробью) называются полными квадратами. Все вышеупомянутые примеры (9, 25 и 64) являются полными квадратами, потому что их корнем будет целое число (3,5 и 8).

      • С другой стороны, числа, которые при возведении под корень не дают целого числа, называются неполными квадратами. Если поставить одно из этих чисел под корень, то вы получите число с десятичной дробью. Иногда такое число может оказаться весьма длинным. Например, √(13) = 3,605551275464...
    4. Запомните первые 1-12 полных квадратов. Как вы, вероятно, уже заметили, найти корень полного квадрата довольно легко! Из-за того, что эти задачи такие простые, стоит запомнить корни первой дюжины полных квадратов. Вы не раз столкнетесь с этими числами, так что потратьте немного времени, чтобы запомнить их пораньше и сэкономить время в будущем.

      • 1 2 = 1 × 1 = 1
      • 2 2 = 2 × 2 = 4
      • 3 2 = 3 × 3 = 9
      • 4 2 = 4 × 4 = 16
      • 5 2 = 5 × 5 = 25
      • 6 2 = 6 × 6 = 36
      • 7 2 = 7 × 7 = 49
      • 8 2 = 8 × 8 = 64
      • 9 2 = 9 × 9 = 81
      • 10 2 = 10 × 10 = 100
      • 11 2 = 11 × 11 = 121
      • 12 2 = 12 × 12 = 144
    5. Упростите корни, убрав из него полные квадраты, если это возможно. Найти корень неполного квадрата иногда может оказаться нелегко, особенно если вы не используете калькулятор (в разделе ниже вы найдете несколько трюков, как сделать этот процесс легче). Однако зачастую можно упростить число под корнем, чтобы с ним было легче работать. Чтобы сделать это, вам просто необходимо разделить число под корнем на множители, а затем найти корень множителя, который является полным квадратом, и записать его снаружи корня. Это проще, чем кажется. Читайте далее, чтобы получить больше информации.

      • Давайте предположим, что нам необходимо найти квадратный корень 900. На первый взгляд это кажется довольно тяжелой задачей! Однако это не будет так тяжело, если мы разделим число 900 на множители. Множители – это числа, которые умножаются друг на друга для того, чтобы дать новое число. Например, число 6 можно получить, умножив 1 × 6 и 2 × 3, его множителями будут числа 1, 2, 3 и 6.
      • Вместо того чтобы искать корень числа 900, что немного затруднительно, давайте запишем 900, как умножение 9 × 100. Теперь, когда число 9, которое является полным квадратом, отделено от 100, мы можем найти его корень. √(9 × 100) = √(9) × √(100) = 3 × √(100). Другими словами, √(900) = 3√(100).
      • Мы даже можем пойти еще дальше, разделив 100 на два множителя, 25 и 4. √(100) = √(25 × 4) = √(25) × √(4) = 5 × 2 = 10. Поэтому мы можем сказать, что √(900) = 3(10) = 30
    6. Используйте мнимые числа, чтобы найти корень отрицательного числа. Спросите себя, какое число при умножении само на себя даст -16? Это не 4 и не -4, так как возведение этих чисел в квадрат даст нам положительное число 16. Сдались? На самом деле не существует способа записать корень -16 или любого другого отрицательного числа обычными числами. В таком случае мы должны подставить мнимые числа (обычно в форме букв или символов), чтобы они оказались вместо корня отрицательного числа. Например, переменная «i» обычно используется для возведения под корень числа -1. Как правило, корнем отрицательного числа всегда будет мнимое число (или включенное в него).

      • Знайте, что хотя мнимые числа и не могут быть представлены обычными цифрами, к ним все равно можно относиться, как к таковым. Например, квадратный корень отрицательного числа можно возвести в квадрат, чтобы придать этим отрицательным числам, как и любым другим, квадратный корень. Например, i 2 = -1

      Часть 2

      Использование алгоритма деления столбиком
      1. Запишите задачу с корнем, как задачу деления столбиком. Хотя это может отнять довольно много времени, таким образом, вы сможете решить задачу с корнем неполных квадратов, не прибегая к помощи калькулятора. Для этого мы воспользуемся методом решения (или алгоритмом), который похож (но не точно такой же) на обычное деление столбиком.

        • Для начала запишите задачу с корнем в такую же форму, что и при делении столбиком. Предположим, что мы хотим найти квадратный корень числа 6,45, которое точно не является полным квадратом. Сперва мы напишем обычный символ квадрата, а затем под ним мы напишем число. Далее над числом мы нарисуем линию, чтобы оно оказалось в небольшой «коробочке», так же как и при делении столбиком. После этого у нас получится корень с длинным хвостом и числом 6,45 под ним.
        • Над корнем мы будем писать числа, так что обязательно оставьте там место.
      2. Сгруппируйте цифры по парам. Для того чтобы начать решать задачу, необходимо сгруппировать цифры числа под радикалом по парам, начав с точки в десятичной дроби. Если хотите, можете делать небольшие отметки (вроде точек, косой линии, запятых и прочего) между парами, чтобы не запутаться.

        • В нашем примере, мы должны разделить на пары число 6,45 следующим образом: 6-,45-00. Обратите внимание, что слева присутствует «оставшаяся» цифра – это нормально.
      3. Найдите наибольшее число, квадрат которого меньше или равен первой «группе». Начните с первого числа или пары слева. Выберите наибольшее число, квадрат которого меньше или равен оставшейся «группе». Например, если бы группа была равна 37, вы бы выбрали число 6, потому что 6 2 = 36 < 37, а 7 2 = 49 > 37. Запишите это число над первой группой. Это будет первой цифрой вашего ответа.

        • В нашем примере, первой группой в 6-,45-00 будет цифра 6. Наибольшее число, которое в квадрате будет меньше или равно 6 это 2 2 = 4. Напишите цифру 2 над цифрой 6, которая стоит под корнем.
      4. Удвойте только что написанное число, затем опустите его под корень и отнимите. Возьмите первую цифру вашего ответа (число, которое вы только что нашли) и удвойте ее. Запишите результат под первой своей группой и отнимите, чтобы найти разницу. Опустите следующую пару чисел рядом с ответом. И наконец, напишите слева последнюю цифру удвоения первой цифры своего ответа, а рядом оставьте пробел.

        • В нашем примере, мы начнем с удвоения цифры 2, которая является первой цифрой нашего ответа. 2 × 2 = 4. Затем мы отнимем 4 от 6 (нашей первой «группы»), получив при этом 2. Далее мы опустим следующую группу (45), чтобы получить 245. И наконец, слева мы еще раз напишем цифру 4, оставив в конце небольшой пробел, вот так: 4_
      5. Заполните пробел. Затем вы должны прибавить цифру к правой части записанного числа, которое находится слева. Выберите цифру, перемножив которую с вашим новым числом, вы получили бы максимально большой результат, но который бы был меньше или равен «опущенному «числу». Например, если ваше «опущенное» число равно 1700, а ваше число слева это 40_, в пробел необходимо написать цифру 4, так как 404 × 4 = 1616 < 1700, в то время как 405 × 5 = 2025. Найденная в этом шаге цифра и будет второй цифрой вашего ответа, так вы можете записать ее над знаком корня.

        • В нашем примере, мы должны найти число и записать его в пробелы 4_ × _, что сделает ответ как можно большим, но все же меньшим или равным 245. В нашем случае это цифра 5. 45 × 5 = 225, в то время как 46 × 6 = 276
      6. Продолжайте использовать «пустые» числа, чтобы найти ответ. Продолжайте решать это измененное деление столбиком, пока не начнете получать нули при вычитании «опущенного» числа или пока не получите желаемый уровень точности ответа. Когда вы закончите, числа, которые вы использовали, чтобы заполнить пробелы в каждом шаге (плюс самое первое число) будут составлять число вашего ответа.

        • Продолжая наш пример, мы отнимем 225 от 245, чтобы получить 20. Затем, мы опустим следующую пару чисел, 00, чтобы получить 2000. Удвоим число над знаком корня. Мы получим 25 × 2 = 50. Решив пример с пробелами, 50_ × _ =/< 2,000, мы получим 3. На этом этапе над радикалом у нас будет написано 253, а повторив этот процесс снова, следующим нашим числом будет цифра 9.
      7. Передвиньте точку десятичной дроби вперед от изначального «делимого» числа. Чтобы завершить свой ответ, вы должны поставить точку десятичной дроби в правильное место. К счастью, сделать это довольно легко. Все, что вам необходимо сделать, это выровнять ее относительно точки изначального числа. Например, если под корнем будет стоять число 49,8, вы должны будете поставить точку между двумя цифрами над девяткой и восьмеркой.

        • В нашем примере под радикалом стоит число 6,45, так что мы просто переместим точку и поставим ее между цифрами 2 и 5 в нашем ответе, получив при этом ответ равный 2,539.

      Часть 3

      Быстрый подсчет неполных квадратов
      1. Найдите неполные квадраты, подсчитав их. Когда вы запомните полные квадраты, поиск корня неполных квадратов станет намного проще. Так как вы уже знаете дюжину полных квадратов, любое число, которое попадает в область между этими двумя полными квадратами можно найти, сведя все к приблизительному подсчету между этих значений. Начните с поиска двух полных квадратов, между которыми находится ваше число. Затем определите, к которому из этих чисел ваше число находится ближе.

        • Например, предположим, что нам необходимо найти квадратный корень числа 40. Так как мы запомнили полные квадраты, мы можем сказать, что число 40 находится между 6 2 и 7 2 или числам 36 и 49. Так как 40 больше 6 2 , его корень будет больше 6, а так как оно меньше 7 2 , его корень также будет и меньше 7. 40 немного ближе к 36, чем к 49, так что ответ, скорее всего, будет немного ближе к 6. В следующих нескольких шагах мы сузим наш ответ.
        • Следующее, что вы должны сделать, это возвести приблизительное число в квадрат. Вам, скорее всего, не повезет и вы не получите изначальное число. Оно будет или немного большим, или немного меньшим. Если ваш результат слишком большой, тогда попробуйте снова, но с немного меньшим приблизительным числом (и наоборот, если результат слишком низкий).
          • Умножьте 6,4 само на себя, и вы получите 6,4 × 6,4 = 40,96, что немного больше за изначальное число.
          • Так как наш ответ оказался больше, мы должны умножит число на одну десятую меньше за приблизительное и получить следующее: 6,3 × 6,3 = 39,69. Это немного меньше за изначальное число. Это значит, что квадратный корень 40 находится между 6,3 и 6,4. И снова, так как 39,69 ближе к 40, чем 40,96, мы знаем, что квадратный корень будет ближе к 6,3, чем к 6,4.
      2. Продолжайте расчет. На этом этапе, если вы довольны своим ответом, вы можете просто взять первое угаданное приблизительное значение. Однако если вы хотите получить более точный ответ, все что вам необходимо сделать, это выбрать приблизительное значение с двумя знаками десятичной дроби, которое ставит это приблизительное значение между первыми двумя числами. Продолжив этот подсчет, вы сможете получить для своего ответа три, четыре и больше знаков после запятой. Все зависит от того, насколько далеко вы захотите зайти.

        • В нашем примере давайте выберем 6,33 в качестве приблизительного значения с двумя знаками после запятой. Умножьте 6,33 само на себя, чтобы получить 6,33 × 6,33 = 40,0689. так как это немного больше нашего числа, мы возьмем число поменьше, например, 6,32. 6,32 × 6,32 = 39.9424. Этот ответ немного меньше нашего числа, так что мы знаем, что точный квадратный корень находится между 6,32 и 6,33. Если бы мы захотели продолжить, мы бы продолжали использовать тот же подход, чтобы получить ответ, который становился бы все точнее и точнее.
      • Для быстрого поиска решения, воспользуйтесь калькулятором. Большинство современных калькуляторов могут мгновенно найти квадратный корень числа. Все что вам необходимо сделать, это ввести свое число, а затем нажать на кнопку со знаком корня. Например, для того чтобы найти корень 841, вы должны будет нажать 8, 4, 1 и (√). В результате чего вы получите ответ 39.