Что такое полное молекулярное уравнение. Молекулярные и молекулярно-ионные уравнения

Тема: Химическая связь. Электролитическая диссоциация

Урок: Составление уравнений реакций ионного обмена

Составим уравнение реакции между гидроксидом железа (III) и азотной кислотой.

Fe(OH) 3 + 3HNO 3 = Fe(NO 3) 3 + 3H 2 O

(Гидроксид железа (III) является нерастворимым снованием, поэтому не подвергается . Вода - малодиссоциируемое вещество, на ионы в растворе практически недиссоциировано.)

Fe(OH) 3 + 3H + + 3NO 3 - = Fe 3+ + 3NO 3 - + 3H 2 O

Зачеркнем одинаковое количество нитрат-анионов слева и справа, запишем сокращенное ионное уравнение:

Fe(OH) 3 + 3H + = Fe 3+ + 3H 2 O

Данная реакция протекает до конца, т.к. образуется малодиссоциируемое вещество - вода.

Составим уравнение реакции между карбонатом натрия и нитратом магния.

Na 2 CO 3 + Mg(NO 3) 2 = 2NaNO 3 + MgCO 3 ↓

Запишем данное уравнение в ионной форме:

(Карбонат магния является нерастворимым в воде веществом, следовательно, на ионы не распадается.)

2Na + + CO 3 2- + Mg 2+ + 2NO 3 - = 2Na + + 2NO 3 - + MgCO 3 ↓

Зачеркнем одинаковое количество нитрат-анионов и катионов натрия слева и справа, запишем сокращенное ионное уравнение:

CO 3 2- + Mg 2+ = MgCO 3 ↓

Данная реакция протекает до конца, т.к. образуется осадок - карбонат магния.

Составим уравнение реакции между карбонатом натрия и азотной кислотой.

Na 2 CO 3 + 2HNO 3 = 2NaNO 3 + CO 2 + H 2 O

(Углекислый газ и вода - продукты разложения образующейся слабой угольной кислоты.)

2Na + + CO 3 2- + 2H + + 2NO 3 - = 2Na + + 2NO 3 - + CO 2 + H 2 O

CO 3 2- + 2H + = CO 2 + H 2 O

Данная реакция протекает до конца, т.к. в результате нее выделяется газ и образуется вода.

Составим два молекулярных уравнения реакций, которым соответствует следующее сокращенное ионное уравнение: Ca 2+ + CO 3 2- = CaCO 3 .

Сокращенное ионное уравнение показывает сущность реакции ионного обмена. В данном случае можно сказать, что для получения карбоната кальция необходимо, чтобы в состав первого вещества входили катионы кальция, а в состав второго - карбонат-анионы. Составим молекулярные уравнения реакций, удовлетворяющих этому условию:

CaCl 2 + K 2 CO 3 = CaCO 3 ↓ + 2KCl

Ca(NO 3) 2 + Na 2 CO 3 = CaCO 3 ↓ + 2NaNO 3

1. Оржековский П.А. Химия: 9-й класс: учеб. для общеобраз. учрежд. / П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. - М.: АСТ: Астрель, 2007. (§17)

2. Оржековский П.А. Химия: 9-ый класс: учеб для общеобр. учрежд. / П.А. Оржековский, Л.М. Мещерякова, М.М. Шалашова. - М.: Астрель, 2013. (§9)

3. Рудзитис Г.Е. Химия: неорган. химия. Орган. химия: учеб. для 9 кл. / Г.Е. Рудзитис, Ф.Г. Фельдман. - М.: Просвещение, ОАО «Московские учебники», 2009.

4. Хомченко И.Д. Сборник задач и упражнений по химии для средней школы. - М.: РИА «Новая волна»: Издатель Умеренков, 2008.

5. Энциклопедия для детей. Том 17. Химия / Глав. ред. В.А. Володин, вед. науч. ред. И. Леенсон. - М.: Аванта+, 2003.

Дополнительные веб-ресурсы

1. Единая коллекция цифровых образовательных ресурсов (видеоопыты по теме): ().

2. Электронная версия журнала «Химия и жизнь»: ().

Домашнее задание

1. Отметьте в таблице знаком «плюс» пары веществ, между которыми возможны реакции ионного обмена, идущие до конца. Составьте уравнения реакций в молекулярном, полном и сокращенном ионном виде.

Реагирующие вещества

K 2 CO 3

AgNO 3

FeCl 3

HNO 3

CuCl 2

2. с. 67 №№ 10,13из учебника П.А. Оржековского «Химия: 9-ый класс» / П.А. Оржековский, Л.М. Мещерякова, М.М. Шалашова. - М.: Астрель, 2013.

При нейтрализации любой сильной кислоты любым сильным основанием на каждый моль образующейся воды выделяется около теплоты:

Это говорит о том, что подобные реакции сводятся к одному процессу. Уравнение этого процесса мы получим, если рассмотрим подробнее одну из приведенных реакций, например, первую. Перепишем ее уравнение, записывая сильные электролиты в ионной форме, поскольку они существуют в растворе в виде ионов, а слабые - в молекулярной, поскольку они находятся в растворе преимущественно в виде молекул (вода - очень слабый электролит, см. § 90):

Рассматривая получившееся уравнение, видим, что в ходе реакции ионы и не претерпели изменений. Поэтому перепишем уравнение еще раз, исключив эти ионы из обеих частей уравнения. Получим:

Таким образом, реакции нейтрализации любой сильной кислоты любым сильным основанием сводятся к одному и тому же процессу - к образованию молекул воды из ионов водорода и гидроксид-ионов. Ясно, что тепловые эффекты этих реакций тоже должны быть одинаковы.

Строго говоря, реакция образования воды из ионов обратима, что можно выразить уравнением

Однако, как мы увидим ниже, вода - очень слабый электролит и диссоциирует лишь в ничтожно малой степени. Иначе говоря, равновесие между молекулами воды и ионами сильно смещено в сторону образования молекул. Поэтому практически реакция нейтрализации сильной кислоты сильным основанием протекает до конца.

При смешивании раствора какой-либо соли серебра с соляной кислотой или с раствором любой ее соли всегда образуется характерный белый творожистый осадок хлорида серебра:

Подобные реакции также сводятся к одному процессу. Для того чтобы получить его ионно-молекулярное уравнение, перепишем, например, уравнение первой реакции, записывая сильные электролиты, как и в предыдущем примере, в ионной форме, а вещество, находящееся в осадке, в молекулярной:

Как видно, ионы и не претерпевают изменений в ходе реакции. Поэтому исключим их и перепишем уравнение еще раз:

Это и есть ионно-молекулярное уравнение рассматриваемого процесса.

Здесь также надо иметь в виду, что осадок хлорида серебра находится в равновесии с ионами и в растворе, так что процесс, выраженный последним уравнением, обратим:

Однако, вследствие малой растворимости хлорида серебра, это равновесие очень сильно смещено вправо. Поэтому можно считать, что реакция образования из ионов практически доходит до конца.

Образование осадка будет наблюдаться всегда, когда в одном растворе окажутся в значительной концентрации ионы и . Поэтому с помощью ионов серебра можно обнаружить присутствие в растворе ионов и, наоборот, с помощью хлорид-ионов - присутствие ионов серебра; ион может служить реактивом на ион , а ион - реактивом на ион .

В дальнейшем мы будем широко пользоваться ионно-молекулярной формой записи уравнений реакций с участием электролитов.

Для составления ионно-молекулярных уравнений надо знать, какие соли растворимы в воде и какие практически нерастворимы. Общая характеристика растворимости в воде важнейших солей приведена в табл. 15.

Таблица 15. Растворимость важнейших солей в воде

Ионно-молекулярные уравнения помогают понять особенности протекания реакций между электролитами. Рассмотрим в качеству примера несколько реакций, протекающих с участием слабых кислот и оснований.

Как уже говорилось, нейтрализация любой сильной кислоты любым сильным основанием сопровождается одним и тем же тепловым эффектом, так как она сводится к одному и тому же процессу - образованию молекул воды из ионов водорода и гидроксид-иона.

Однако при нейтрализации сильной кислоты слабым основанием, слабой кислоты сильным или слабым основанием тепловые эффекты различны. Напишем ионно-молекулярные уравнения подобных реакций.

Нейтрализация слабой кислоты (уксусной) сильным основанием (гидроксидом натрия):

Здесь сильные электролиты - гидроксид натрия и образующаяся соль, а слабые - кислота и вода:

Как видно, не претерпевают изменении в ходе реакции только ионы натрия. Поэтому ионно-молекулярное уравнение имеет вид:

Нейтрализация сильной кислоты (азотной) слабым основанием (гидроксидом аммония):

Здесь в виде ионов мы должны записать кислоту и образующуюся соль, а в виде молекул - гидроксид аммония и воду:

Не претерпевают изменений ионы . Опуская их, получаем ионно-молекулярное уравнение:

Нейтрализация слабой кислоты (уксусной) слабым основанием (гидроксидом аммония):

В этой реакции все вещества, кроме образующейся слабые электролиты. Поэтому ионно-молекулярная форма уравнения имеет вид:

Сравнивая между собой полученные ионно-молекулярные уравнения, видим, что все они различны. Поэтому понятно, что неодинаковы и теплоты рассмотренных реакций.

Как уже указывалось, реакции нейтрализации сильных кислот сильными основаниями, в ходе которых ионы водорода и гидроксид-ионы соединяются в молекулу воды, протекают практически до конца. Реакции же нейтрализации, в которых хотя бы одно из исходных веществ - слабый электролит и при которых молекулы малоднссоциирующих веществ имеются не только в правой, но и в левой части ионно-молекулярного уравнения, протекают не до конца.

Они доходят до состояния равновесия, при котором соль сосуществует с кислотой и основанием, от которых она образована. Поэтому уравнения подобных реакций правильнее записывать как обратимые реакции.

Инструкция

В левой части уравнения запишите вещества, вступающие в химическую реакцию. Их называют «исходными веществами». В правой части, соответственно, образовавшиеся вещества («продукты реакции»).

Количество атомов всех элементов в левой и правой части реакции должно быть . При необходимости, «уравновешивание» количества произведите путем подбора коэффициентов.

При написании уравнения химической реакции, сначала убедитесь, что она вообще возможна. То есть, что ее протекание не противоречит известным физико-химическим правилам и свойствам веществ. Например, реакция:

NaI + AgNO3 = NaNO3 + AgI

Она протекает быстро и до конца, в ходе реакции образуется нерастворимый светло-желтый осадок йодистого серебра. А обратная реакция:

AgI + NaNO3 = AgNO3 + NaI - невозможна, хоть и записана правильными символами, и количество атомов всех элементов в левой и правой части одинаково.

Запишите уравнение в «полной» форме, то есть, используя их молекулярные формулы. Например, реакцию образования осадка сульфата :

BaCl2 + Na2SO4 = 2NaCl + BaSO4

А можете ту же реакцию записать в ионной форме:

Ba 2+ + 2Cl- + 2Na+ + SO4 2- = 2Na+ + 2Cl- + BaSO4

Точно так же можно записать в ионной форме уравнение другой реакции. Запомните, что каждая молекула растворимого (диссоциирующего) вещества записывается в ионном виде, одинаковые ионы в левой и правой части уравнения исключаются.

Касательная к кривой - прямая, которая прилегает к этой кривой в заданной точке, то есть проходит через нее так, что на небольшом участке вокруг этой точки можно без особой потери точности заменить кривую на отрезок касательной. Если эта кривая является графиком функции, то касательную к ней можно построить по специальному уравнению.

Инструкция

Предположим, что у вас есть график некоторой функции. Через две точки, лежащие на этом , можно провести прямую. Такая прямая, пересекающая график заданной функции в двух точках, называется секущей.

Если, оставляя первую точку на месте, постепенно двигать в ее направлении вторую точку, то секущая постепенно станет поворачиваться, стремясь к какому-то определенному положению. В конце концов, когда две точки сольются в одну, секущая будет плотно прилегать к вашему в этой единственной точке. Иными , секущая превратится в касательную.

Любая наклонная (то есть не вертикальная) прямая на координатной плоскости является графиком уравнения y = kx + b. Секущая, проходящая через точки (x1, y1) и (x2, y2), должна, таким образом, соответствовать условиям:
kx1 + b = y1, kx2 + b = y2.
Решая эту систему двух линейных уравнений, получаем: kx2 - kx1 = y2 - y1. Таким образом, k = (y2 - y1)/(x2 - x1).

Когда расстояние между x1 и x2 стремится к нулю, разности превращаются в дифференциалы. Таким образом, в уравнении касательной, проходящей через точку (x0, y0) коэффициент k будет равен ∂y0/∂x0 = f′(x0), то есть значению производной от функции f(x) в точке x0.

Чтобы узнать коэффициент b, подставим уже вычисленное значение k в уравнение f′(x0)*x0 + b = f(x0). Решая это уравнение относительно b, мы получим, что b = f(x0) - f′(x0)*x0.

В качестве примера рассмотрим уравнение касательной к функции f(x) = x^2 в точке x0 = 3. Производная от x^2 равна 2x. Следовательно, уравнение касательной приобретает вид:
y = 6*(x - 3) + 9 = 6x - 9.
Правильность этого уравнения легко

SO 4 2- + Ba 2+ → BaSO 4 ↓

Алгоритм:

Подбираем к каждому иону противоион, пользуясь таблицей растворимости, чтобы получилась нейтральная молекула – сильный электролит.

1. Na 2 SO 4 + BaCl 2 → 2 NaCl + BaSO 4

2. BaI 2 + K 2 SO 4 → 2KI + BaSO 4

3. Ba(NO 33) 2 + (NH 4) 2 SO 4 → 2 NH 4 NO 3 + BaSO 4

Ионные полные уравнения:

1. 2 Na + + SO 4 2- + Ba 2- + 2 Cl‾ → 2 Na + + 2 Cl‾ + BaSO 4

2. Ba 2+ + 2 I‾ + 2 K + + SO 4 2- → 2 K + + 2 I‾ + BaSO 4

3. Ba 2+ + 2 NO 3 ‾ + 2 NH 4 + + SO 4 2- → 2 NH 4 + + 2 NO 3 ‾ + BaSO 4

Вывод: к одному краткому уравнению можно составить множество молекулярных уравнений.

ТЕМА 9. ГИДРОЛИЗ СОЛЕЙ

Гидролиз солей – ионообменная реакция соли с водой, приводя-

от греч. «гидро» щая к образованию слабого электролита (либо

Вода, «лизис» - слабого основания, либо слабой кислоты) и изме-

разложение нению среды раствора.

Любую соль можно представить как продукт взаимодействия основания с

кислотой.


Сильное Слабое Сильная Слабая может быть образована

1. LiOH NH 4 OH или 1. Н 2 SO 4 все осталь- 1. Сильным основанием и

2. NaOH NH 3 · H 2 O 2. HNO 3 ные слабой кислотой.

3. KOH все осталь - 3. HCl 2. Слабым основанием и

4. RbOH ные 4. HBr сильной кислотой.

5. CsOH 5. HI 3. Слабым основанием и

6. FrOH 6. HClO 4 слабой кислотой.

7. Ca(OH) 2 4. Сильным основанием и

8. Sr(OH) 2 сильной кислотой.

9. Ва(ОН) 2


СОСТАВЛЕНИЕ ИОННО-МОЛЕКУЛЯРНЫХ УРАВНЕНИЙ ГИДРОЛИЗА.

РЕШЕНИЕ ТИПОВЫХ ЗАДАЧ ПО ТЕМЕ: «ГИДРОЛИЗ СОЛЕЙ»

Задача № 1.

Составить ионно-молекулярные уравнения гидролиза соли Na 2 CO 3 .

Алгоритм Пример

1. Составить уравнение диссо-

циации соли на ионы. Na 2 CO 3 → 2Na + + CO 3 2- Na + →NaOН - сильное

2. Проанализировать, каким CO 3 2- →H 2 CO 3 - слабая

Основанием и какой кисло-

той образована соль. продукт

3. Сделать вывод, какой сла- гидролиза

бый электролит – продукт

гидролиза.

4. Написать уравнения гидроли-

I ступень.

А) составить краткое ионное I. а) CO 3 2- + H + │OH ‾ HCO 3 ‾ + OH ‾

уравнение, определить среду

раствора. pH>7, щелочная среда

Б) составить полное ионное б) 2Na + +CO 3 2- +HOH Na + +HCO 3 ‾ +Na + +OH ‾

уравнение, зная, что молеку-

ла – электронейтральная ча-

стица, подобрать к каждому

иону противоион.

В) составить молекулярное в) Na 2 CO 3 + HOH NaHCO 3 + NaOH

уравнение гидролиза.

Гидролиз протекает ступенчато, если слабое основание – многокислотное, а слабая кислота – многоосновная.

II ступень (см. алгоритм выше NaHCO 3 Na + + HCO 3 ‾

1, 2, 3, 4а, 4б, 4в). II. а) HCO 3 ‾ + HOH H 2 CO 3 + OH ‾

Б) Na + + HCO 3 ‾ H 2 CO 3 + Na + + OH ‾

В) NaHCO 3 + HOH H 2 CO 3 + NaOH

Вывод: соли, образованные сильными основаниями и слабыми кислотами подвергаются частичному гидролизу (по аниону), среда раствора щелочная (рН>7).

Задача № 2.

Составить ионно-молекулярные уравнения гидролиза соли ZnCl 2 .

ZnCl 2 → Zn 2+ + 2 Cl ‾ Zn 2+ → Zn(OH) 2 – слабое основание

Cl ‾ → HCl – сильная кислота

I. а) Zn 2+ + H + /OH ‾ ZnOH + + H + среда кислая, рН<7

Б) Zn 2+ + 2 Cl ‾ + HOH ZnOH + + Cl ‾ + H + + Cl ‾

В) ZnCl 2 + HOH ZnOHCl + HCl

II. а) ZnOH + + HOH Zn(OH) 2 + H +

Б) ZnOH + + Cl ‾ + HOH Zn(OH) 2 + H + + Cl ‾

В) ZnOHCl + HOH Zn(OH) 2 + HCl

Вывод: соли, образованные слабыми основаниями и сильными кислотами подвергаются частичному гидролизу (по катиону), среда раствора кислая.

Задача № 3.

Составить ионно-молекулярные уравнения гидролиза соли Al 2 S 3 .

Al 2 S 3 → 2 Al 3+ + 3 S 2- Al 3+ → Al(OH) 3 – слабое основание

S 2- → H 2 S – слабая кислота

а), б) 2 Al 3+ + 3 S 2- + 6 HOH → 2 Al(OH) 3 ↓ + 3 H 2 S

в) Al 2 S 3 + 6 H 2 O → 2 Al(OH) 3 + 3 H 2S S

Вывод: соли, образованные слабыми основаниями и слабыми кислотами подвергаются полному (необратимому) гидролизу, среда раствора близка к нейтральной.

1 . Составляется молекулярное уравнение реакции . Формулы веществ записываются в соответствии с правилом валентности. Рассчитываются (если необходимо) коэффициенты в соответствии с законом сохранения массы веществ.

2 . Составляется полное ионно-молекулярное уравнение . В молекулярной форме следует записывать малорастворимые и газообразные вещества, а также слабые электролиты (табл. 4.4, 4.5). Все эти вещества или не образуют в растворах ионов, или образуют их очень мало. В видеионов записывают сильные кислоты и основания, а также растворимые соли. Эти электролиты существуют в растворе в виде ионов, но не молекул.

3 . Составляется сокращённое ионно-молекулярное уравнение . Ионы, которые в ходе реакции не изменяются, сокращаются. Полученное уравнение показывает суть реакции.

Таблица 4.5

Растворимость солей кислот и оснований в воде

Примечание. Р ─ растворимое вещество, М ─ малорастворимое,

Н ─ нерастворимое, «─» ─ разлагается водой

В качестве примера решим вопрос о том, в каком случае произойдет химическое взаимодействие: если к раствору хлорида кальция добавить раствор нитрата натрия или сульфата натрия? Ответ подтвердите, написав ионно-молекулярные реакции.

Запишем молекулярные уравнения предполагаемых реакций, указав растворимость всех участников реакции (Р – растворимое,Н – нерастворимое). Все растворимые соли являются сильными электролитами.

CaCl 2 + 2NaNO 3 → Ca(NO 3) 2 + 2NaCl; CaCl 2 + Na 2 SO 4 → CaSO 4 ↓ + 2NaCl.

Р Р Р Р Р Р Н Р

В соответствии с правилами написания ионно-молекулярных уравнений сильные, растворимые электролиты запишем в виде ионов, аслабые или нерастворимые – в виде молекул.

Ca 2+ + 2Cl ‾ + 2Na + + 2NO 3 ‾ → Ca 2+ + 2NO 3 ‾ + 2Na + + 2Cl‾;

Ca 2+ + 2Cl ‾ + 2Na + + SO 4 2‾ → CaSO 4 ↓ + 2Na + + 2Cl ‾ .

В первом случае все ионы сокращаются, а во втором – сокращенное ионно-молекулярное уравнение имеет вид: Ca 2+ + SO 4 2‾ → CaSO 4 ↓, т.е. в данном случае имеет место химическое взаимодействие с образованием малорастворимого вещества. Данная реакция является практически необратимой , т.к. в обратном направлении, т.е. в сторону растворения осадка, она протекает в очень незначительной степени (рис. 4.6).

Рассмотрим реакции, приводящие к образованию слабого электролита и газа (рис. 4.7).

NH 4 Cl + KOH → NH 4 OH + KCl,

NH 4 + + Cl¯ + K + + OH¯ → NH 4 OH + K + + Cl¯,

NH 4 + + OH¯ → NH 4 OH.

Na 2 CO 3 + 2 HCl → 2 NaCl + H 2 CO 3 (H 2 O + CO 2 ),

2 Na + + CO 3 2 ¯ + 2 H + + 2 Cl → 2 Na + + 2 Cl¯ + H 2 O + CO 2 ,

2 H + + CO 3 2 ¯ → H 2 O + CO 2 .

Рис. 4.6 – Практически необратимая реакция двойного обмена с образованием осадка

Рис. 4.7 – Практически необратимые реакции двойного обмена

с образованием слабого электролита и газа

Если малорастворимые или малодиссоциирующие вещества есть и среди исходных веществ и среди продуктов реакции, то ионно-молекулярное равновесие смещается в сторону менее диссоциирующего или менее растворимого электролита.

СН 3 СООН + NaOH ↔ CH 3 COONa + H 2 O,

СН 3 СООН + Na + + OH¯ ↔ СН 3 СОО¯ +Na + + H 2 O,

СН 3 СООН + OH¯ ↔ СН 3 СОО¯ + H 2 O.

слабая кислота слабый электролит

Константа диссоциации уксусной кислоты равна около 10 –5 , а воды около 10 –16 , т.е. вода является более слабым электролитом и равновесие смещено в сторону образования продуктов реакции.

На смещении ионно-молекулярного равновесия основано растворение малорастворимого гидроксида магния при добавлении порциями раствора хлорида аммония:

Mg(OH) 2 + 2 NH 4 Cl ↔ MgCl 2 + 2 NH 4 OH,

Mg(OH) 2 + 2 NH 4 + + 2 Cl¯ ↔ Mg 2+ + 2 Cl¯ + 2 NH 4 OH,

Mg(OH) 2 + 2 NH 4 + ↔ Mg 2+ + 2 NH 4 OH.

Введение дополнительных порций иона NH 4 + смещает равновесие в сторону продуктов реакции.