Небесные тела и их движение. Солнечная система

Видимые движения небесных тел

Космос - это все, что есть, что когда-либо было и когда-нибудь будет.

Карл Саган.



Первые письменные упоминания о небесных телах возникли в древнем Египте и Шумере. Древние различали на небесном своде три типа тел: звёзды, планеты и "хвостатые звёзды". Отличия происходят как раз из наблюдений: Звёзды сохраняют на протяжении достаточно долгого времени неподвижность относительно других звёзд. Поэтому считалось, что звёзды "закреплены" на небесной сфере. Как нам сейчас известно, из-за вращения Земли каждая звезда "чертит" на небе "круг.









"Хвостатые" звёзды кометы. Появлялись нечасто, символизировали беды.


  • Конфигурация – характерное взаимное расположение планеты, Солнца и Земли. Экли́птика -большой круг небесной сферы, по которому происходит видимое годичное движение Солнца. Соответственно плоскость эклиптики - плоскость вращения Земли вокруг Солнца
  • Нижние (внутренние) планеты движутся по орбите быстрее Земли, а верхние (внешние) медленнее.

Введем понятия конкретных физических величин, характеризующих движение планет и позволяющих произвести некоторые расчеты:


  • Периге́лий (др.-греч. περί «пери» - вокруг, около, возле, др.-греч. ηλιος «гелиос» - Солнце) - ближайшая к Солнцу точка орбиты планеты или иного небесного тела Солнечной системы.
  • Антонимом перигелия является апоге́лий (афе́лий) - наиболее удалённая от Солнца точка орбиты. Воображаемую линию между афелием и перигелием называют - линия апсид.
  • Сидерический (T –звездный) – промежуток времени в течение которого планета совершает полный оборот вокруг Солнца по своей орбите относительно звезд.
  • Синодический (S) – промежуток времени между двумя последовательными одинаковыми конфигурациями планеты







Сложное видимое движение планет на небесной сфере обусловлено обращением планет Солнечной системы вокруг Солнца. Само слово " планета " в переводе с древнегреческого означает " блуждающая " или " бродяга ". Траектория движения небесного тела называется его орбитой. Скорости движения планет по орбитам убывают с удалением планет от Солнца. Характер движения планеты зависит от того, к какой группе она принадлежит. Поэтому по отношению к орбите и условиям видимости с Земли планеты разделяются на внутренние (Меркурий, Венера) и внешние (Марс, Сатурн, Юпитер, Уран, Нептун, Плутон), или соответственно, по отношению к Земной орбите, на нижние и верхние.


Поскольку при наблюдениях с Земли на движение планет вокруг Солнца накладывается еще и движение Земли по своей орбите, планеты перемещаются по небосводу то с востока на запад (прямое движение), то с запада на восток (попятное движение). Моменты смены направления называются стояниями. Если нанести этот путь на карту, получится петля. Размеры петли тем меньше,

чем больше расстояние между планетой и Землей.

Планеты описывают петли, а не просто движутся туда-сюда по одной линии исключительно из-за того, что плоскости их орбит не совпадают с плоскостью эклиптики. Такой сложный петлеобразный характер был впервые замечен и описан на примере видимого движения Венеры




Для верхних (внешних)

  • соединение - планета за Солнцем, на прямой Солнце-Земля (М 1).
  • противостояние – планета за Землей от Солнца – лучшее время наблюдения внешних планет, она полностью освещена Солнцем (М 3).
  • квадратура
  • западная восточная
  • западная – планета наблюдается в западной стороне (М 4).
  • восточная –наблюдается в восточной стороне (М 2).

Для нижних(внутренних)

  • соединение планета находится на прямой Солнце-Земля.
  • верхнее – планета за Солнцем (V 3). нижнее
  • верхнее – планета за Солнцем (V 3).
  • нижнее – планета перед Солнцем (V 1).
  • элонгация - угловое удаление планеты от Солнца восточная западная
  • восточная - планета видна на востоке до восхода Солнца в лучах утренней зари (V 4).
  • западная – планета видна на западе в лучах вечерней зари после захода Солнца (V 2).

Если T – Земля, P 1 – внутренняя планета, S – Солнце, небесное соединение называется нижним соединением. В «идеальном» нижнем соединении происходит прохождение Меркурия или Венеры по диску Солнца.

Если T – Земля, S – Солнце, P 1 – Меркурии или Венера, явление называется верхним соединением. В «идеальном» случае происходит покрытие Солнцем планеты, которое, конечно, не может наблюдаться из-за несравнимой разницы в блеске светил. Для системы Земля – Луна – Солнце в нижнем соединении происходит новолуние, а в верхнем – полнолуние.





Спасибо

Cлайд 1

Видимые движения небесных тел Космос - это все, что есть, что когда-либо было и когда-нибудь будет. Карл Саган.

Cлайд 2

Издавна люди наблюдали на небе такие явления как видимое вращение звездного неба, смена фаз Луны, восход и заход небесных светил, видимое движение Солнца по небу в течение дня, солнечные затмения, изменение высоты Солнца над горизонтом в течение года, лунные затмения. Было ясно, что все эти явления связаны, прежде всего, с движением небесных тел, характер которого люди пытались описать при помощи простых визуальных наблюдений, правильное понимание и объяснение которых складывалось веками.

Cлайд 3

Первые письменные упоминания о небесных телах возникли в древнем Египте и Шумере. Древние различали на небесном своде три типа тел: звёзды, планеты и "хвостатые звёзды". Отличия происходят как раз из наблюдений: Звёзды сохраняют на протяжении достаточно долгого времени неподвижность относительно других звёзд. Поэтому считалось, что звёзды "закреплены" на небесной сфере. Как нам сейчас известно, из-за вращения Земли каждая звезда "чертит" на небе "круг.

Cлайд 4

Планеты же, напротив, двигаются по небосводу, и их движение видно невооружённым глазом в течение часа–двух. Ещё в Шумере были найдены и отождествлены 5 планет: Меркурий,

Cлайд 5

Cлайд 6

Cлайд 7

Cлайд 8

Cлайд 9

Cлайд 10

Cлайд 11

"Хвостатые" звёзды кометы. Появлялись нечасто, символизировали беды.

Cлайд 12

Конфигурация – характерное взаимное расположение планеты, Солнца и Земли. Экли птика-большой круг небесной сферы, по которому происходит видимое годичное движение Солнца. Соответственно плоскость эклиптики - плоскость вращения Земли вокруг Солнца Нижние (внутренние) планеты движутся по орбите быстрее Земли, а верхние (внешние) медленнее. Введем понятия конкретных физических величин, характеризующих движение планет и позволяющих произвести некоторые расчеты:

Cлайд 13

Периге лий (др.-греч. περί «пери» - вокруг, около, возле, др.-греч. ηλιος «гелиос» - Солнце) - ближайшая к Солнцу точка орбиты планеты или иного небесного тела Солнечной системы. Антонимом перигелия является апоге лий (афе лий) - наиболее удалённая от Солнца точка орбиты. Воображаемую линию между афелием и перигелием называют - линия апсид. Сидерический (T –звездный) – промежуток времени в течение которого планета совершает полный оборот вокруг Солнца по своей орбите относительно звезд. Синодический (S) – промежуток времени между двумя последовательными одинаковыми конфигурациями планеты

Cлайд 14

Три закона движения планет относительно Солнца были выведены эмпирически немецким астрономом Иоганном Кеплером в начале XVII века. Это стало возможным благодаря многолетним наблюдениям датского астронома Тихо Браге

Cлайд 15

Cлайд 16

Cлайд 17

Cлайд 18

Наиболее просто видимое движение планет и Солнца описывается в системе отсчета, связанной с Солнцем. Такой подход получил название гелиоцентрической системы мира и был предложен польским астрономом Николаем Коперником (1473-1543).

Cлайд 19

В античные времена и вплоть до Коперника полагали, что в центре Вселенной расположена Земля и все небесные тела обращаются по сложным траекториям вокруг нее. Эта система мира называется геоцентрической системой мира.

Cлайд 20

Сложное видимое движение планет на небесной сфере обусловлено обращением планет Солнечной системы вокруг Солнца. Само слово " планета " в переводе с древнегреческого означает " блуждающая " или " бродяга ". Траектория движения небесного тела называется его орбитой. Скорости движения планет по орбитам убывают с удалением планет от Солнца. Характер движения планеты зависит от того, к какой группе она принадлежит. Поэтому по отношению к орбите и условиям видимости с Земли планеты разделяются на внутренние (Меркурий, Венера) и внешние (Марс, Сатурн, Юпитер, Уран, Нептун, Плутон), или соответственно, по отношению к Земной орбите, на нижние и верхние.

Cлайд 21

Поскольку при наблюдениях с Земли на движение планет вокруг Солнца накладывается еще и движение Земли по своей орбите, планеты перемещаются по небосводу то с востока на запад (прямое движение), то с запада на восток (попятное движение). Моменты смены направления называются стояниями. Если нанести этот путь на карту, получится петля. Размеры петли тем меньше, чем больше расстояние между планетой и Землей. Планеты описывают петли, а не просто движутся туда-сюда по одной линии исключительно из-за того, что плоскости их орбит не совпадают с плоскостью эклиптики. Такой сложный петлеобразный характер был впервые замечен и описан на примере видимого движения Венеры

Cлайд 22

Cлайд 23

Известен факт, что движение определенных планет можно наблюдать с Земли в строго определенное время года, это связано с их положением с течением времени на звездном небе. Конфигурации внутренних и внешних планет различны: у нижних планет это соединения и элонгации (наибольшее угловое отклонение орбиты планеты от орбиты Солнца), у верхних планет это квадратуры, соединения и противостояния. Для системы Земля – Луна – Солнце в нижнем соединении происходит новолуние, а в верхнем – полнолуние.

Cлайд 24

Для верхних (внешних) соединение - планета за Солнцем, на прямой Солнце-Земля (М 1). противостояние – планета за Землей от Солнца – лучшее время наблюдения внешних планет, она полностью освещена Солнцем (М 3). квадратура западная – планета наблюдается в западной стороне (М 4). восточная –наблюдается в восточной стороне (М 2).

II ОСНОВЫ НЕБЕСНОЙ МЕХАНИКИ.

УРОК № 10. ЗАКОНЫ ДВИЖЕНИЯ НЕБЕСНЫХ ТЕЛ.

4. Законы Кеплера.

6. Конические сечения.

7. Ревизия законов Кеплера.

1. Развитие представлений о Солнечной системе.

Первая научная геоцентрическая система мира начала формироваться в трудах Аристотеля и других ученых древней Греции. Свое завершение она получила в работах древнегреческого астронома Птолемея. Согласно этой системе в центре мира расположена Земля, откуда и название геоцентрическая. Вселенная ограничена хрустальной сферой, на которой расположены звезды. Между Землей и сферой движутся планеты, Солнце и Луна. Древние считали, что равномерное круговое движение – это идеальное движение, и что небесные тела именно так и движутся. Но наблюдения показывали, что Солнце и Луна движутся неравномерно и для устранения этого очевидного противоречия, пришлось предположить, что они движутся по окружностям, центры которых не совпадают ни с центром Земли, ни между собой. Еще более сложное петлеобразное движение планет пришлось представить как сумму двух круговых равномерных движений. Такая система позволяла с достаточной для наблюдений точностью рассчитывать взаимное расположение планет на будущее. Петлеобразное движение планет еще долгое время оставалось загадкой и нашло свое объяснение только в учении великого польского астронома Николая Коперника

В 1543 году вышла в свет его книга «О вращении небесных сфер». В ней была изложена новая гелиоцентрическая система мира. Согласно этой системе в центре мира находится Солнце. Планеты, в том числе и Земля, обращаются вокруг Солнца по круговым орбитам, а Луна вокруг Земли и одновременно с ней вокруг Солнца. Точность в определение положений планет возросла правда ненамного, но именно система Коперника позволила просто объяснить петлеобразное движение планет. Учение Коперника нанесло сокрушительный удар по геоцентрической системе мира. Оно далеко вышло за рамки астрономии дало мощный толчок развитию всего естествознания.

2. Петлеобразное движение планет.

Невооруженным глазом мы можем наблюдать пять планет - Меркурий, Венеру, Марс, Юпитер и Сатурн. Планеты относятся к тем светилам, которые не только участвуют в суточном вращении небесной сферы, но еще и смещаются на фоне зодиакальных созвездий, так как они вращаются вокруг Солнца. Если проследить за ежегодным перемещением какой-нибудь планеты, каждую неделю отмечая его положение на звездной карте, то может выявиться главная особенность видимого движения планеты: планета описывает на фоне звездного неба петлю, которая объясняется тем, что мы наблюдаем движение планет не с неподвижной Земли, а с Земли, вращающейся вокруг Солнца.

3. Иоганн Кеплер и Исаак Ньютон.

Два величайших ученых намного обогнавшие свое время, они создали науку, которая называется небесной механикой, то есть открыли законы движения небесных тел под действием сил тяготения, и даже если бы этим их достижения ограничились, они все равно бы вошли в пантеон великих мира сего. Так случилось, что они не пересеклись во времени. Только через тринадцать лет после смерти Кеплера родился Ньютон. Оба они являлись сторонниками гелиоцентрической системы Коперника. Много лет изучая движение Марса, Кеплер экспериментально открывает три закона движения планет, за пятьдесят с лишним лет до открытия Ньютоном закона всемирного тяготения. Еще не понимая, почему планеты движутся так, а не иначе. Это был каторжный труд и гениальное предвидение. Зато Ньютон именно законами Кеплера проверял свой закон тяготения. Все три закона Кеплера являются следствиями закона тяготения. И открыл его Ньютон в 23 года. В это время 1664 – 1667 годы в Лондоне свирепствовала чума. Тринити колледж , в котором преподавал Ньютон, был распущен на неопределенный срок, дабы не усугубить эпидемию. Ньютон возвращается к себе на родину и за два года совершает переворот в науке, сделав три важнейших открытия: дифференциальное и интегральное исчисление, объяснение природы света и закон всемирного тяготения. Исаак Ньютон был торжественно похоронен в Вестминстерском аббатстве. Над его могилой высится памятник с бюстом и эпитафией «Здесь покоится сэр Исаак Ньютон, дворянин, который почти божественным разумом первый доказал с факелом математики в руке движение планет, пути комет и приливы океанов… Пусть смертные радуются, что существует такое украшение рода человеческого».

4. Законы Кеплера.

Основная задача небесной механики – это исследование движения небесных тел под действием сил всемирного тяготения. А именно расчет орбит планет, комет, астероидов , искусственных спутников Земли, космических аппаратов, звезд в двойных и кратных системах. Все задачи в математическом смысле очень трудны и за редким исключением решаются только численными методами с помощью самых больших ЭВМ. Однако модельные задачи, в которых тела рассматриваются как материальные точки и можно пренебречь влиянием других тел, можно решить в общем виде, т. е. получить формулы для орбит планет и спутников. Простейшей считается задача двух тел, когда одно значительно больше другого и система отсчета связана с этим большим телом.

Именно для этого случая три закона движения планет относительно Солнца были получены эмпирически Иоганном Кеплером. Как же он это сделал? Кеплеру были известны: координаты Марса на небесной сфере с точностью до 2” по данным наблюдений его учителя Тихо Браге; относительные расстояния планет от Солнца; синодические и сидерические периоды обращения планет. Далее он рассуждал примерно так.

Известно положение Марса во время противостояния (см. рис.). В треугольнике АВС буква А обозначает положение Марса, В - Земли, С – Солнца. Через промежуток времени, равный сидерическому периоду обращения Марса (687 дней) планета вернется в точку А , а Земля за это время переместится в точку В’ . Поскольку угловые скорости движения Земли в течение года известны (они равны угловым скоростям видимого движения Солнца по эклиптике), можно вычислить угол АСВ’ . Определив координаты Марса и Солнца в момент прохождения Землей через точку В’ , мы можем, зная в треугольнике 2 угла, по теореме синусов рассчитать отношение стороны СВ’ к АС . Еще через один оборот Марса Земля придет в положение В" и можно будет определить отношение СВ" к тому же отрезку АС и т. д. Таким образом, точка за точкой можно получить представление об истинной форме орбиты Земли, установить, что она является эллипсом, в фокусе которого находится Солнце. Можно определить что, если время движения по дуге M3M4 = времени движения по дуге M1M2, то Пл. SM3M4 = Пл. SM1M2.

F1 и F2–фокусы эллипса, c-фокусное расстояние, а - большая полуось эллипса и среднее расстояние от планеты до Солнца.

5. Закон всемирного тяготения Ньютона.

Исаак Ньютон смог объяснить движение тел в космическом пространстве с помощью закона всемирного тяготения . Он пришел к своей теории в результате многолетних исследований движения Луны и планет. Но упрощенный вывод закона всемирного тяготения можно сделать и из третьего закона Кеплера.

Пусть планеты движутся по круговым орбитам, их центростремительные ускорения равны: , где Т – период обращения планеты вокруг Солнца, R - радиус орбиты планеты. Из III закона Кеплера или . Следовательно, ускорение любой планеты независимо от ее массы обратно пропорционально квадрату радиуса ее орбиты: .

Согласно II закону Ньютона, сила F , сообщающая планете это ускорение, равна: https://pandia.ru/text/78/063/images/image010_95.gif" width="125" height="51 src=">, где М – масса Солнца. Поскольку F = F’ , =https://pandia.ru/text/78/063/images/image013_78.gif" width="161" height="54">, где G = 6,67∙10–11 Н∙м2/кг2 – гравитационная постоянная ..gif" width="109" height="51">. Сила тяготения между Солнцем и планетой пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними . Этот закон справедлив для любых сферически симметричных тел, а приближенно он выполняется для любых тел, если расстояние между ними велико по сравнению с их размерами. Ускорение, которое, согласно второму закону Ньютона, испытывает тело m , находящееся на расстоянии r от тела M , равно: https://pandia.ru/text/78/063/images/image017_68.gif" width="47" height="47">, где -масса Земли, – расстояние до ее центра. Вблизи поверхности Земли ускорение свободного падения равно g = 9,8 м/с2. Сплюснутость Земли и ее вращение приводят к отличию силы тяжести на экваторе и возле полюсов: ускорение свободного падения в точке наблюдения может приближенно высчитываться по формуле g = 9,78 ∙ (1 + 0,0053 sin φ ), где φ – широта этой точки.

Необычно ведет себя сила тяжести внутри Земли. Если Землю принять за однородный шар, сила тяжести растет пропорционально расстоянию до центра шара r.

6. Конические сечения.

Конические сечения образуются при пересечении прямого кругового конуса с плоскостью. К коническим сечениям относятся кривые второго порядка: эллипс , парабола и гипербола . Все они является геометрическим местом точек, расстояния от которых до заданных точек (фокусов ) или до заданной прямой (директрисы) есть величина постоянная. Например, эллипс определяется как геометрическое место точек, для которых сумма расстояний от двух заданных точек (фокусов F1 и F2) есть величина постоянная и равная длине большой оси: F1M+F2M=2а=const. Степень вытянутости эллипса характеризуется его эксцентриситетом е. Эксцентриситет е =с/а. При совпадении фокусов с центром е = 0, и эллипс превращается в окружность . Большая полуось а является средним расстоянием от фокуса до эллипса. Ближайшая к фокусу точка эллипса называется перицентром, самая удаленная – апоцентром. Расстояние от фокуса до перицентра равно ПF1 = a (1 – e ), до апоцентра – F1A = a (1 + e ).

7. Ревизия законов Кеплера.

Итак, Кеплер открыл свои законы эмпирическим путем. Ньютон же вывел законы Кеплера из закона всемирного тяготения. В результате этого претерпели изменения первый и третий законы. Первый закон Кеплера был обобщен и его современная формулировка звучит так: Траектории движения небесных тел в центральном поле тяготения представляют собой конические сечения: эллипс, окружность, параболу или гиперболу, в одном из фокусов которой находится центр масс системы . Форма траектории определяется величиной полной энергии движущегося тела, которая складывается из кинетической энергии К тела массы m , движущегося со скоростью v , и потенциальной энергии U тела, находящегося в гравитационном поле на расстоянии r от тела с массой М . При этом действует закон сохранения полной энергии тела. Е=К + U = const ; К = mv 2 /2, U =- GMm / r .

Закон сохранения энергии можно переписать в виде: (2).

Константа h называется постоянной энергии . Она прямо пропорциональна полной механической энергии тела E и зависит только от начального радиус-вектора r0 и начальной скорости v 0. При h < 0 кинетической энергии тела недостаточно для преодоления гравитационной связи. Величина радиус-вектора тела ограничена сверху и имеет место обращение по замкнутой, эллиптической орбите. Такое движение можно уподобить движению маятника – тот же самый переход кинетической энергии в потенциальную во время подъема и обратный – при опускании. Подобное движение называется финитным , т. е. замкнутым. Для h = 0 при неограниченном возрастании радиус-вектора тела его скорость уменьшается до нуля – это движение по параболе. Такое движение – инфинитно , неограниченно в пространстве. При h > 0 кинетическая энергия тела достаточно велика, и на бесконечном расстоянии от притягивающего центра тело будет иметь ненулевую скорость удаления от него – это движение по гиперболе. Таким образом, можно сказать, что тело движется относительно притягивающего центра только по орбитам, являющимися коническими сечениями. Как следует из формулы (2), приближение тела к притягивающему центру всегда должно сопровождаться увеличением орбитальной скорости тела, а удаление – уменьшением в соответствии со вторым законом Кеплера. Второй закон Кеплера не подвергся ревизии, а вот третий был уточнен, и звучит он так: отношение куба большой полуоси. планетной орбиты к квадрату периода обращения планеты вокруг Солнца равно сумме масс Солнца и планеты, г де (3) M Q и m массы Солнца и планеты, соответственно; а и Т – большая полуось и период обращения планеты. В отличие от двух первых, третий закон Кеплера применим только к эллиптическим орбитам.

В обобщенном виде этот закон обычно формулируется (4) так: Произведение сумм масс небесных тел и их спутников с квадратами их сидерических периодов обращения относятся как кубы больших полуосей их орбит, где М 1 и М 2 - массы небесных тел, m 1 и m 2 - соответственно массы их спутников, а 1 и а 2 - большие полуоси их орбит, Т 1 и Т 2 - сидерические периоды обращения. Необходимо понять, что закон Кеплера связывает характеристики движения компонентов любых произвольных и независимых космические систем. В эту формулу могут входить одновременно Марс со спутником, и Земля с Луной, или Солнце с Юпитером.

Если мы применим этот закон к планетам Солнечной системы и пренебрежем массами планет М1 и М 2 в сравнении с массой Солнца М☼ (т. е. M 1 << М ☼, M 2 << М ☼), то получится формулировка третьего закона, данная самим Кеплером.

8. Определение масс небесных тел.

https://pandia.ru/text/78/063/images/image026_47.gif" width="157" height="53 src=">. Подставив сюда значения больших полуосей Земли и Луны и их периодов обращения, получим, что М U=3,3·10-6М ☼. Ну а абсолютную массу Солнца вычислить совсем просто. Воспользовавшись непосредственно формулой (3), для пары Солнце-Земля, отбросив при этом массу Земли в силу ее малости в сравнении с массой Солнца, получим для М ☼=2·1030 кг.

Третий закон Кеплера позволяет вычислить не только массу Солнца, но и массы других звезд. Правда, это можно сделать только для двойных систем, массу одиночных звезд определить таким образом невозможно. Измеряя взаимное положение двойных звезд в течение длительного времени, часто удается определить период их обращения Т и выяснить форму их орбит. Если известно расстояние R до двойной звезды и максимальный αmax и минимальный αmin угловые размеры орбиты, то можно определить большую полуось орбиты а= R max + α min )/2 , далее воспользовавшись уравнением (3) мы можем вычислить суммарную массу двойной звезды. Если при этом на основании наблюдений определить расстояние от звезд до центра масс х1 и х2 , а точнее отношение х1/х2, которое сохраняется постоянным, то появляется второе уравнение x 1 / x 2 = m 2 / m 1 , дающее возможность определить массу каждой звезды в отдельности.

Д. З. § 8,9, 10. Задачи 7,8 стр.47.

Вопросы экспресс-опроса

1. Как называется ближайшая к Солнцу точка орбиты планеты?:

2. Как называется самая удаленная точка орбиты Луны?

3. Как меняется значение скорости движения кометы при ее перемещении от перигелия к афелию?

5. Как зависит синодический период внешних планет от расстояния до Солнца?

6. Почему космодромы стараются строить ближе к экватору?

7. Как изменяется гравитационное поле внутри Земли?

8. Сформулируйте законы Кеплера.

9. Чему равно средний радиус орбиты планеты?

Выпуск 20

В своём очередном видеоуроке астрономии профессор расскажет о движении небесных тел, а также о том, как характеризуют планету Юпитер.

Движение небесных тел

Солнце, Луна, планеты, звезды и все другие небесные тела, которые мы наблюдаем, постоянно находятся в движении на небосводе. Изо дня в день, из года в год они движутся по небу, описывая часто весьма сложные движения. Эти движения являются лишь видимым отражением действительных движений этих небесных тел и нашей Земли среди безграничных просторов Вселенной. Земля и планеты движутся в пространстве вокруг Солнца, образуя Солнечную систему, что само Солнце входит в состав огромной системы звезд, носящей название Галактики, и вместе с другими звездами движется в пространстве вокруг центра этой системы. Движение Земли, планет, Солнца и других небесных тел управляются в основном силами взаимного притяжения между этими небесными телами. Закон этого взаимодействия, называемый законом всемирного тяготения, был открыт в XVII веке великим английским ученым Исааком Ньютоном. Наука, изучающая движения небесных тел,— небесная механика, опираясь на закон всемирного тяготения, достигла замечательных успехов. Мы составляем сейчас точное «расписание движений» небесных тел, указывая, в каком месте неба должно находиться данное небесное тело в тот или иной момент времени. И действительно, небесные тела точно приходят в положенное время на свои места на небе, подчиняясь нашему «расписанию».

Характеристика планеты Юпитер

Юпитер — пятая планета от Солнца, крупнейшая в Солнечной системе. Наряду с Сатурном, Ураном и Нептуном Юпитер характеризуется как газовый гигант. Его экваториальный радиус равен 71,4 тыс. км, что в 11,2 раза превышает радиус Земли. Юпитер — единственная планета, у которой центр масс с Солнцем находится вне Солнца и отстоит от него примерно на 7 % солнечного радиуса. Масса Юпитера в 2,47 раза превышает суммарную массу всех остальных планет Солнечной системы, вместе взятых, в 317,8 раз — массу Земли и примерно в 1000 раз меньше массы Солнца. Характеристики плотности Юпитера показывают, что она примерно равна плотности Солнца и в 4,16 раз уступает плотности Земли. При этом сила тяжести на его поверхности, за которую обычно принимают верхний слой облаков, более чем в 2,4 раза превосходит земную. Если бы масса Юпитера превышала его реальную массу в четыре раза, плотность планеты возросла бы до такой степени, что под действием возросшей гравитации размеры планеты сильно уменьшились. Таким образом, по всей видимости, Юпитер имеет максимальный диаметр, который могла бы иметь планета с аналогичным строением и историей. С дальнейшим увеличением массы сжатие продолжалось бы до тех пор, пока в процессе формирования звезды Юпитер не стал бы коричневым карликом с массой, превосходящей его нынешнюю примерно в 50 раз. Это даёт астрономам основания считать Юпитер «неудавшейся звездой». Хотя, неясно, схожи ли процессы формирования таких планет, как Юпитер, с теми, что приводят к формированию двойных звёздных систем. Хотя для того, чтобы стать звездой, Юпитеру потребовалось бы быть в 75 раз массивнее, самый маленький из известных красных карликов всего лишь на 30 % больше в диаметре.

Астрономия

В этом разделе мы изучим строение Солнечной системы, законы, описывающие движение планет, проявления гравитационного взаимодействия в системе Земля - Луна, физические свойства Солнца и звезд. Используя известные законы физики, заглянем в недра звезд, обсудим их жизнь и смерть. Узнаем, что останется после смерти Солнца и более массивных звезд. Изучение мира галактик позволит нам узнать, как устроен Млечный Путь и где образуются звезды. Мы посмотрим, как наблюдаемое красное смещение в спектрах галактик указывает на расширение Вселенной в целом и что наблюдаемое реликтовое излучение, заполняющее всю Вселенную, указывает на то, что в прошлом Вселенная была не только плотной, но и горячей. Увидим, как знание законов небесной механики позволяет смоделировать движение не только планет, но и искусственных небесных тел.

Солнечная система

Сложные видимые петлеобразные движения планет среди звезд объясняются движением Земли и планет вокруг Солнца. Сложный характер движения Луны вокруг Земли и Земли вокруг Солнца объясняет смену лунных фаз, явление приливов и отливов, а также закономерности солнечных и лунных затмений.

Видимые движения небесных тел

Темной ночью мы можем увидеть на небе около 2500 звезд (с учетом невидимого полушария 5000), которые отличаются по блеску и цвету. Кажется, что они прикреплены к небесной сфере и вместе с ней обращаются вокруг Земли. Чтобы ориентироваться среди них, небо разбили на 88 созвездий. Во II в. до н. э. Гиппарх разделил звезды по блеску на звездные величины, самые яркие он отнес к звездам первой величины (1 m), а самые слабые, едва видимые невооруженным глазом, - к 6 m . В созвездии звезды обозначаются греческими буквами, некоторые самые яркие звезды имеют собственные названия. Так, Полярная звезда - α Малой Медведицы имеет блеск 2 m . Самая яркая звезда северного неба Вега - α Лиры имеет блеск около 0 m .

Особое место среди созвездий занимали 12 зодиакальных созвездий, через которые проходит годичный путь Солнца - эклиптика . Так, в марте Солнце движется по созвездию Рыб, в мае - Тельца, в августе - Льва, в ноябре - Скорпиона.

В настоящее время для ориентации среди звезд астрономы используют различные системы небесных координат. Одна из них - экваториальная система координат. В ее основе лежит небесный экватор - проекция земного экватора на небесную сферу.

Эклиптика и экватор пересекаются в двух точках: весеннего (ϒ) и осеннего () равноденствия.

Точка весеннего равноденствия находится в созвездии Рыбы, и она служит начальной точкой, от которой в направлении против часовой стрелки отсчитывается координата прямое восхождение, которую обычно обозначают буквой α. Эта координата является аналогом долготы в географических координатах. В астрономии принято прямое восхождение измерять в часовой мере, а не в градусной. При этом исходят из того, что полная окружность составляет 24 ч. Вторая координата светила δ - склонение - является аналогом широты, ее измеряют в градусной мере. Так, звезда Альтаир (α Орла) имеет координаты α = 19 ч 48 м 18 с склонение δ = +8°44’ Измеренные координаты звезд хранят в каталогах, по ним строят звездные карты, которые используют астрономы при поиске нужных светил.


Взаимное расположение звезд на небе не меняется, они совершают суточное вращение вместе с небесной сферой. Планеты наряду с суточным вращением совершают медленное движение среди звезд, оправдывая свое название (planetas в переводе с греческого - блуждающая звезда).

Видимый путь планет на небе петлеобразен. Размеры описываемых планетами петель различны. На рисунке показано видимое петлеобразное движение Марса, которое длится 79 дней.

Наиболее просто видимое движение планет и Солнца описывается в системе отсчета, связанной с Солнцем. Такой подход получил название гелиоцентрической системы мира и был предложен польским астрономом Николаем Коперником (1473-1543).

В этой системе суточное движение небесного свода объясняется вращением Земли вокруг оси, годичное движение Солнца по эклиптике - движением Земли вокруг Солнца, а описываемые планетами петли - сложением движений Земли и планет. Вокруг Земли движется только Луна. Коперник рассчитал расстояния планет до Солнца.

В астрономии среднее расстояние от Земли до Солнца принято за единицу расстояния и называется астрономической единицей (а. е.), 1 а. е. = 150 10 6 км. Так, Меркурий находится от Земли на расстоянии 0,39 а. е., а Сатурн - на расстоянии 9,54 а. е.

В античные времена и вплоть до Коперника полагали, что в центре Вселенной расположена Земля и все небесные тела обращаются по сложным траекториям вокруг нее. Эта система мира называется геоцентрической системой мира.

Доказательство движения Земли вокруг Солнца и определение расстояний до звезд.

Если Земля обращается вокруг Солнца, то близкие звезды должны периодически смещаться на фоне более далеких звезд. Это смещение называется параллактическим, а угол π, под которым со звезды виден радиус земной орбиты, называется параллаксом. Как видно из вышеприведенного рисунка, расстояние до звезды

Так как параллакс звезд мал, мы заменили синус малого угла самим углом, выраженным в радианной мере, а затем перешли от радианной меры к градусной, учтя, что 1 рад = 206 265". В астрономии принято измерять расстояние до звезд в парсеках (пк).

1 пк = 206 265 а 0 = 206 265 150 10 6 км = 3 10 13 км.

Итак, если параллакс измерять в угловых секундах а расстояние до звезды - в парсеках, то связью между ними будет равенство

Только во второй половине XIX в. удалось измерить параллаксы и расстояния до звезд и тем самым подтвердить теорию Коперника наблюдениями. Так, ближайшая к нам звезда а Центавра имеет параллакс π = 0,751", поэтому расстояние до нее r = 1,33 пк = 4 10 13 км.