Поверхностно активные соединения. Что такое поверхностно активные вещества ПАВ? Виды поверхностно-активных веществ

О том, что ПАВ- страшное зло, знают наверное даже те, кто абсолютно не интересуется косметикой. Но мало кто задумывается о том, что косметики без ПАВ практически не бывает. И еще меньше людей отдают себе отчет, что они, сами того не ведая, употребляют ПАВ практически каждый день без вреда для здоровья…

Что такое ПАВ? И зачем они нужны?

Поверхностно-активные вещества , или ПАВ, также называемые эмульгаторами, позволяют стабилизировать эмульсии и прочие дисперсные системы, то есть делают их однородными. Попробуйте смешать воду и масло. Как бы вы ни взбалтывали эту смесь, она будет разделяться на воду и масло. Добавьте туда эмульгатор ПАВ и получите однородную смесь.

Около 90% косметических продуктов являются эмульсиями, а значит, содержат ПАВ. Среди них молочко, гели, кремы, маски, гоммажи, сыворотки, флюиды, лосьоны, тональные кремы, зубные пасты… Без ПАВ эти средства сделать будет просто невозможно.

Без ПАВ можно изготовить только:
— средства, состоящие исключительно из жирной фазы: масла, бальзамы, помада…
— средства в форме пудры: компактная пудра, тени.

Но без ПАВ нельзя обойтись и в других областях нашей жизни. Например, в пище. Самый простой пример- соус майонез , который является эмульсией-смесью жирной фазы (растительного масла) и водной фазы (уксуса и горчицы). А роль ПАВ выполняет яичный желток, который содержит естественный эмульгатор лецитин. ПАВ также присутствуют в маргарине, соусах, шоколаде, хлебе, халве…

Под названием ПАВ скрывается целый набор веществ и компонентов. И отнюдь не все они опасны для нас.

Одно из заблуждений состоит в том, что ПАВ, входящие в косметику, вредны в силу своего ненатурального происхождения. На самом деле, большинство из них имеет растительное происхождение , но это не мешает им оказывать раздражающее действие на кожу. Среди них sodium lauryl sulfate (SLS, лаурилсульфат натрия), sodium laureth sulfate (SLES, лауретсульфат натрия) и ammonium lauryl sulfate. SLES является менее агрессивным, чем SLS и именно он был тем компонентом, который в свое время позволил Johnson & Johnson создать шампунь для детей без слез. Но несмотря на это все три вышеупомянутых компонента способны раздражать кожу.

ПАВ, какие они бывают и как действуют?

Основные свойства ПАВ:

— моющие
— пенообразующие
— увлажняющие
— эмульгирующие
— кондиционирующие (разглаживающие)

Разобраться, как действуют ПАВ достаточно просто. Надо учесть, что наша кожа и волосы заряжены отрицательно . Именно это и определяет, как на них будут действовать те или иные ПАВ. Существует 4 типа ПАВ :

— анионные : гидрофильный (водорастворимый) конец ПАВ заряжен негативно. Эти ПАВ обладают очень сильными моющими свойствами.
Липофильная (жирорастворимая) часть молекулы ПАВ захватывает частицы грязи и кожного жира. Водорастворимая часть в свою очередь отталкивается от кожи и волос, поскольку она также, как и кожа, имеет отрицательный заряд. В результате, грязь в соединении с ПАВ, смывается водой и удаляется. Это свойство анионных ПАВ и приводит к тому, что они агрессивно влияют на кожу, разрушая ее липидную пленку.

Примеры: сульфаты, в том числе печально известный лаурилсульфат натрия SLS…

— катионные ПАВ : гидрофильный водорастворимый конец заряжен положительно.
Этот вид ПАВ обладает слабым моющим действием и используется в основном в качестве эмульгатора и смягчающего агента. За счет своего положительного заряда, эти ПАВ притягиваются к волосам и коже, которые обладают отрицательным зарядом. Они входят в состав кондиционеров и масок для волос и помогают фиксировать добавки на волосах, а также оказывают на них антистатический эффект.

Примеры: benzalkonium chloride, BTMS, амины

— амфотерные ПАВ : могут нести как негативный, так и позитивный заряд, в зависимости от pH среды, в которую они попадают.
Они используются в сочетании с анионными ПАВ для смягчения моющих средств и уменьшения их агрессивного воздействия на кожу.

Примеры: производные аминокислот, cocamidopropyl betaine…

— неионные ПАВ : молекула не имеет никакого заряда.
Эти ПАВ не раздражают кожу и являются биологически разлагаемыми. Они образуют малое количество пены, но обладают довольно-таки сносными моющими свойствами.

Примеры: алкилфенолы, этоксилированные спирты, сапонины, decyl glucoside, cetyl alcohol, глутаматы, лецитин…

Но не все потеряно. Помимо опасных сульфатов среди ПАВ есть и те, которые не раздражают кожу:

— lauryl glucoside

Неионное ПАВ, очень мягкое, используется в моющих средствах, в том числе и для интимной гигиены. Подходит для чувствительной кожи. Обладает густой и вязкой структурой и очень слабо пенится. Поэтому, требует добавок для повышения своих пенных качеств. Либо используется для придания густоты в сочетании с другими ПАВ.

Используется в гелях для душа, жидком мыле, очищающих гелях для лица, рук и интимной гигиены, в шампунях и средствах для детей.

— babassuamidopropyl betaine
Производное жирных кислот масла бабассу.

Амфотерное ПАВ, обладающее хорошими пенящими свойствами и позволяющее улучшать эти свойства в сочетании с другими ПАВ, делает пену более мелкой, придает ей кремовую текстуру. Оно оказывает кондиционирующее и антистатическое действие на волосы, делает их более мягкими и послушными.

Babassuamidopropyl betaine с успехом заменяет cocoamidopropyl betaine, поскольку является более мягким и производится без использования раздражающих компонентов.

Используется в гелях для душа, жидком мыле, очищающих гелях для лица, рук и интимной гигиены, в шампунях и средствах для детей. В малых дозах (2-3%), это ПАВ может быть использован в мицеллярной воде.

— coco glucoside
Производное жирных спиртов кокосового или пальмового масла и глюкозы

Мягкий неионный ПАВ, применяемый как со-ПАВ. Обладает увлажняющим действием и позволяет восстанавливать водно-жировую пленку на коже. Используется для повышения вязкости и мягкости в сочетании с другими ПАВ, а также для улучшения переносимости анионных ПАВ.

— decyl glucoside
Производное жирных спиртов кокосового или пальмового масла и глюкозы

Неионный ПАВ с отличными пенящими свойствами, даже при малом содержании. Его получают из сахара и он подходит для всех типов кожи и волос, включая детские. Отлично дополняет lauryl glucoside для создания мягких моющих средств.

Таким образом, без ПАВ в косметике никуда. В принципе не так страшны ПАВ, как их малюют. Достаточно обращать внимание на состав средств и выбирать мягкие ПАВ. А также на то, какова пропорция ПАВ в средстве. Чем ближе к началу списка INCI стоит ПАВ, тем более агрессивно оно будет действовать на кожу. И конечно же, стараться тщательно смывать средства, содержащие агрессивные ПАВ, в частности сульфиты.

При производстве ИСК кроме вяжущих веществ, заполнителей и наполнителей широкое применение находят добавочные вещества в смесях, именуемые добавками.

На стадиях технологического производства они:

- облегчают выполнение операций;

Снижают количество затрачиваемой энергии;

Уменьшают расход дорогостоящих компонентов;

Снижают материалоемкость;

Способствуют обеспечению необходимых показателей свойств материала;

Благоприятствуют ускорению или замедлению процессов структурообразования и отвердевания.

На стадии эксплуатации конструкций добавки, введенные ранее ИСК призваны:

Упрочнить, стабилизировать структуру материала;

Максимально тормозить неизбежную деструкцию, возникающую и развивающуюся в материале под влиянием внешней среды и внутренних самопроизвольных явлений.

Основное функциональное назначение добавок, и этим они отличаются от заполнителей и наполнителей, заключается в том, что они всегда достаточно активно взаимодействуют с одним или несколькими компонентами смесей в процессе формирования структуры вяжущей части или макроструктуры ИСК. В результате реакции возникают новые соединения, которых ранее не было в смеси, причем добавки или полностью расходуются, или утрачивают свои индивидуальные признаки. Понятно, что при избыточном количестве добавки могут частично остаться в смеси и в сформированном материале без каких- либо изменений, что не является желательным.

Поверхностно-активнымивеществами (ПАВ ) называют такие химические соединения, которые адсорбируются на поверхностях раздела жидкостей и твердых тел и влияют на их физико-химические или химические свойства. ПАВ являются, как правило, соединениями, молекулы которых состоят из двух главных частей - радикала и функциональной группы.

Радикал - представляет собой группу атомов , которая при ряде химических превращений неизменна и переходит из молекулы одного соединения в молекулу другого.

Радикалы образуются, например, при отщеплении в молекулах углеводородов органических соединений атомов водорода. Так, если в любом предельном (насыщенном) соединении, относящемся к классу парафинов типа C n H 2 n +2 , отщепляется атом водорода, то оставшаяся группа атомов C n H 2 n +1 является алифатическим (жирным) радикалом

Н - С - С - …- С -, который обозначается буквой R.

Место отщепленного водорода в молекуле может занять другой атом или группа атомов, обладающих определенными свойствами, связанных со стационарным смещением электронов на атомных орбитах, что обуславливает наличие определенного электрического диполя и дипольного момента всей молекулы. Такие атомы или группы атомов называются функциональными группами .


Наиболее часто встречающиеся в составе ПАВ функциональные группы:

Гидроксильная: (- ОН);

Карбоксильная: (- СООН);

Аминная (амино-группа): (- NН 2);

Нитрогруппа: (- NО 2);

Сульфатогруппа: (- SО 3 H).

По количеству функциональных групп в молекуле ПАВ могут быть одно-, -двух- и многоосновными.

Соединения, в которых алифатический радикал содержит менее 10 атомов углерода , как правило, не обладают поверхностной активностью, т.е. способностью адсорбироваться и понижать поверхностное натяжение жидкостей или поверхностную энергию твердых тел. При содержании в радикале более 10 атомов углерода они обычно поверхностно-активны и называются высшими жирными ПАВ . От типа функциональной полярной группы и структуры радикала зависит растворимость ПАВ в различных растворителях и способность диссоциировать на ионы.

ПАВ, в которых функциональные группы несут положительный заряд, активны в кислой среде и неактивны в щелочной, тогда как ПАВ с отрицательно заряженными функциональными группами, наоборот, активны в щелочной и неактивны в кислой.

КЛАССИФИКАЦИЯ ПАВ

Принципиально все ПАВ разделяют на две большие группы: иногенные соединения, при растворении в воде диссоциирующие на ионы, и неиногенные, которые на ионы не диссоциируют.

В зависимости от того, какими ионами обусловлена поверхностная активность ионогенных веществ - анионами или катионами , ионогенные вещества подразделяются на анионактивные , катионактивные, амфолитные. Анионактивные ПАВ активны в щелочных растворах, катионактивные - в кислых, амфолитные - в тех и других.

Анионактивные вещества в щелочных растворах, образуя отрицательно заряженные поверхностно-активные ионы (анионы):

RCOONa ↔ RCOO - + Na +

Катионактивные вещества при диссоциации в кислых растворах образуют положительно заряженные поверхностно-активные ионы (катионы):

RNH 3 Cl ↔ RNH 3 + + Cl -

К анионактивным ПАВ относятся: карбоновые кислоты (RCOOH) и их соли (RCOOMe) и др.

К катионактивным ПАВ относятся амины, аммониевые основания:

RNH 2 ; RNH 3 Cl.

Амфолитные ПАВ содержат две функциональные группы, одна из которых имеет кислый, другая - основной характер, например карбоксильную и аминную группу.

В зависимости от среды амфолитные соединения обладают анионными, либо катионными свойствами:

Щелочная среда кислая среда;

RNH(СH 2) n COO - ↔ RNH(СH 2) n COOH↔RNH 2 (СH 2) n COOH;

Анионные свойства катионные свойства.

Неионогенные ПАВ, растворяясь в воде, не образуют ионов.

К группе неиогенных ПАВ относятся продукты оксиэтилирования жирных кислот, спиртов, аминов.

RCOO(C 2 H 4 O) n · H ; RCH 2 O(C 2 H 4 O) n · H ; RC 6 H 5 O(C 2 H 4 O) n OH .

КЛАССИФИКАЦИЯ ПАВ ПО МЕХАНИЗМУ ДЕЙСТВИЯ

В зависимости от действия ПАВ в дисперсных системах они делятся на 4 группы:

К первой группе относятся низкомолекулярные, истинно растворимые в воде ПАВ, например спирты. Они являются слабыми смачивателями и пеногасителями.

Ко второй группе относятся ПАВ диспергаторы и эмульгаторы . Адсорбируясь, эффективно понижают свободную поверхностную энергию жидкости или твердого тела и тем самым облегчают процесс образования новых поверхностей и диспергирование. Эти вещества обладают и некоторыми стабилизирующими действиями.

В результате ориентированной адсорбции ПАВ второй группы гидрофобизируют твердые поверхности и, наоборот, гидрофилизируют гидрофобные поверхности. Особенно резко выражен эффект гидрофобизации этих ПАВ, усиливающийся химической связью - фиксацией полярных групп ПАВ на соответствующих участках твердой поверхности.

К ПАВ второго класса относятся жирные кислоты, их водорастворимые соли, катионактивные органические основания и соли.

В третью группу объединены ПАВ, являющиеся хорошими стабилизаторами. Поверхностная активность их сравнительно мала.

Эти ПАВ являются также хорошими адсорбционными пластификаторами - пластифицируют структуру, понижая их прочность и структурную вязкость. В цементных растворах и бетонах это позволяет переходить к жестким и вместе с тем однородным смесям, способствуют равномерности перемешивания, повышает плотность и долговечность (морозостойкость), приводит к повышению прочности и к снижению расхода цемента.

В качестве пластификаторов используют лигносульфонаты кальция (сульфитно-спиртовая барда - ССБ и сульфитно-дрожжевая бражка - СДБ) и т.п.

Четвертая группа ПАВ - это моющие вещества, обладающие высокой поверхностной активностью, смачивающим и гидрофобизирующим действием. Они также эффективные эмульгаторы и стабилизаторы эмульсий. В эту группу входят мыла жирных кислот и аминов.

В строительстве в основном используют поверхностно-активные вещества второй - четвертой групп.

ПАВ для цементобетонных смесей и цементобетона подразделяют на следующие виды:

1. Регулирующие свойства бетонных смесей

1.1. Пластифицирующие 1-4 группы (супер-, сильно-, средне- и слабопластифицирующие). Увеличивают подвижность бетонной смеси, замедляют схватывание бетона и повышают прочность.

1.2. Стабилизирующие. Повышают однородность бетона, снижают проницаемость.

1.3. Водоудерживающие. Увеличивают подвижность смеси, снижают проницаемость и прочность бетона, повышают однородность бетона.

1.4. Улучшающие перекачиваемость. Повышают однородность, снижают водоотделение смеси и прочность бетона.

1.5. Замедляющие схватывание. Увеличивают время подвижности смеси, замедляют схватывание в 2 и более раза при +20°С. Увеличение прочности в дальние сроки твердения.

1.6. Ускоряющие схватывание. Ускоряют схватывание на 20% и более при 20°С. Ускорение твердения.

1.7. Поризующие - для легких бетонов.

1.8. Воздухововлекающие. Повышение удобоукладываемости и морозостойкости, снижение расслаиваемости.

1.9. Пенно- и газообразующие. Пенообразующие добавки обеспечивают получение технической пены. Газообразующие ПАВ способны выделять газ за счет химического взаимодействия с продуктами гидратации цемента.

2. Регулирующие твердение бетона

2.1. Ускоряющие твердение. Повышение прочности в возрасте 1 суток на 20% и более. Замедление набора прочности в более поздние сроки.

2.2 Замедляющие твердение. Снижение прочности бетона на 30% и более в возрасте до 7 суток.

3. Повышающие прочность и (или) коррозионную стойкость, морозостойкость бетона, снижение проницаемости бетона

3.1. Водоредуцирующие (1-4 группы). Снижение расхода воды (на 20-5%). Повышение морозостойкости и коррозионной стойкости.

3.2. Кольматирующие. Повышение марки бетона по водонепроницаемости и коррозионной стойкости.

3.3. Воздухововлекающие и газообразующие. Повышение морозостойкости в 2 и более раза, пластификация смеси.

3.4. Повышающие защитные свойства бетона по отношению к арматуре (ингибиторы коррозии стали). Увеличение подвижности смеси и снижение диффузионной проницаемости бетона.

4. Придающие бетону специальные свойства

4.1. Противоморозные (обеспечивающие твердение при отрицательных температурах).

4.2. Гидрофобизирующие (1-3 групп). Снижение водопоглощения в 1,5-5 раз и более, замедление схватывания.

Введение ПАВ в цементное тесто, растворную или бетонную смесь существенно изменяет их структуру и свойства как в пластичном, так и затвердевшем состоянии. Различные виды ПАВ, отмеченные выше, по-разному меняют свойства бетонной смеси или бетона за счет их адсорбирования на поверхности зерен клинкера и новообразований, а также поверхности каменных материалов.

Изменяется также микроструктура гидратированного цемента в результате развивающегося адсорбционного модифицирования. Поверхность образующихся в цементном тесте и камне кристаллов покрывается адсорбционной пассивирующей пленкой поверхностно-активных веществ, рост кристаллов замедляется и образуется более мелкая кристаллическая структура с изменением самой формы кристаллов.

Таким образом, применяя ПАВ, можно значительно расширить возможности производства асфальто- и цементобетонных смесей. В данном случае основное заключается в правильном выборе материалов и добавок, а также в их дозировании.

на неск. порядков выше, чем в объеме жидкости , поэтому даже при ничтожно малом содержании в воде (0,01-0,1% по массе) ПАВ могут снижать поверхностное натяжение воды на границе с воздухом с 72,8·10 -3 до 25·10 -3 Дж/м 2 , т.е. практически до поверхностного натяжения углеводородных жидкостей . Аналогичное явление имеет место на границе водный р-р ПАВ - углеводородная жидкость , что создает предпосылки для образования эмульсий .

Основной количественной характеристикой ПАВ является - способность вещества снижать поверхностное натяжение на границе раздела фаз - это производная поверхностного натяжения по концентрации ПАВ при стремлении С к нулю.

В объеме жидкой фазы ПАВ могут находиться
- или в виде отдельных молекул (истинно растворимые ПАВ),
-или объединяться в группы по нескольку десятков молекул - Предельная концентрация ПАВ в растворе, при которой начинается образование мицелл, называется ).

Строение ПАВ

Как правило, ПАВ - органические соединения, имеющие амфифильное строение , то есть их молекулы имеют в своём составе полярную часть, гидрофильный компонент(функциональные группы -ОН, -СООН, -SOOOH, -O- и т. п., или, чаще, их соли -ОNa, -СООNa, -SOOONa и т. п.) и неполярную (углеводородную) часть, гидрофобный компонент. Примером ПАВ могут служить обычное мыло (смесь натриевых солей жирных карбоновых кислот - олеата , стеарата натрия и т. п.) и СМС (синтетические моющие средства), а также спирты , карбоновые кислоты , амины и т. п.

Классификация ПАВ

  • Ионогенные ПАВ
    • Катионные ПАВ
    • Анионные ПАВ
    • Амфотерные
  • Неионогенные ПАВ
    • Алкилполиглюкозиды
    • Алкилполиэтоксилаты


Анионактивные ПАВ

- содержат в молекуле одну или несколько полярных групп и диссоциируют в водном растворе с образованием длинноцепочечных анионов, определяющих их поверхностную активность. Это группы: COOH(M), OSO
2 OH(M), SO 3 H(M), где M-металл (одно-, двух- или трехвалентный). Гидрофобная часть молекулы обычно представлена предельными или непредельными алифатическими цепями или алкилароматическими радикалами.

В анионактивных ПАВ катион м.б. не только металлом, но и органическим основанием. Часто это ди- или триэтаноламин. Поверхностная активность начинает проявляться при длине углеводородной гидрофобной цепи C 8 и с увеличением длины цепи увеличивается вплоть до полной потери растворимости ПАВ в воде. В зависимости от структуры промежуточных функциональных групп и гидрофильности полярной части молекулы длина углеводородной части может доходить до C 18 .

Катионактивные ПАВ

- диссоциируют в водном растворе с образованием поверхностно-активного катиона с длинной гидрофобной цепью и аниона (обычно галогенида, иногда аниона серной или фосфорной кислоты).

Среди катионактивных ПАВ преобладают азотсодержащие соединения; также используются вещества, не содержащие азот: соединения сульфония +X-и сульфоксония +Х-, фосфония +X-, арсония +Х-, иодония.

Катионактивные ПАВ меньше снижают поверхностное натяжение, чем анионактивные, но они химически взаимодействуют с поверхностью адсорбента, напр. с клеточными белками бактерий, обусловливая бактерицидное действие.

Амфолитные ПАВ
– в зависимости от величины рН они проявляют свойства катионактивных или анионактивных ПАВ.

Содержат в молекуле гидрофильный радикал и гидрофобную часть, способную быть акцептором или донором протона в зависимости от рН раствора. Обычно эти ПАВ включают одну или несколько основных и кислотных групп, могут содержать также и неионогенную полигликолевую группу. При некоторых значениях рН, наз. изоэлектрической точкой, ПАВ существуют в виде цвиттер-ионов. Константы ионизации кислотных и основных групп истинно растворимых амфотерных ПАВ весьма низки, однако чаще всего встречаются катионно-ориентированные и анионно-ориентированные цвиттер-ионы. В качестве катионной группы обычно служит первичная, вторичная или третичная аммониевая группа, остаток пиридина или имидазолина. Вместо N м.б. атомы S, P, As и т. п. Анионными группами являются карбоксильные, сульфонатные, сульфоэфирные или фосфатные группы.

Неионогенные ПА

– высокомолекулярные соединения, не образующие ионов в водном растворе.

Их растворимость обусловлена наличием в молекулах гидрофильных эфирных и гидроксильных групп, чаще всего полиэтиленгликолевой цепи. При растворении образуются гидраты вследствие образования водородной связи между кислородными атомами полиэтиленгликолевого остатка и молекулами воды. Вследствие разрыва водородной связи при повышении температуры растворимость неионогенных ПАВ уменьшается, поэтому для них точка помутнения - верх. температурный предел мицеллообразования- является важным показателем. Mногие соединения., содержащие подвижной атом H (кислоты, спирты, фенолы, амины), реагируя с этиленоксидом, образуют неионогенные ПАВ RO (C2H4O)nH. Полярность одной оксиэтиленовой группы значительно меньше полярности любой кислотной группы в анионактивных ПАВ. Поэтому для придания молекуле требуемой гидрофильности и значения ГЛБ в зависимости от гидрофобного радикала требуется от 7 до 50 оксиэтиленовых групп. Характерная особенность неионогенных ПАВ - жидкое состояние и малое пенообразование в водных растворах.

Неионогенные ПАВ хорошо комбинируются с другими ПАВ и часто включаются в рецептуры

Благодаря моющим, смачивающим, эмульгирующим, диспергирующим и другим ценным свойствам ПАВ находят широкое применение в производстве моющих и чистящих средств, косметических и фармацевтических препаратов. латексов, каучука. полимеров, химических средств защиты растений, текстиля, кожи и бумаги, строительных материалах, ингибиторов коррозии, при добыче, транспортировке и переработке нефти и др. Большая часть ПАВ применяется для производства синтетических моющих средств (СМС).

Поверхностно-активные вещества обладают относительно низкой токсичностью для организма человека и животных. По степени увеличения токсичности ПАВ можно распределить в следующем порядке: неионогенные, анионактивные, катионактивные. При воздействии на кожу и слизистые оболочки синтетические ПАВ могут проявлять раздражающее и резорбтивное действие. Установлено, что композиции из анионных и неионогенных соединений оказывают менее выраженное биологическое и токсическое действие. Неионогенные ПАВ снижают адсорбцию анионных веществ и только в больших дозах могут оказывать повреждающее действие на кожу. Наибольшая опасность поверхностно-активных веществ и препаратов на их основе для людей, заключается в их сенсибилизирующем действии, способности вызывать аллергические реакции. Сенсибилизация может происходить при любых путях поступления ПАВ в организм.


Источники поступления ПАВ в водную среду

В водные объекты ПАВ поступают в значительных количествах с хозяйственно-бытовыми (использование синтетических моющих средств в быту) и промышленными сточными водами (текстильная, нефтяная, химическая промышленность, производство синтетических каучуков), а также со стоком с сельскохозяйственных угодий (входят в состав инсектицидов, фунгицидов, гербицидов и дефолиантов в качестве эмульгаторов).



Применение поверхностно-активных веществ (ПАВ)

ПАВ находят широкое применение в промышленности, в сельском хозяйстве, медицине и быту. Мировое производство ПАВ растет с каждым годом, причем в общем выпуске продукции постоянно возрастает доля неионогенных веществ. Широко используют все виды ПАВ при получении и применении синтетических полимеров. Важнейшая область потребления мицеллообразующих ПАВ - производство полимеров методом эмульсионной полимеризации. От типа и концентрации выбранных ПАВ (эмульгаторов) во многом зависят технологические и физико-химические свойства получаемых латексов. ПАВ используют также при суспензионной полимеризации. Обычно применяют высокомолекулярные ПАВ - водорастворимые полимеры (воливиниловый спирт, производные целлюлозы, растительные клеи и т.п.). Смешиванием лаков или жидких масляносмоляных композиций с водой в присутствии эмульгаторов получают эмульсии, применяемые при изготовлении пластмасс, кожзаменителей, нетканых материалов, импрегированных тканей, водоразбавляемых красок и т.д. Высокомолекулярные водорастворимые ПАВ, помимо использования в указанных выше технологич. процессах, применяют как флокулянты в различных видах водоочистки. С их помощью из сточных вод, а также из питьевой воды удаляют загрязнения, находящиеся во взвешенном состоянии .

Информация была позаимствована у следующих источников:

1) www.wikipedia.org

3) www.hydrodynamictechnology.com

До изобретения мыла жир и грязь с кожи удаляли золой и мелким речным песком. Египтяне умывались смешанной с водой пастой на основе пчелиного воска. В Древнем Риме при мытье пользовались мелко истолченным мелом, пемзой, золой. Видимо, римлян не смущало, что при таких омовениях вместе с грязью можно было «соскоблить» и часть самой кожи. Заслуга в изобретении мыла принадлежит, вероятно, галльским племенам. По свидетельству Плиния Старшего, из сала и золы букового дерева галлы делали мазь, которую применяли для окрашивания волос и лечения кожных заболеваний. А во II веке ее стали использовать в качестве моющего средства.

Христианская религия считала мытье тела делом «греховодным». Многие «святые» были известны только тем, что всю свою жизнь не умывались. Но люди давно заметили вред и опасность для здоровья загрязнения кожи. Уже в 18 веке на Руси было налажено мыловарение, а в ряде европейских стран еще раньше.

Технология изготовления мыла из животных жиров складывалась на протяжении многих веков. Сначала составляется жировая смесь, которую расплавляют и омыляют – варят со щелочью. Для гидролиза жира в щелочной среде берется немного топленого свиного сала, около 10 мл этилового спирта и 10 мл раствора щелочи. Сюда же добавляют поваренную соль и нагревают полученную смесь. При этом образуются мыло и глицерин. Соль добавляют для осаждения глицерина и загрязнений. В мыльной массе образуется два слоя – ядро (чистое мыло) и подмыленный щелок.

Также получают мыло в промышленности.

Омыление жиров может протекать и в присутствии серной кислоты (кислотное омыление). При этом получаются глицерин и высшие карбоновые кислоты. Последние действием щелочи или соды переводят в мыла. Исходным сырьем для получения мыла служат растительные масла (подсолнечное, хлопковое и др.), животные жиры, а также гидроксид натрия или кальцинированная сода. Растительные масла предварительно подвергаются гидрогенизации, т. е. их превращают в твердые жиры. Применяются также заменители жиров — синтетические карбоновые жирные кислоты с большой молекулярной массой. Производство мыла требует больших количеств сырья, поэтому поставлена задача получения мыла из не пищевых продуктов. Необходимые для производства мыла карбоновые кислоты получают окислением парафина. Нейтрализацией кислот, содержащих от 9 до 15 углеродных атомов в молекуле, получают туалетное мыло, а из кислот, содержащих от 16 до 20 атома углерода, — хозяйственное мыло и мыло для технических целей.

Состав мыла

Обычные мыла состоят главным образом из смеси солей пальмитиновой, стеариновой и олеиновой кислот. Натриевые соли образуют твердые мыла, калиевые соли — жидкие мыла.

Мыло – натриевые или калиевые соли высших карбоновых кислот,
полученные в результате гидролиза жиров в щелочной среде

Строение мыла можно описать общей формулой:

R – COOМ

где R – углеводородный радикал, M – металл.

Преимущества мыла:

а) простота и удобство в использовании;

Б) хорошо удаляет кожное сало

В) обладает антисептическими свойствами

Недостатки мыла и их устранение:

недостатки

способы устранения

1. Плохая моющая способность в жесткой воде, содержащей растворимые соли кальция и магния. Так как при этом выпадают в осадок нерастворимые в воде соли высших карбоновых кислот кальция и магния. Т.е. при этом требуется большой расход мыла.

1. В состав мыла вводят вещества-комплексообразователи, способствующие смягчению воды (натриевые соли этилендиамин-тетрауксусной кислоты - ЭДТК, ЭДТА, ДТПА).

2. В водных растворах мыло частично гидролизуется, т.е. взаимодействует с водой.

При этом образуется определенное количество щелочи, которая способствует расщеплению кожного сала и его удалению.

Калиевые соли высших карбоновых кислот (т.е. жидкое мыло) лучше растворяются в воде и поэтому обладают более сильным моющим действием.

Но при этом оказывает вредное воздействие на кожу рук и тела. Это связано с тем, что верхний тончайший слой кожи имеет слабокислую реакцию (рН =5,5) и за счет этого препятствует проникновению болезнетворных бактерий в более глубокие слои кожи. Умывание мылом приводит к нарушению рН, (реакция становится слабощелочная), раскрываются поры кожи, что приводит к понижению естественной защитной реакции. При слишком частом использовании мыла кожа сохнет, иногда воспаляется.

2. Для уменьшения данного негативного воздействия в современные сорта мыла добавляют:

- слабые кислоты (лимонная кислота, борная кислота, бензойная кислота и др.), которые нормализуют рН

- крема, глицерин, вазелиновое масло, пальмовое масло, кокосовое масло, диэтаноламиды кокосового и пальмового масел и т.д. для смягчения кожи и предотвращения попадания бактерий в поры кожи.

Строение мыла - стеарата натрия.

Молекула стеарата натрия имеет длинный неполярный углеводородный радикал (обозначен волнистой линией) и небольшую полярную часть:

Молекулы ПАВ на пограничной поверхности располагаются так, что гидрофильные группы карбоксильных анионов направлены в воду, а углеводородные гидрофобные выталкиваются из нее. В результате поверхность воды покрывается частоколом из молекул ПАВ. Такая водная поверхность имеет меньшее поверхностное натяжение, что способствует быстрому и полному смачиванию загрязненных поверхностей. Уменьшая поверхность натяжения воды, мы увеличиваем ее смачивающую способность.

Применение поверхностно-активных веществ (ПАВ)

ПАВ находят широкое применение в промышленности, в сельском хозяйстве, медицине и быту. Мировое производство ПАВ растет с каждым годом, причем в общем выпуске продукции постоянно возрастает доля неионогенных веществ. Широко используют все виды ПАВ при получении и применении синтетич. полимеров. Важнейшая область потребления мицеллообразующих ПАВ - производство полимеров методом эмульсионной полимеризации. От типа и концентрации выбранных ПАВ (эвульгаторов) во многом зависят технологич. и физико-химич. свойства получаемых латексов. ПАВ используют также при суспензионной иолимеризации. Обычно применяют высокомолекулярные ПАВ - водорастворимые полимеры (воливиниловый спирт, производные целлюлозы, растительные клеи и т.п.). Смешиванием лаков или жидких масляносмоляных композиций с водой в присутствии эмульгаторов получают эмульсии, применяемые при изготовлении пластмасс, кожзаменителей, нетканых материалов, импрегированных тканей, водоразбавляемых красок и т.д.

В производстве лакокрасочных материалов и пластмасс. ПАВ добавляют для регулирования их реологич. характеристик.

Разнообразные ПАВ применяют для поверхностной обработки волокнистых (тканых и нетканых) и пленочных материалов (как антистатики, модификаторы прядильных р-ров, моющие средства. Среди ПАВ, применяемых как гидрофобизаторы, наиболее перспективны кремнийорганические и фторуглеродные соединения. Последние при соответствующей ориентации молекул в поверхностном слое способны предотвратить смачивание материала не только водой, но и углеводородными жидкостями.

В производстве губчатых резин и пенопластов ПАВ применяют как стабилизаторы пен.

Высокомолекулярные водорастворимые ПАВ, помимо использования в указанных выше технологич. процессах, применяют как флокулянты в различных видах водоочистки. С их помощью из сточных и технологич. вод, а также из питьевой воды удаляют загрязнения, находящиеся во взвешенном состоянии.

ПОВЕРХНОСТНО-АКТИВНЫЕ ВЕЩЕСТВА, в-ва, адсорбция к-рых из жидкости на пов-сти раздела с др. фазой (жидкой, твердой или газообразной) приводит к значит. понижению поверхностного натяжения (см. Поверхностная активность). В наиб. общем и важном с практич. точки зрения случае адсорбирующиеся молекулы (ионы) ПАВ имеют дифильное строение, т. е. состоят из полярной группы и неполярного углеводородного радикала (дифильные молекулы). Поверхностной активностью в отношении неполярной фазы (газ, углеводородная жидкость, неполярная пов-сть твердого тела) обладает углеводородный радикал, к-рый выталкивается из полярной среды. В водном р-ре ПАВ на границе с воздухом образуется адсорбц. мономолекулярный слой с углеводородными радикалами, ориентированными в сторону воздуха. По мере его насыщения молекулы (ионы) ПАВ, уплотняясь в поверхностном слое, располагаются перпендикулярно пов-сти (нормальная ориентация).

Концентрация ПАВ в адсорбц. слое на неск. порядков выше, чем в объеме жидкости, поэтому даже при ничтожно малом содержании в воде (0,01-0,1% по массе) ПАВ могут снижать поверхностное натяжение воды на границе с воздухом с 72,8·10-3 до 25·10-3 Дж/м2, т.е. практически до поверхностного натяжения углеводородных жидкостей. Аналогичное явление имеет место на границе водный р-р ПАВ - углеводородная жидкость, что создает предпосылки для образования эмульсий.

В зависимости от состояния ПАВ в р-ре условно различают истинно р-римые (молекулярно-диспергированные) и коллоидные ПАВ. Условность такого разделения состоит в том, что одно и то же ПАВ может относиться к обеим группам в зависимости от условий и хим. природы (полярности) р-рителя. Обе группы ПАВ адсорбируются на фазовых границах, т. е. проявляют в р-рах поверхностную активность, в то время как объемные св-ва, связанные с возникновением коллоидной (мицеллярной) фазы, проявляют лишь коллоидные ПАВ. Указанные группы ПАВ отличаются значением безразмерной величины, к-рая наз. гидрофильно-липофильным балансом (ГЛБ) и определяется отношением:

где -сродство (своб. энергия взаимодействия) неполярной части молекулы ПАВ к углеводородной жидкости (b-безразмерный параметр, зависящий от природы ПАВ, -своб. энергия взаимод. в расчете на одну группу CH2, v-число групп CH2 в углеводородном радикале), a-сродство полярной группы к воде. Для коллоидных ПАВ (b + или, где индексы m соответствуют миним. значениям сродства, при к-ром начинают проявляться коллоидные св-ва ПАВ. Миним. число углеродных атомов в радикале для разных видов коллоидных ПАВ лежит в пределах 8-12, т.е. коллоидные ПАВ имеют достаточно большой углеводородный радикал. Вместе с тем коллоидные ПАВ должны обладать и истинной р-римостью в воде, т.е. полярность гидрофильной группы также должна быть достаточно высокой. Этому соответствует условие:

В нач. 60-х гг. 20 в. Д. Девисом была разработана шкала ГЛБ со значениями от О до 40. ПАВ с липофильными св-вами имеют низкие значения ГЛБ, с гидрофильными-высокие. Каждой группе атомов, входящей в молекулу ПАВ, приписывается групповое число. При сложении этих чисел получают ГЛБ по ф-ле:

ГЛБ = гидрофильных групповых чисел + 4- гидрофобных групповых чисел + 7.

Хотя понятие о ГЛБ является достаточно формальным, оно позволяет определять области применения ПАВ. Так, для образования эмульсий вода/масло ГЛБ лежит в пределах 3-6, эмульсий масло/во да-8-16, для смачивателей-7-9, для моющих средств-13-15.

Поверхностная активность ПАВ, относящихся к разным группам, определяется по-разному. Для истинно р-римых ПАВ она равна макс. значению производной и измеряется по начальному участку изотермы адсорбции s(c)при с0 (Г-число молей ПАВ, адсорбированных единицей пов-сти, R-газовая постоянная, T-абс. т-ра). Для коллоидных ПАВ поверхностная активность Gмин = (s0 - sмин)/смин, где s0 - поверхностное натяжение чистого р-рителя, sМИH-наименьшее (постоянное) значение s, а смин-соответствующая этому значению концентрация ПАВ. Дальнейшее введение в р-р ПАВ приводит к увеличению числа мицелл, а концентрация молекулярно-диспергированного ПАВ остается постоянной. Величина смин-критич. концентрация мицеллообразования (KKM). Она определяется как концентрация ПАВ, при к-рой в р-ре возникает большое число мицелл, находящихся в термоди-намич. равновесии с молекулами (ионами), и резко изменяются св-ва р-ра (электропроводность, поверхностное натяжение, вязкость, светорассеяние и т.д., см. Мицеллообразо-вание).

Классификация ПАВ. В данной статье описывается классификация, принятая на III Международном конгрессе по ПАВ и рекомендованная Международной организацией по стандартизации (ISO)в 1960. Она основана на хим. природе молекул и включает четыре осн. класса ПАВ: анионактив-ные, катионактивные, неионогенные и амфотерные. Иногда выделяют также высокомол. (полимерные), перфторир. и кремнийорг. ПАВ, однако по хим. природе молекул эти ПАВ м. б. отнесены к одному из вышеперечисл. классов.

Анионактивные ПАВ содержат в молекуле одну или неск. полярных групп и диссоциируют в водном р-ре с образованием длинноцепочечных анионов, определяющих их поверхностную активность. Это группы: COOH(M), OSO2OH(M), SO3H(M), где M-металл (одно-, двух- или трехвалентный). Гидрофобная часть молекулы обычно представлена предельными или непредельными алифатич. цепями или алкилароматич. радикалами. Выделяют 6 групп анионактивных ПАВ.

1) Производные карбоновых к-т (мыла): RCOOM, ROOC (СН2)nСООМ, RC6H4 (СН2)nСООМ, RCH=CH -- --(СН2)nСООМ. 2) Первичные и вторичные алкилсульфаты ROSO3M, R"R:CHOSO3M, алкиларилэтилсульфаты RC6H4C2H4OSO3M, алкилциклогексилэтилсульфаты RC6H10C2H4OSO3M и т.п. (см. Авироль, Ализариновое масло, Алкилсульфаты). 3)Алкил- и алкилбензолсульфо-наты, сульфонаты сложных эфиров моно- и дикарбоно-вых к-т: RSO3M, RC6H4SO3M, ROOCCH2SO3M, ROOCCH2CH(COOR)SO3M (см. Алкилбензолсульфонаты, Нафталинсульфонаты, Сульфонаты). 4) Сульфо- и карбокси-этоксилаты спиртов, сульфоэтоксилаты карбоновых к-т, сульфоэтоксилаты алкилфенилэтиловых спиртов, диметал-лич. соли сульфоянтарной к-ты, соли сульфатов непредельных к-т: RO(C2H4O)nSO3M, RO(C2H4O)nCH2COOM, RCOO (C2H4O)n SO3M, RC6H4 (C2H4O)2 SO3M, ROOCCH2CH ·(COOM) SO3M, RCH (OSO3M)=CH (CH2)n--COOM. 5) Азотсодержащие ПАВ: амидосульфонаты RCONR"--R:--SO3M, амиды сульфокарбоновых к-т RR"NOC--R:--SO3M, амидосульфаты RCONR"- R:--OSO3M, амидокарбоксилаты RCO(NH-R"--CO)nOM, в-ва с карбокси- и сульфогруппами RCONH--R--OCOR:(SO3M) --COOM. Вместо амидной группы во мн. таких в-вах м.б. также сульфоамидная группа, напр. RC6H4SO2NHCH2CH2SO3M. 6) Соли перфторир. карбоновых к-т, перфторир. сульфоацетатов, моно- и диалкил-фосфатов и фосфонатов, перфторир. фосфонаты и др. соединения.

В анионактивных ПАВ катион м. б. не только металлом, но и орг. основанием. Часто это ди- или триэтаноламин. Поверхностная активность начинает проявляться при длине углеводородной гидрофобной цепи C8 и с увеличением длины цепи увеличивается вплоть до полной потери р-ри-мости ПАВ в воде. В зависимости от структуры промежут. функц. групп и гидрофильности полярной части молекулы длина углеводородной части может доходить до C18. Бензольное ядро соответствует примерно 4 атомам С, перфто-рированная метиленовая группа CF2-примерно 2,5-3 мети-леновым группам.

Наиб. распространены алкилсульфаты и алкиларилсуль-фонаты. Оптим. поверхностно-активными св-вами обладают первичный додецилсульфат и прямоцепочечный доде-цилбензолсульфонат. Эти в-ва термически стабильны, малотоксичны (ЛД50 1,5-2 г/кг, белые мыши), не раздражают кожу человека и удовлетворительно подвергаются биол. распаду в водоемах (см. ниже), за исключением алкиларил-сульфонатов с разветвленной алкильной цепью. Они хорошо совмещаются с др. ПАВ, проявляя при этом синергизм, порошки их негигроскопичны. Вторичные алкилсульфаты обладают хорошей пенообразующей способностью, но термически неустойчивы и применяются в жидком виде. Вторичные алкилсульфонаты обладают высокой поверхностной активностью, но весьма гигроскопичны. Перспективными являются ПАВ, у к-рых гидрофильная часть состоит из неск. функц. групп. Напр., динатриевые соли сульфоянтарной к-ты обладают хорошими санитарно-гигиенич. св-вами наряду с высокими коллоидно-хим. и технол. показателями при растворении в жесткой воде. ПАВ, содержащие сульфониламидную группу, обладают биол. активностью. Хорошими св-вами обладает также додецил-фосфат.

Катионактивными наз. ПАВ, молекулы к-рых диссоциируют в водном р-ре с образованием поверхностно-активного катиона с длинной гидрофобной цепью и аниона-обычно галогенида, иногда аниона серной или фосфорной к-ты. Преобладающими среди катионактивных ПАВ являются азотсодержащие соед.; практич. применение находят и в-ва, не содержащие азот: соед. сульфония +X- и сульфоксония +Х-, фосфония + X-, арсония + Х-, иодония (ф-ла I). Азотсодержащие соед. можно разделить на след. осн. группы: 1) амины и их соли RNR"R: · HX; 2) моно- и бисчетвертичные аммониевые соед. алифатич. структуры + X-, 2+2Х-, соед. со смешанной алифатич. и ароматич. структурой 2 + 2Х- ; 3) четвертичные аммониевые соед. с раз л. функц. группами в гидрофобной цепи; 4) моно- и бисчетвертичные аммониевые соед. с атомом азота в гетероциклич. кольце. Последняя группа объединяет сотни ПАВ, имеющих пром. значение. Важнейшие из них-соед. пиридина, хинолина, фталазина, бензи-мидазола, бензотиазола, бензотриазола, производные пир-ролидина, имидазола, пиперидина, морфолина, пиперазина,

бензоксазина и др.; 5) оксиды аминов RR"R:N+O- (начато пром. произ-во); 6) полимерные ПАВ (II). Применяют в осн. поливинилпиридинийгалогениды.

поверхностный активный вещество молекулярный

Катионактивные ПАВ меньше снижают поверхностное натяжение, чем анионахтивные, но они могут взаимод. химически с пов-стью адсорбента, напр. с клеточными белками бактерий, обусловливая бактерицидное действие. Взаимод. полярных групп катионактивных ПАВ с гидроксильны-ми группами волокон целлюлозы приводит к гидрофобиза-ции волокон и импрегнированию тканей.

Неионогенные ПАВ не диссоциируют в воде на ионы. Их р-римость обусловлена наличием в молекулах гидрофильных эфирных и гидроксильных групп, чаще всего по-лиэтиленгликолевой цепи. По-видимому, при растворении образуются гидраты вследствие образования водородной связи между кислородными атомами полиэтиленгликоле-вого остатка и молекулами воды. Вследствие разрыва водородной связи при повышении т-ры р-римость неионогенных ПАВ уменьшается, поэтому для них точка помутнения -верх. температурный предел мицеллообразования- является важным показателем. Mн. соед., содержащие подвижной атом H (к-ты, спирты, фенолы, амины), реагируя с этиленок-сидом, образуют неионогенные ПАВ RO (C2H4O)n H. Полярность одной оксиэтиленовой группы значительно меньше полярности любой кислотной группы в анионактивных ПАВ. Поэтому для придания молекуле требуемой гидро-фильности и значения ГЛБ в зависимости от гидрофобного радикала требуется от 7 до 50 оксиэтиленовых групп. Характерная особенность неионогенных ПАВ-жидкое состояние и малое пенообразование в водных р-рах.

Неионогенные ПАВ разделяют на группы, различающиеся строением гидрофобной части молекулы, в зависимости от того, какие в-ва послужили основой получения полигли-колевых эфиров. На основе спиртов получают оксиэтилиро-ванные спирты RO(C2H4O)nH; на основе карбоновых к-т - оксиэтилированные жирные кислоты RCOO (C2H4O)n H; на основе алкилфенолов и алкилнафтолов - оксиэтилированные алкилфенолы RC6H4O(C2H4O)nH и соед. RC10H6O--- (C2H4O)nH; на основе аминов, амидов, имидазолинов-оксиэтилированные алкиламины RN[ (C2H4O)n H]2, соед. RCONH(C2H4O)nH, соед. ф-лы III; на основе сульфамидов и меркаптанов- ПАВ типа RSO2NC(C2H4O)nH]2 и RS(C2H4O)nH. Отдельную группу составляют проксанолы (п л ю r о н и к и) - блоксополимеры этилен- и пропиленокси-дов НО (C2H4O)x (C3H6O)y (C2H4O)z H, где х, у и z варьируют от неск. единиц до неск. десятков, и проксамины (тетро-ники; ф-ла IV) - блоксополимеры этилен- и пропиленокси-дов, получаемые в присут. этилендиамина. Алкилацетиленгликоли служат основой получения ПАВ типа H(OC2H4)n--OCR"R:CCCR"R""O (C2H4O)nH; эфиры фосфорной к-ты-типа (RO)2P(O)O(C2H4O)nH; эфиры пентаэритрита-типа V. Неионогенными ПАВ являются продукты конденсации гликозидов с жирными спиртами, карбоновыми к-тами и этиленоксидом. Выделяют также ПАВ группы сорбиталей (твинов, ф-ла VI)-продукты присоединения этиленоксида к моноэфиру сорбитона и жирной к-ты. Отдельную группу составляют кремнийорг. ПАВ, напр. (CH3)3Si n--(CH2)3O(C2H4O)mH.

Получение неионогенных ПАВ в большинстве случаев основано на р-ции присоединения этиленоксида при повыш. т-ре под давлением в присут. катализаторов (0,1-0,5% CH3ONa, KOH или NaOH). При этом получается среднеста-тич. содержание полимергомологов, в к-рых молекулярно-массовое распределение описывается ф-цией Пуассона. Индивидуальные в-ва получают присоединением к алкоголятам полигалогензамещенных полиэтиленгликолей. Коллоидно-хим. св-ва ПАВ этого класса изменяются в широких пределах в зависимости от длины гидрофильной полигликолевой цепи и длины цепи гидрофобной части таким образом, что разл. представители одного гомологич. ряда м. б. хорошими смачивателями и эмульгаторами. Поверхностное натяжение гомологов оксиэтилированных алкилфенолов и первичных спиртов при постоянном содержании этиленоксидных групп уменьшается в соответствии с правилом Траубе, т. е. с каждой дополнит. группой CH2 поверхностное натяжение снижается. В оптим. варианте оно может достигать (28-30)· 10-3 Н/м при критич. концентрации мицеллообразования. Мицеллярная масса весьма велика; для твинов, напр., она достигает 1800. Неионогенные ПАВ менее чувствительны к солям, обусловливающим жесткость воды, чем анионактивные и катионак-тивные ПАВ. Смачивающая способность неионогенных ПАВ зависит от структуры; оптим. смачивающей способностью обладает ПАВ разветвленного строения:

Оксиэтилированные спирты C10-C18 с n от 4 до 9и плюро-ники образуют самопроизвольные микроэмульсии масло/вода и вода/масло. Неионогенные ПАВ хорошо совмещаются с др. ПАВ и часто включаются в рецептуры моющих средств.

Амфотерные (амфолитные) ПАВ содержат в молекуле гидрофильный радикал и гидрофобную часть, способную быть акцептором или донором протона в зависимости от рН р-ра. Обычно эти ПАВ включают одну или неск. основных и кислотных групп, могут содержать также и неионоген-ную полигликолевую группу. В зависимости от величины рН они проявляют св-ва катионактивных или анионактивных ПАВ. При нек-рых значениях рН, наз. изоэлектрической точкой, ПАВ существуют в виде цвиттер-ионов. Константы ионизации кислотных и основных групп истинно р-римых амфотерных ПАВ весьма низки, однако чаще всего встречаются катионно-ориентированные и анионно-ориентирован-ные цвиттер-ионы. В качестве катионной группы обычно служит первичная, вторичная или третичная аммониевая группа, остаток пиридина или имидазолина. В принципе вместо N м. б. атомы S, P, As и т. п. Анионными группами являются карбоксильные, сульфонатные, сульфоэфирные или фосфатные группы.

По хим. строению и нек-рому сходству св-в амфолитные ПАВ делят на 5 осн. групп: 1) алкиламинокарбоновые к-ты RNH (CH2)n COOH; алкильный радикал амина обычно нормальный (прямоцепочечный), но если он расположен между аминной группой и карбоксильной, иногда имеет разветвленный характер. К этой же группе относят алкиламино-фенилкарбоновые к-ты RNHC6H4COOH; алкиламинокарбоновые к-ты с первичной, вторичной или третичной аминогруппой RCH (NH2) COOH, RCH (NHR) COOH, R(CH3)NCH2COOH; с промежут. гидроксильной, эфирной, сложноэфирной, амидной или сульфоамидной группой; в-ва с двумя и более амино- и амидогруппами, с несколькими амино- и гидроксильными группами.

  • 2) Алкилбетаины представляют собой наиб, важную группу цвиттер-ионных ПАВ. Их можно разделить на 5 осн. групп: а) алкилбетаины -С-алкилбетаины RCH COO- и N-алкилбетаины RN+(CH3)2 СН2СОО- ; б) сульфит-, суль-фо-, сульфат- и фосфатбетаины RN+(CH3)2CH2CH2 RN+(CH3)2CH2CH2, RC6H4CH2N+(CH3)2CH2CH2 RN+(CH3)2CH2CH(OH)CH2OP; в) амидобетаины RCONH(CH2)3 N+(CH3)2COO- ; г) оксиэтилированные бетаины RN+[(C2H4O)pH][(C2H4O)gH]CH2COO-; д) др. цвиттер-ионные ПАВ.
  • 3) Производные алкилимидазолинов, в молекулах к-рых анионные и катионные группы имеют примерно одинаковые константы ионизации (ф-лы VII и VIII), где R-алкил C7-C17, R"-H, Na, CH2COOM (M-металл). По структуре и методам синтеза выделяют бетаиновые ПАВ, включающие карбокси-, сульфо-, сульфат- или сульфоэфировую группу [ф-ла IX; R" = (CH2)nCOO-, (CH2)3, CH2CH(OH)CH2 ] и прочие ("небетаиновые") имидазолиновые ПАВ [ф-ла X; R" = CH2COONa, (СН2)2 N (CH2COOH)2, (СН2)2 N= =CHC6H4SO3H, (CH2)2 OSO3H]. Сбалансированность ионизир. групп обеспечивает этим соед. хорошие коллоид-но-хим. и санитарно-гигиенич. св-ва.
  • 4) Алкиламиноалкансульфонаты и сульфаты (AAAC1 и AAAC2 соотв.). Анионно-ориентир. в-ва легко переходят в цвиттер-ионную форму, что позволяет выделять их в чистом виде. Константа ионизации кислотной группы гораздо больше, чем основной, поэтому их применяют в щелочной среде. Однако в случае неск. основных групп и при наличии рядом с кислотной группой др. гидрофильных групп эти в-ва по св-вам и областям применения сходны с амфолитными ПАВ и обладают бактерицидным действием. В зависимости от констант ионизации можно выделить соли AAAC1 RN(R")-R:--SO3M, AAAC2 RN(R")-R: -- OSO3M, производные ароматич. аминосульфокислот RR"N--Ar--SO3M, аминосульфонаты с атомом N в гетероциклах (ф-ла XI); аминофосфаты, аминофосфонаты и др. аминосоед.: соед. типа RR"R:P(O)(OH)2, RR"R""OP(O)(OH)2, где R и R"-длинный и короткий углеводородные радикалы, R:-короткий двухвалентный радикал; соед. RN(CH2CH2SO3Na)2. Их отличие-хорошая способность диспергировать кальциевые мыла и устойчивость к солям жесткости воды.
  • 5) Полимерные амфолитные ПАВ: природные (белки, нуклеиновые к-ты и т.п.); модифицированные природные (олигомерные гидролизаты белков, сульфатир. хитин); продукты ступенчатой конденсации аминов, формальдегида, альбумина, жирных к-т; производные целлюлозы, полученные введением карбоксильных и диэтаноламиноэтильных групп; синтетические, в молекулах к-рых сочетаются структурные особенности всех приведенных выше групп амфотер-ных ПАВ (см., напр., ф-лы XII-XVI).

Применение ПАВ. Мировое произ-во ПАВ составляет 2-3 кг на душу населения в год. Примерно 50% производимых ПАВ используется для бытовой химии (моющие и чистящие ср-ва, косметика), остальное-в пром-сти и с. х-ве. Одновременно с ежегодным ростом произ-ва ПАВ соотношение между их применением в быту и пром-сти изменяется в пользу пром-сти.

Применение ПАВ определяется их поверхностной активностью, структурой адсорбц. слоев и объемными св-вами р-ров. ПАВ обеих групп (истинно р-римые и коллоидные) используют в качестве диспергаторов при измельчении твердых тел, бурении твердых пород (понизители твердости), для улучшения смазочного действия, понижения трения и износа, интенсивности нефтеотдачи пластов и т. д. Др. важный аспект использования ПАВ - формирование и разрушение пен, эмульсий, микроэмульсий. Широкое применение ПАВ находят для регулирования структурообразования и устойчивости дисперсных систем с жидкой дисперсионной средой (водной и органической). Широко используются ми-целлярные системы, образуемые ПАВ как в водной, так и в неводной среде, для к-рых важны не поверхностная активность ПАВ и не св-ва их адсорбц. слоев, а объемные св-ва: резко выраженные аномалии вязкости с повышением концентрации ПАВ вплоть до образования, напр. в водной среде, кристаллизац. структур твердого мыла или твердо-образных структур (в пластичных смазках на основе нефтяных масел).

ПАВ находят применение более чем в 100 отраслях народного хозяйства. Большая часть производимых ПАВ используется в составе моющих ср-в, в произ-ве тканей и изделий на основе синтетич. и прир. волокон. К крупным потребителям ПАВ относятся нефтяная, хим. пром-сти, пром-сть строит. материалов и ряд других. Наиб. важные применения ПАВ:

  • -бурение с глинистыми р-рами и обратимыми эмульсиями вода/масло. Для регулирования агрегативной устойчивости и реологич. характеристик р-ров применяют высо-комол. ПАВ-водорастворимые эфиры целлюлозы, поли-акриламид и др., в эмульсии вводят кальциевые соли прир. и синтетич. жирных к-т (C16-C18 и выше), алкилароматич. сульфонаты, алкиламины, алкиламидоамины, алкилимида-золины;
  • -повышение нефтеотдачи пластов посредством мицелляр-ного заводнения (оксиэтилированные алкилфенолы и спирты, алкилароматич. сульфонаты);
  • -антиокислительные, противозадирные и др. присадки в произ-ве минер. масел (мыла синтетич. жирных к-т, нефтяные сульфонаты, оксиэтилир. спирты) и пластич. смазок (производные фенолов, ариламины, алкил- и арилфосфаты);
  • -регулирование смачивания при флотации железных и марганцевых руд (мыла прир. и синтетич. жирных к-т, высшие алифатич. амины), руд редких металлов (алкиларсо-новые и алкилфосфоновые к-ты, алкилароматич. сульфонаты);
  • -эмульсионная полимеризация, получение полистирола и др. виниловых полимеров (карбоксиметилцеллюлоза, поливиниловый спирт, мыла синтетич. жирных к-т, алкилсульфа-ты, оксиэтилированные спирты и алкилфенолы);
  • -произ-во хим. волокон (оксиэтилир. амины и амиды, проксанолы и проксамины, высшие спирты и к-ты);
  • -мех. обработка металлов: адсорбц. понижение прочности, повышение скоростей резания, строгания, фрезерования (мыла прир. и синтетич. жирных к-т, алкилароматич. сульфонаты, оксиэтилир. спирты и т.д.);
  • -пром-сть строит. материалов: регулирование мех. и рео-логич. св-в бетонных смесей за счет адсорбц. модифицирования компонентов (эфиры синтетич. жирных к-т, сульфонаты, алкиламины, алкилсульфаты, оксиэтилир. жирные к-ты);
  • -произ-во синтетических моющих средств;
  • -улучшение структуры почв, предотвращение эрозионных процессов (ПАВ-полиэлектролиты - продукты неполного гидролиза полиакрилонитрила, продукты амидирова-ния полиакриловой и полиметакриловой к-т, причем в составе полимерной цепи варьируются амидные, циклические имидные, карбоксильные и др. группы).

Биологическое разложение ПАВ. Водные р-ры ПАВ в большей или меньшей концентрации поступают в стоки пром. вод и в конечном счете-в водоемы. Очистке сточных вод от ПАВ уделяется большое внимание, т. к. из-за низкой скорости разложения ПАВ вредные результаты их воздействия на природу и живые организмы непредсказуемы. Сточные воды, содержащие продукты гидролиза полифосфатных ПАВ, могут вызвать интенсивный рост растений, что приводит к загрязнению ранее чистых водоемов: по мере отмирания растений начинается их гниение, а вода обедняется кислородом, что в свою очередь ухудшает условия существования др. форм жизни в воде.

Среди способов очистки сточных вод в отстойниках - перевод ПАВ в пену, адсорбция активным углем, использование ионообменных смол, нейтрализация катионактивными в-вами и др. Эти методы дороги и недостаточно эффективны, поэтому предпочтительна очистка сточных вод от ПАВ в отстойниках (аэротенках) и в естеств. условиях (в водоемах) путем биол. окисления под действием гетеротрофных бактерий (преобладающий род-Pseudomonas), к-рые входят в состав активного ила. По отношению к этому процессу ПАВ принято делить на "мягкие" и "жесткие". К жестким ПАВ относятся нек-рые алкилбензолсульфонаты (напр., тетрапропилбензолсульфонат) и оксиэтилир. изооктилфе-нолы; в настоящее время они практически не производятся. Степень биоокисления т. наз. мягких ПАВ зависит от структуры гидрофобной части молекулы ПАВ: при ее разветвлен-ности биоокисление резко ухудшается. Теоретически биоокисление идет до превращ. орг. в-в в воду и углекислый газ, практич. проблема сводится лишь к времени окисления, т. е. к кинетике процесса. Если окончат. окисление происходит медленно, ПАВ успевает произвести вредное влияние на живые организмы и прир. среду.

При биохим. очистке отработанных р-ров ПАВ окисление ведется в присут. ферментов. С увеличением т-ры скорость окисления увеличивается, но выше 350C ферменты разрушаются. Анионактивные ПАВ адсорбируются на межфазных пов-стях раздела, вследствие чего снижается ферментативный гидролиз жиров, белков и углеводов, приводящий к угнетению жизнедеятельности бактерий.

Механизм биоокисления ПАВ устанавливается путем изучения промежут. продуктов распада. Так, в промежут. продуктах распада алкилбензолсульфонатов обнаружены: алкилбензолсульфонаты с короткой алкильной цепью; суль-фофенилкарбоновые к-ты в среднем с 4 атомами С в цепи; сульфокарбоновые к-ты с 5-6 атомами С; сульфодикарбоно-вые к-ты и сульфокислоты. Это позволяет предположить, что биоразложение начинается с концевой метильной группы. Чем ближе остаток продвигается к бензольному кольцу, тем окисление происходит медленнее. Конечной стадией является распад бензольного кольца на ненасыщ. соед., к-рые окисляются достаточно быстро и полно.

Алифатич. ПАВ окисляются быстрее, чем циклические, причем сульфонаты окисляются труднее, чем сульфаты.

По-видимому, это связано с тем, что сульфаты в воде гидролизуются. Прямоцепочечные первичные и вторичные алкилсульфаты за 1 ч полностью разрушаются в сточных водах. Алкилсульфаты с разветвленной цепью окисляются медленнее, а прямоцепочечные алкилбензолсульфонаты полностью распадаются лишь за 3 сут. Биоразложение катионактивных ПАВ мало изучено, нек-рые исследователи не рекомендуют сбрасывать их в сточные воды.

Рост произ-ва ПАВ привел к появлению крупных предприятий, являющихся локальными источниками загрязнения воды. Высококонцентрир. сточные воды этих предприятий м. б. очищены микробиол. методом, основанным на использовании высокоактивных культур микроорганизмов. Получены штаммы бактерий, разрушающих алкилсульфаты, алкилсульфонаты, алкилбензолсульфонаты, сульфоэтокси-латы и др. Идентифицированы промежут. продукты распада, к-рые являются аналогами прир. в-в, нетоксичны и не оказывают неблагоприятного воздействия на окружающую среду. Один из важных результатов бактериального расщепления - отсутствие среди промежут. продуктов распада в-в с явно выраженной дифильностью молекул. Метод дал положит. результаты для сточных вод, содержащих 500 мг/л ПАВ. Эффективность очистки составила 95-97% за время не более 12 ч. Среди грамотрицат. бактерий обнаружены микроорганизмы (деструкторы), к-рые усваивают ПАВ как питат. субстрат.

Технологические ПАВ и их смазочная способность

Поверхностно-активные вещества (ПАВ) -- химические соединения, которые, концентрируясь на поверхности раздела фаз, вызывают снижение поверхностного натяжения.

Существенное действие технологических ПАВ выражается как в прямом, так и в косвенном (посредство изменения структуры) влиянии на поверхностные явления на границе раздела фаз смазка-металл, т.е. на смазочную и защитную способность смазок. Значительное влияние на процессы трения и изнашивания оказывают не только индивидуальные КПАВ, но и продукты окисления, образующиеся в процесе приготовления (т.е. ТПАВ) и работы смазочных материалов. Еще в 1950-е годы Д. С. Великовским с сотрудниками были разработаны присадки серии МНИ, являющиеся продуктами окисления петролатума или церезина. Показано, что носителями их функциональных свойств, в том числе противоизносных, являются эфирокислоты, содержащие активные группы СООН, СООС, ОН, а также лактонные группы, образующие квазикристаллические структуры.