Взаимодействие хлора с сурьмой. SbCl5 (хлорид сурьмы (V)) – применяется в органическом синтезе

Железо (латинское ferrum), fe, химический элемент viii группы периодической системы Менделеева; атомный номер 26, атомная масса 55,847; блестящий серебристо-белый металл. Элемент в природе состоит из четырёх стабильных изотопов: 54 fe (5,84%), 56 fe (91,68%), 57 fe (2,17%) и 58 fe (0,31%).

Историческая справка. Ж. было известно ещё в доисторические времена, однако широкое применение нашло значительно позже, т. к. в свободном состоянии встречается в природе крайне редко, а получение его из руд стало возможным лишь на определённом уровне развития техники. Вероятно, впервые человек познакомился с метеоритным Ж., о чём свидетельствуют его названия на языках древних народов: древнеегипетское «бени-пет» означает «небесное железо»; древнегреческое sideros связывают с латинским sidus (родительный падеж sideris) - звезда, небесное тело. В хеттских текстах 14 в. до н. э. упоминается о Ж. как о металле, упавшем с неба. В романских языках сохранился корень названия, данного римлянами (например, французское fer, итальянское ferro).

Способ получения Ж. из руд был изобретён в западной части Азии во 2-м тысячелетии до н. э.; вслед за тем применение Ж. распространилось в Вавилоне, Египте, Греции; на смену бронзовому веку пришёл железный век. Гомер (в 23-й песне «Илиады») рассказывает, что Ахилл наградил диском из железной крицы победителя в соревновании по метанию диска. В Европе и Древней Руси в течение многих веков Ж. получали по сыродутному процессу. Железную руду восстанавливали древесным углём в горне, устроенном в яме; в горн мехами нагнетали воздух, продукт восстановления - крицу ударами молота отделяли от шлака и из неё выковывали различные изделия. По мере усовершенствования способов дутья и увеличения высоты горна температура процесса повышалась и часть Ж. науглероживалась, т. е. получался чугун ; этот сравнительно хрупкий продукт считали отходом производства. Отсюда название чугуна «чушка», «свинское железо» - английское pig iron. Позже было замечено, что при загрузке в горн не железной руды, а чугуна также получается низкоуглеродистая железная крица, причём такой двухстадийный процесс оказался более выгодным, чем сыродутный. В 12-13 вв. кричный способ был уже широко распространён. В 14 в. чугун начали выплавлять не только как полупродукт для дальнейшего передела, но и как материал для отливки различных изделий. К тому же времени относится и реконструкция горна в шахтную печь («домницу»), а затем и в доменную печь. В середине 18 в. в Европе начал применяться тигельный процесс получения стали , который был известен на территории Сирии ещё в ранний период средневековья, но в дальнейшем оказался забытым. При этом способе сталь получали расплавлением металлические шихты в небольших сосудах (тиглях) из высокоогнеупорной массы. В последней четверти 18 в. стал развиваться пудлинговый процесс передела чугуна в Ж. на поду пламенной отражательной печи. Промышленный переворот 18 - начала 19 вв., изобретение паровой машины, строительство железных дорог, крупных мостов и парового флота вызвали громадную потребность в Ж. и его сплавах. Однако все существовавшие способы производства Ж. не могли удовлетворить потребности рынка. Массовое производство стали началось лишь в середине 19 в., когда были разработаны бессемеровский, томасовский и мартеновский процессы. В 20 в. возник и получил широкое распространение электросталеплавильный процесс, дающий сталь высокого качества.

Распространённость в природе. По содержанию в литосфере (4,65% по массе) Ж. занимает второе место среди металлов (на первом алюминий). Оно энергично мигрирует в земной коре, образуя около 300 минералов (окислы, сульфиды, силикаты, карбонаты, титанаты, фосфаты и т. д.). Ж. принимает активное участие в магматических, гидротермальных и гипергенных процессах, с которыми связано образование различных типов его месторождений. Ж. - металл земных глубин, оно накапливается на ранних этапах кристаллизации магмы, в ультраосновных (9,85%) и основных (8,56%) породах (в гранитах его всего 2,7%). В биосфере Ж. накапливается во многих морских и континентальных осадках, образуя осадочные руды.

Важную роль в геохимии Ж. играют окислительно-восстановительные реакции - переход 2-валентного Ж. в 3-валентное и обратно. В биосфере при наличии органических веществ fe 3+ восстанавливается до fe 2+ и легко мигрирует, а при встрече с кислородом воздуха fe 2+ окисляется, образуя скопления гидроокисей 3-валентного Ж. Широко распространённые соединения 3-валентного Ж. имеют красный, жёлтый, бурый цвета. Этим определяется окраска многих осадочных горных пород и их наименование - «красно-цветная формация» (красные и бурые суглинки и глины, жёлтые пески и т. д.).

Физические и химические свойства. Значение Ж. в современной технике определяется не только его широким распространением в природе, но и сочетанием весьма ценных свойств. Оно пластично, легко куется как в холодном, так и нагретом состоянии, поддаётся прокатке, штамповке и волочению. Способность растворять углерод и др. элементы служит основой для получения разнообразных железных сплавов.

Ж. может существовать в виде двух кристаллических решёток: a - и g - объёмноцентрированной кубической (ОЦК) и гранецентрированной кубической (ГЦК). Ниже 910 °С устойчиво a - fe с ОЦК-решёткой (а = 2,86645 å при 20°С). Между 910°С и 1400°С устойчива g -модификация с ГЦК-решёткой (а = 3,64 å). Выше 1400°С вновь образуется ОЦК-решётка d -fe (а = 2,94 å), устойчивая до температуры плавления (1539°С). a - fe ферромагнитно вплоть до 769°С (точка Кюри). Модификация g -fe и d -fe парамагнитны.

Полиморфные превращения Ж. и стали при нагревании и охлаждении открыл в 1868 Д. К. Чернов . Углерод образует с Ж. твёрдые растворы внедрения, в которых атомы С, имеющие небольшой атомный радиус (0,77 å), размещаются в междоузлиях кристаллической решётки металла, состоящей из более крупных атомов (атомный радиус fe 1,26 å). Твёрдый раствор углерода в g -fe наз. аустенитом , а в (a -fe- ферритом . Насыщенный твёрдый раствор углерода в g - fe содержит 2,0% С по массе при 1130°С; a -fe растворяет всего 0,02- 0,04%С при 723°С, и менее 0,01% при комнатной температуре. Поэтому при закалке аустенита образуется мартенсит - пересыщенный твёрдый раствор углерода в a - fe, очень твёрдый и хрупкий. Сочетание закалки с отпуском (нагревом до относительно низких температур для уменьшения внутренних напряжений) позволяет придать стали требуемое сочетание твёрдости и пластичности.

Физические свойства Ж. зависят от его чистоты. В промышленных железных материалах Ж., как правило, сопутствуют примеси углерода, азота, кислорода, водорода, серы, фосфора. Даже при очень малых концентрациях эти примеси сильно изменяют свойства металла. Так, сера вызывает т. н. красноломкость , фосфор (даже 10 -20 % Р) - хладноломкость ; углерод и азот уменьшают пластичность , а водород увеличивает хрупкость Ж. (т. н. водородная хрупкость). Снижение содержания примесей до 10 -7 - 10 -9 % приводит к существенным изменениям свойств металла, в частности к повышению пластичности.

Ниже приводятся физические свойства Ж., относящиеся в основном к металлу с общим содержанием примесей менее 0,01% по массе:

Атомный радиус 1,26 å

Ионные радиусы fe 2+ o,80 å, fe 3+ o,67 å

Плотность (20 o c) 7,874 г/см 3

t пл 1539°С

t kип около 3200 о С

Температурный коэффициент линейного расширения (20°С) 11,7·10 -6

Теплопроводность (25°С) 74,04 вт /(м·К )

Теплоёмкость Ж. зависит от его структуры и сложным образом изменяется с температурой; средняя удельная теплоёмкость (0-1000 o c) 640,57 дж/ (кг ·К) .

Удельное электрическое сопротивление (20 ° С)

9,7·10 -8 ом·м

Температурный коэффициент электрического сопротивления

(0-100°С) 6,51·10 -3

Модуль Юнга 190-210·10 3 Мн/м. 2

(19-21·10 3 кгс/мм 2)

Температурный коэффициент модуля Юнга

Модуль сдвига 84,0·10 3 Мн/м 2

Кратковременная прочность на разрыв

170-210 Мн/м 2

Относительное удлинение 45-55%

Твёрдость по Бринеллю 350-450 Мн/м 2

Предел текучести 100 Мн/м 2

Ударная вязкость 300 Мн/м 2

Конфигурация внешней электронной оболочки атома fe 3 d 6 4s 2 . Ж. проявляет переменную валентность (наиболее устойчивы соединения 2- и 3-валентного Ж.). С кислородом Ж. образует закись feo, окись fe 2 o 3 и закись-окись fe 3 o 4 (соединение feo с fe 2 o 3 , имеющее структуру шпинели ) . Во влажном воздухе при обычной температуре Ж. покрывается рыхлой ржавчиной (fe 2 o 3 · n h 2 o). Вследствие своей пористости ржавчина не препятствует доступу кислорода и влаги к металлу и поэтому не предохраняет его от дальнейшего окисления. В результате различных видов коррозии ежегодно теряются миллионы тонн Ж. При нагревании Ж. в сухом воздухе выше 200°С оно покрывается тончайшей окисной плёнкой, которая защищает металл от коррозии при обычных температурах; это лежит в основе технического метода защиты Ж. - воронения. При нагревании в водяном паре Ж. окисляется с образованием fe 3 o 4 (ниже 570°С) или feo (выше 570°С) и выделением водорода.

Гидроокись fe (oh) 2 образуется в виде белого осадка при действии едких щелочей или аммиака на водные растворы солей fe 2+ в атмосфере водорода или азота. При соприкосновении с воздухом fe (oh) 2 сперва зеленеет, затем чернеет и наконец быстро переходит в красно-бурую гидроокись fe (oh) 3 . Закись feo проявляет основные свойства. Окись fe 2 o 3 амфотерна и обладает слабо выраженной кислотной функцией; реагируя с более основными окислами (например, с mgo), она образует ферриты - соединения типа fe 2 o 3 · n meo, имеющие ферромагнитные свойства и широко применяющиеся в радиоэлектронике. Кислотные свойства выражены и у 6-валентного Ж., существующего в виде ферратов, например k 2 feo 4 , солей не выделенной в свободном состоянии железной кислоты.

Ж. легко реагирует с галогенами и галогеноводородами, давая соли, например хлориды fecl 2 и fecl 3 . При нагревании Ж. с серой образуются сульфиды fes и fes 2 . Карбиды Ж. - fe 3 c (цементит ) и fe 2 c (e -карбид) - выпадают из твёрдых растворов углерода в Ж. при охлаждении. fe 3 c выделяется также из растворов углерода в жидком Ж. при высоких концентрациях С. Азот, подобно углероду, даёт с Ж. твёрдые растворы внедрения; из них выделяются нитриды fe 4 n и fe 2 n. С водородом Ж. даёт лишь малоустойчивые гидриды, состав которых точно не установлен. При нагревании Ж. энергично реагирует с кремнием и фосфором, образуя силициды (например, fe 3 si) и фосфиды (например, fe 3 p).

Соединения Ж. с многими элементами (О, s и др.), образующие кристаллическую структуру, имеют переменный состав (так, содержание серы в моносульфиде может колебаться от 50 до 53,3 ат.%). Это обусловлено дефектами кристаллической структуры. Например, в закиси Ж. часть ионов fe 2+ в узлах решётки замещена ионами fe 3+ ; для сохранения электронейтральности некоторые узлы решётки, принадлежавшие ионам fe 2+ , остаются пустыми и фаза (вюстит) в обычных условиях имеет формулу fe 0,947 o.

Своеобразно взаимодействие Ж. с азотной кислотой. Концентрированная hno 3 (плотность 1,45 г/см 3 ) пассивирует Ж. вследствие возникновения на его поверхности защитной окисной плёнки; более разбавленная hno 3 растворяет Ж. с образованием ионов fe 2+ или fe 3+ , восстанавливаясь до mh 3 или n 2 o и n 2 .

Растворы солей 2-валентного Ж. на воздухе неустойчивы - fe 2+ постепенно окисляется до fe 3+ . Водные растворы солей Ж. вследствие гидролиза имеют кислую реакцию. Добавление к растворам солей fe 3+ тиоцианат-ионов scn - даёт яркую кроваво-красную окраску вследствие возникновения fe (scn) 3 , что позволяет открывать присутствие 1 части fe 3+ примерно в 10 6 частях воды. Для Ж. характерно образование комплексных соединений.

Получение и применение. Чистое Ж. получают в относительно небольших количествах электролизом водных растворов его солей или восстановлением водородом его окислов. Разрабатывается способ непосредственного получения Ж. из руд электролизом расплавов. Постепенно увеличивается производство достаточно чистого Ж. путём его прямого восстановления из рудных концентратов водородом, природным газом или углём при относительно низких температурах.

Ж. - важнейший металл современной техники. В чистом виде Ж. из-за его низкой прочности практически не используется, хотя в быту «железными» часто называют стальные или чугунные изделия. Основная масса Ж. применяется в виде весьма различных по составу и свойствам сплавов. На долю сплавов Ж. приходится примерно 95% всей металлической продукции. Богатые углеродом сплавы (свыше 2% по массе) - чугуны, выплавляют в доменных печах из обогащенных железных руд. Сталь различных марок (содержание углерода менее 2% по массе) выплавляют из чугуна в мартеновских и электрических печах и конвертерах путём окисления (выжигания) излишнего углерода, удаления вредных примесей (главным образом s, Р, О) и добавления легирующих элементов. Высоколегированные стали (с большим содержанием никеля, хрома, вольфрама и др. элементов) выплавляют в электрических дуговых и индукционных печах. Для производства сталей и сплавов Ж. особо ответственного назначения служат новые процессы - вакуумный, электрошлаковый переплав, плазменная и электронно-лучевая плавка и др. Разрабатываются способы выплавки стали в непрерывно действующих агрегатах, обеспечивающих высокое качество металла и автоматизацию процесса.

На основе Ж. создаются материалы, способные выдерживать воздействие высоких и низких температур, вакуума и высоких давлений, агрессивных сред, больших переменных напряжений, ядерных излучений и т. п. Производство Ж. и его сплавов постоянно растет. В 1971 в СССР выплавлено 89,3 млн. т чугуна и 121 млн. т стали.

Л. А. Шварцман, Л. В. Ванюкова.

Железо как художественный материал использовалось с древности в Египте (подставка для головы из гробницы Тутанхамона около Фив, середина 14 в. до н. э., Музей Ашмола, Оксфорд), Месопотамии (кинжалы, найденные около Кархемиша, 500 до н. э., Британский музей, Лондон), Индии (железная колонна в Дели, 415). Со времён средневековья сохранились многочисленные высокохудожественные изделия из Ж. в странах Европы (Англии, Франции, Италии, России и др.) - кованые ограды, дверные петли, настенные кронштейны, флюгера, оковки сундуков, светцы. Кованые сквозные изделия из прутьев и изделия из просечного листового Ж. (часто со слюдяной подкладкой) отличаются плоскостными формами, чётким линейно-графическим силуэтом и эффектно просматриваются на свето-воздушном фоне. В 20 в. Ж. используется для изготовления решёток, оград, ажурных интерьерных перегородок, подсвечников, монументов.

Т. Л.

Железо в организме. Ж. присутствует в организмах всех животных и в растениях (в среднем около 0,02%); оно необходимо главным образом для кислородного обмена и окислительных процессов. Существуют организмы (т. н. концентраторы), способные накапливать его в больших количествах (например, железобактерии - до 17-20% Ж.). Почти всё Ж. в организмах животных и растений связано с белками. Недостаток Ж. вызывает задержку роста и явления хлороза растений, связанные с пониженным образованием хлорофилла. Вредное влияние на развитие растений оказывает и избыток Ж., вызывая, например, стерильность цветков риса и хлороз. В щелочных почвах образуются недоступные для усвоения корнями растений соединения Ж., и растения не получают его в достаточном количестве; в кислых почвах Ж. переходит в растворимые соединения в избыточном количестве. При недостатке или избытке в почвах усвояемых соединений Ж. заболевания растений могут наблюдаться на значительных территориях.

В организм животных и человека Ж. поступает с пищей (наиболее богаты им печень, мясо, яйца, бобовые, хлеб, крупы, шпинат, свёкла). В норме человек получает с рационом 60-110 мг Ж., что значительно превышает его суточную потребность. Всасывание поступившего с пищей Ж. происходит в верхнем отделе тонких кишок, откуда оно в связанной с белками форме поступает в кровь и разносится с кровью к различным органам и тканям, где депонируется в виде Ж.- белкового комплекса - ферритина. Основное депо Ж. в организме - печень и селезёнка. За счёт Ж. ферритина происходит синтез всех железосодержащих соединений организма: в костном мозге синтезируется дыхательный пигмент гемоглобин, в мышцах - миоглобин, в различных тканях цитохромы и др. железосодержащие ферменты. Выделяется Ж. из организма главным образом через стенку толстых кишок (у человека около 6-10 мг в сутки) и в незначительной степени почками. Потребность организма в Ж. меняется с возрастом и физическим состоянием. На 1 кг веса необходимо детям - 0,6, взрослым - 0,1 и беременным - 0,3 мг Ж. в сутки. У животных потребность в Ж. ориентировочно составляет (на 1 кг сухого вещества рациона): для дойных коров - не менее 50 мг, для молодняка - 30-50 мг, для поросят - до 200 мг, для супоросных свиней - 60 мг.

В. В. Ковальский.

В медицине лекарственные препараты Ж. (восстановленное Ж., лактат Ж., глицерофосфат Ж., сульфат 2-валентного Ж., таблетки Бло, раствор яблочнокислого Ж., ферамид, гемостимулин и др.) используют при лечении заболеваний, сопровождающихся недостатком Ж. в организме (железодефицитная анемия), а также как общеукрепляющие средства (после перенесённых инфекционных заболеваний и др.). Изотопы Ж. (52 fe, 55 fe и 59 fe) применяют как индикаторы при медико-биологических исследованиях и диагностике заболеваний крови (анемии, лейкозы, полицитемия и др.).

Лит.: Общая металлургия, М., 1967; Некрасов Б. В., Основы общей химии, т. 3, М., 1970; Реми Г., Курс неорганической химии, пер. с нем., т. 2, М., 1966; Краткая химическая энциклопедия, т. 2, М., 1963; Левинсон Н. Р., [Изделия из цветного и чёрного металла], в кн.: Русское декоративное искусство, т. 1-3, М., 1962-65; Вернадский В. И., Биогеохимические очерки. 1922-1932, М. - Л., 1940; Граник С., Обмен железа у животных и растений, в сборнике: Микроэлементы, пер. с англ., М., 1962; Диксон М., Уэбб Ф., ферменты, пер. с англ., М., 1966; neogi p., iron in ancient india, calcutta, 1914; friend j. n., iron in antiquity, l.,1926; frank e. b., old french ironwork, camb. (mass.), 1950; lister r., decorative wrought ironwork in great britain, l., 1960.

cкачать реферат

Железо

ЖЕЛЕ́ЗО -а; ср.

1. Химический элемент (Fe), ковкий металл серебристого цвета, образующий в соединении с углеродом сталь и чугун.

2. Обиходное название малоуглеродистой стали, металла серебристого цвета. Ковать ж. Ветер стучит железом крыши.

3. О том, что является сильным, твёрдым, крепким (о внешних физических качествах). Руки у тебя - ж.! // О том, что является жёстким, непреклонным (о внутренних моральных качествах). Характер у него - ж.

4. Разг. О лекарстве, содержащем железистые вещества. Организму не хватает железа. Пить ж. Яблоки содержат ж.

5. Разг. техн. Аппаратные средства компьютера (в отличие от программных средств). Купить недостающее железо .

Выжечь калёным желе́зом. Искоренять, уничтожать что-л., прибегая к крайним, чрезвычайным мерам. Куй желе́зо, пока горячо (см. Кова́ть).

Желе́зный; Желе́зистый; Желе́зка; Желе́зина (см.).

желе́зо

(лат. Ferrum), химический элемент VIII группы периодической системы. Блестящий серебристо-белый металл. Образует полиморфные модификации; при обычной температуре устойчиво α-Fe (кристаллическая решётка - кубическая объёмно-центрированная) с плотностью 7,874 г/см 3 . α-Fe вплоть до 769°C (точка Кюри) ферромагнитно; t пл 1535°C. На воздухе окисляется - покрывается рыхлой ржавчиной. По распространённости элементов в природе железо находится на 4-м месте; образует около 300 минералов. На долю сплавов железа с углеродом и другими элементами приходится около 95% всей металлической продукции (чугун, сталь, ферросплавы). В чистом виде практически не используется (в быту железными часто называют стальные или чугунные изделия). Необходимо для жизнедеятельности животных организмов; входит в состав гемоглобина.

ЖЕЛЕЗО

ЖЕЛЕ́ЗО (лат. Ferrum), Fe (читается «феррум»), химический элемент, атомный номер 26, атомная масса 55,847. Происхождение как латинского, так и русского названий элемента однозначно не установлено. Природное железо представляет собой смесь четырех нуклидов (см. НУКЛИД) с массовыми числами 54 (содержание в природной смеси 5,82% по массе), 56 (91,66%), 57 (2,19%) и 58 (0,33%). Конфигурация двух внешних электронных слоев 3s 2 p 6 d 6 4s 2 . Обычно образует соединения в степенях окисления +3 (валентность III) и +2 (валентность II). Известны также соединения с атомами железа в степенях окисления +4, +6 и некоторых других.
В периодической системе Менделеева железо входит в группу VIIIВ. В четвертом периоде, к которому принадлежит и железо, в эту группу входят также кобальт (см. КОБАЛЬТ) и никель (см. НИКЕЛЬ) . Эти три элемента образуют триаду и обладают сходными свойствами.
Радиус нейтрального атома железа 0,126 нм, радиус иона Fe 2+ - 0,080 нм, иона Fe 3+ - 0,067 нм. Энергии последовательной ионизации атома железа 7,893, 16,18, 30,65, 57, 79 эВ. Сродство к электрону 0,58 эв. По шкале Полинга электроотрицательность железа около 1,8.
Железо высокой чистоты - это блестящий серебристо-серый, пластичный металл, хорошо поддающийся различным способам механической обработки.
Нахождение в природе
В земной коре железо распространено достаточно широко - на его долю приходится около 4,1% массы земной коры (4-е место среди всех элементов, 2-е среди металлов). Известно большое число руд и минералов, содержащих железо . Наибольшее практическое значение имеют красные железняки (руда гематит (см. ГЕМАТИТ) , Fe 2 O 3 ; содержит до 70% Fe), магнитные железняки (руда магнетит (см. МАГНЕТИТ) , Fe 3 О 4 ; содержит 72,4% Fe), бурые железняки (руда гидрогетит НFeO 2 ·n H 2 O), а также шпатовые железняки (руда сидерит (см. СИДЕРИТ) , карбонат железа, FeСО 3 ; содержит около 48% Fe). В природе встречаются также большие месторождения пирита (см. ПИРИТ) FeS 2 (другие названия - серный колчедан, железный колчедан, дисульфид железа и другие), но руды с высоким содержанием серы пока практического значения не имеют. По запасам железных руд Россия занимает первое место в мире. В морской воде 1·10 -5 -1·10 -8 % железа.
История получения железа
Железо играло и играет исключительную роль в материальной истории человечества. Первое металлическое железо, попавшее в руки человека, имело, вероятно, метеоритное происхождение. Руды железа широко распространены и часто встречаются даже на поверхности Земли, но самородное железо на поверхности крайне редко. Вероятно, еще несколько тысяч лет назад человек заметил, что после горения костра в некоторых случаях наблюдается образование железа из тех кусков руды, которые случайно оказались в костре. При горении костра восстановление железа из руды происходит за счет реакции руды как непосредственно с углем, так и с образующимся при горении оксидом углерода (II) СО. Возможность получения железа из руд существенно облегчило обнаружение того факта, что при нагревании руды с углем возникает металл, который далее можно дополнительно очистить при ковке. Получение железа из руды с помощью сыродутного процесса было изобретено в Западной Азии во 2-м тыс. до н. э. Период с 9 по 7 в. до н. э., когда у многих племен Европы и Азии развилась металлургия железа, получил название железного века, (см. ЖЕЛЕЗНЫЙ ВЕК) пришедшего на смену бронзовому веку (см. БРОНЗОВЫЙ ВЕК) . Усовершенствование способов дутья (естественную тягу сменили меха) и увеличение высоты горна (появились низкошахтные печи - домницы) привело к получению чугуна, который стали широко выплавлять в Западной Европе с 14 века. Полученный чугун переделывали в сталь. С середины 18 века в доменном процессе вместо древесного угля начали использовать каменно-угольный кокс (см. КОКС) . В дальнейшем способы получения железа из руд были значительно усовершенствованы, и в настоящее время для этого используют специальные устройства - домны, кислородные конвертеры, электродуговые печи.
Физические и химические свойства
При температурах от комнатной и до 917 °C, а также в интервале температур 1394-1535 °C существует a-Fe с кубической объемно центрированной решеткой, при комнатной температуре параметр решетки а = 0,286645 нм. При температурах 917-1394 °C устойчиво b-Fe с кубической гранецентрированной решеткой Т (а = 0,36468 нм). При температурах от комнатной до 769 °C (так называемая точка Кюри (см. КЮРИ ТОЧКА) ) железо обладает сильными магнитными свойствами (оно, как говорят, ферромагнитно), при более высоких температурах железо ведет себя как парамагнетик. Иногда парамагнитное a-Fe с кубической объемно центрированной решеткой, устойчивое при температурах от 769 до 917 °C, рассматривают как g-модификацию железа, а b-Fe, устойчивое при высоких температурах (1394-1535 °C), называют по традиции d-Fe (представления о существовании четырех модификаций железа - a, b, g и d- возникли тогда, когда еще не существовал рентгеноструктурный анализ и не было объективной информации о внутреннем строении железа). Температура плавления 1535 °C, температура кипения 2750 °C, плотность 7,87 г/см 3 . Стандартный потенциал пары Fe 2+ /Fe 0 –0,447В, пары Fe 3+ /Fe 2+ +0,771В.
При хранении на воздухе при температуре до 200 °C железо постепенно покрывается плотной пленкой оксида, препятствующего дальнейшему окислению металла. Во влажном воздухе железо покрывается рыхлым слоем ржавчины, который не препятствует доступу кислорода и влаги к металлу и его разрушению. Ржавчина не имеет постоянного химического состава, приближенно ее химическую формулу можно записать как Fe 2 О 3 ·хН 2 О.
С кислородом железо реагирует при нагревании. При сгорании железа на воздухе образуется оксид Fe 2 О 3 , при сгорании в чистом кислороде - оксид Fe 3 О 4 . Если кислород или воздух пропускать через расплавленное железо, то образуется оксид FeО. При нагревании порошка серы и железа образуется сульфид, приближенную формулу которого можно записать как FeS.
Железо при нагревании реагирует с галогенами (см. ГАЛОГЕНЫ) . Так как FeF 3 нелетуч, железо устойчиво к действию фтора до температуры 200-300°C. При хлорировании железа (при температуре около 200°C) образуется летучий FeСl 3 . Если взаимодействие железа и брома протекает при комнатной температуре или при нагревании и повышенном давлении паров брома, то образуется FeBr 3 . При нагревании FeСl 3 и, особенно, FeBr 3 отщепляют галоген и превращаются в галогениды железа (II). При взаимодействии железа и иода образуется иодид Fe 3 I 8 .
При нагревании железо реагирует с азотом, образуя нитрид железа Fe 3 N, с фосфором, образуя фосфиды FeP, Fe 2 P и Fe 3 P, с углеродом, образуя карбид Fe 3 C, с кремнием, образуя несколько силицидов, например, FeSi.
При повышенном давлении металлическое железо реагирует с монооксидом углерода СО, причем образуется жидкий, при обычных условиях легко летучий пентакарбонил железа Fe(CO) 5 . Известны также карбонилы железа составов Fe 2 (CO) 9 и Fe 3 (CO) 12 . Карбонилы железа служат исходными веществами при синтезе железоорганических соединений, в том числе и ферроцена (см. ФЕРРОЦЕН) состава .
Чистое металлическое железо устойчиво в воде и в разбавленных растворах щелочей. В концентрированной серной и азотной кислотах железо не растворяется, так как прочная оксидная пленка пассивирует его поверхность.
С соляной и разбавленной (приблизительно 20%-й) серной кислотами железо реагирует с образованием солей железа (II):
Fe + 2HCl = FeCl 2 + H 2
Fe + H 2 SO 4 = FeSO 4 + H 2
При взаимодействии железа с приблизительно 70%-й серной кислотой реакция протекает с образованием сульфата железа (III):
2Fe + 4H 2 SO 4 = Fe 2 (SO 4) 3 + SO 2 + 4H 2 O
Оксид железа (II) FeО обладает основными свойствами, ему отвечает основание Fe(ОН) 2 . Оксид железа (III) Fe 2 O 3 слабо амфотерен, ему отвечает еще более слабое, чем Fe(ОН) 2 , основание Fe(ОН) 3 , которое реагирует с кислотами:
2Fe(ОН) 3 + 3H 2 SO 4 = Fe 2 (SO 4) 3 + 6H 2 O
Гидроксид железа (III) Fe(ОН) 3 проявляет слабо амфотерные свойства; он способен реагировать только с концентрированными растворами щелочей:
Fe(ОН) 3 + КОН = К
Образующиеся при этом гидроксокомплексы железа (III) устойчивы в сильно щелочных растворах. При разбавлении растворов водой они разрушаются, причем в осадок выпадает гидроксид железа (III) Fe(OH) 3.
Соединения железа (III) в растворах восстанавливаются металлическим железом:
Fe + 2FeCl 3 = 3FeCl 2
При хранении водных растворов солей железа (II) наблюдается окисление железа (II) до железа (III):
4FeCl 2 + O 2 + 2H 2 O = 4Fe(OH)Cl 2
Из солей железа (II) в водных растворах устойчива соль Мора - двойной сульфат аммония и железа (II) (NH 4) 2 Fe(SO 4) 2 ·6Н 2 О.
Железо (III) способно образовывать двойные сульфаты с однозарядными катионами типа квасцов, например, KFe(SO 4) 2 - железокалиевые квасцы, (NH 4)Fe(SO 4) 2 - железоаммонийные квасцы и т. д.
При действии газообразного хлора или озона на щелочные растворы соединений железа (III) образуются соединения железа (VI) - ферраты, например, феррат (VI) калия K 2 FeO 4 . Имеются сообщения о получении под действием сильных окислителей соединений железа (VIII).
Для обнаружения в растворе соединений железа (III) используют качественную реакцию ионов Fe 3+ с тиоцианат-ионами CNS - . При взаимодействии ионов Fe 3+ с анионами CNS - образуется ярко-красный роданид железа Fe(CNS) 3 . Другим реактивом на ионы Fe 3+ служит гексацианоферрат (II) калия K 4 (ранее это вещество называли желтой кровяной солью). При взаимодействии ионов Fe 3+ и 4- выпадает ярко-синий осадок.
Реактивом на ионы Fe 2+ в растворе может служить раствор гексацианоферрат (III) калия K 3 , ранее называвшийся красной кровяной солью. При взаимодействии ионов Fe 3+ и 3- выпадает ярко-синий осадок такого же состава, как и в случае взаимодействия ионов Fe 3+ и 4- .
Сплавы железа с углеродом
Железо используется главным образом в сплавах, прежде всего в сплавах с углеродом - различных чугунах и сталях. В чугуне содержание углерода выше 2,14 % по массе (обычно - на уровне 3,5-4%), в сталях содержание углерода более низкое (обычно на уровне 0,8-1 %).
Чугун получают в домнах. Домна представляет собой гигантский (высотой до 30-40 м) усеченный конус, полый внутри. Стенки домны изнутри выложены огнеупорным кирпичом, толщина кладки составляет несколько метров. Сверху в домну вагонетками загружают обогащенную (освобожденную от пустой породы) железную руду, восстановитель кокс (каменный уголь специальных сортов, подвергнутый коксованию - нагреванию при температуре около 1000 °C без доступа воздуха), а также плавильные материалы (известняк и другие), способствующие отделению от выплавляемого металла примесей - шлака. Снизу в домну подают дутье (чистый кислород или воздух, обогащенный кислородом). По мере того, как загруженные в домну материалы опускаются, их температура поднимается до 1200-1300 °C. В результате реакций восстановления, протекающих главным образом с участием кокса С и СО:
Fe 2 O 3 + 3C = 2Fe + 3CO;
Fe 2 O 3 + 3CО = 2Fe + 3CO 2
возникает металлическое железо, которое насыщается углеродом и стекает вниз.
Этот расплав периодически выпускают из домны через специальное отверстие - летку - и дают расплаву застыть в специальных формах. Чугун бывает белый, так называемый передельный (его используют для получения стали) и серый, или литьевой. Белый чугун - это твердый раствор углерода в железе. В микроструктуре серого чугуна можно различить микрокристаллики графита. Из-за наличия графита серый чугун оставляет след на белой бумаге.
Чугун хрупок, при ударе он колется, поэтому из него нельзя изготавливать пружины, рессоры, любые изделия, которые должны работать на изгиб.
Твердый чугун легче расплавленного, так что при его затвердевании происходит не сжатие (как обычно при затвердевании металлов и сплавов), а расширение. Эта особенность позволяет изготавливать из чугуна различные отливки, в том числе использовать его как материал для художественного литья.
Если содержание углерода в чугуне снизить до 1,0-1,5%, то образуется сталь. Стали бывают углеродистыми (в таких сталях нет других компонентов, кроме Fe и C) и легированными (такие стали содержат добавки хрома, никеля, молибдена, кобальта и других металлов, улучшающие механические и иные свойства стали).
Стали получают, перерабатывая чугун и металлический лом в кислородном конвертере, в электродуговой или мартеновской печах. При такой переработке снижается содержание углерода в сплаве до требуемого уровня, как говорят, избыточный углерод выгорает.
Физические свойства стали существенно отличаются от свойств чугуна: сталь упруга, ее можно ковать, прокатывать. Так как сталь, в отличие от чугуна, при затвердевании сжимается, то полученные стальные отливки подвергают обжатию на прокатных станах. После прокатки в объеме металла исчезают пустоты и раковины, появившиеся при затвердевании расплавов.
Производство сталей имеет в России давние глубокие традиции, и полученные нашими металлургами стали отличаются высоким качеством.
Применение железа, его сплавов и соединений
Чистое железо имеет довольно ограниченное применение. Его используют при изготовлении сердечников электромагнитов, как катализатор химических процессов, для некоторых других целей. Но сплавы железа - чугун и сталь - составляют основу современной техники. Находят широкое применение и многие соединения железа. Так, сульфат железа (III) используют при водоподготовке, оксиды и цианид железа служат пигментами при изготовлении красителей и так далее.
Железо в организме
Железо присутствует в организмах всех растений и животных как микроэлемент, (см. МИКРОЭЛЕМЕНТЫ) то есть в очень малых количествах (в среднем около 0,02%). Однако железобактерии (см. ЖЕЛЕЗОБАКТЕРИИ) , использующие энергию окисления железа (II) в железо (III) для хемосинтеза (см. ХЕМОСИНТЕЗ) , могут накапливать в своих клетках до 17-20% железа. Основная биологическая функция железа - участие в транспорте кислорода и окислительных процессах. Эту функцию железо выполняет в составе сложных белков - гемопротеидов (см. ГЕМОПРОТЕИДЫ) , простетической группой которых является железопорфириновый комплекс - гем (см. ГЕМ) . Среди важнейших гемопротеидов дыхательные пигменты гемоглобин (см. ГЕМОГЛОБИН) и миоглобин, (см. МИОГЛОБИН) универсальные переносчики электронов в реакциях клеточного дыхания, окисления и фотосинеза цитохромы, (см. ЦИТОХРОМЫ) ферменты каталоза и пероксида, и других. У некоторых беспозвоночных железосодержащие дыхательные пигменты гелоэритрин и хлорокруорин имеют отличное от гемоглобинов строение. При биосинтезе гемопротеидов железо переходит к ним от белка ферритина (см. ФЕРРИТИН) , осуществляющего запасание и транспорт железа. Этот белок, одна молекула которого включает около 4 500 атомов железа, концентрируется в печени, селезенке, костном мозге и слизистой кишечника млекопитающих и человека. Суточная потребность человека в железе (6-20 мг) с избытком покрывается пищей (железом богаты мясо, печень, яйца, хлеб, шпинат, свекла и другие). В организме среднего человека (масса тела 70 кг) содержится 4,2 г железа, в 1 л крови - около 450 мг. При недостатке железа в организме развивается железистая анемия, которую лечат с помощью препаратов, содержащих железо . Препараты железа применяются и как общеукрепляющие средства. Избыточная доза железа (200 мг и выше) может оказывать токсичное действие. Железо также необходимо для нормального развития растений, поэтому существуют микроудобрения на основе препаратов железа.


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "железо" в других словарях:

    Железо - получить на Академике рабочий купон на скидку Ашан или выгодно железо купить с бесплатной доставкой на распродаже в Ашан

    Ср. зале(и)зо южн., зап. металл, крушец, выплавляемый из руды в виде чугуна, и выковываемый из сего последнего под кричным молотом. В соединении с углеродом, оно образует сталь. В продажу железо идет в виде: полосового или сортового; первое прямо … Толковый словарь Даля

    ЖЕЛЕЗО - ЖЕЛЕЗО, Ferrum (Fe), тяжелый металл, относящийся к VIII группе периодической системы Менделеева. Ат. в. 55,84(0=16), при чем известны два изотопа с ат. в. в 56 и 54. Чистое Ж. обладает серебристо белым цветом; уд. в. 7,88; оно мягче и более… … Большая медицинская энциклопедия

    Ферро; феррум, крица; аппаратное обеспечение Словарь русских синонимов. железо сущ., кол во синонимов: 18 автомобиль (369) … Словарь синонимов

    ЖЕЛЕЗО - см. ЖЕЛЕЗО (Fe). В поверхностных водах содержание железа колеблется в широких пределах. В подземных водоисточниках и водах болот его концентрация достигает десятков мг/л. Резкое повышение железа в водоемах происходит при загрязнении их сточными… … Болезни рыб: Справочник

Железо - восьмой элемент четвёртого периода в таблице Менделеева. Его номер в таблице (также его называют атомным) 26, что соответствует числу протонов в ядре и электронов в электронной оболочке. Обозначается первыми двумя буквами своего латинского эквивалента - Fe (лат. Ferrum - читается как «феррум»). Железо - второй по распространённости элемент в земной коре, процентное содержание - 4,65% (самый распространённый - алюминий, Al). В самородном виде данный металл встречается достаточно редко, чаще его добывают из смешанной руды с никелем.

Вконтакте

Какова же природа данного соединения? Железо как атом состоит из металлической кристаллической решётки, за счёт чего обеспечивается твёрдость соединений, содержащих этот элемент, и молекулярная стойкость. Именно в связи с этим данный металл - типичное твёрдое тело в отличие, например, от ртути.

Железо как простое вещество - металл серебристого цвета c типичными для этой группы элементов свойствами: ковкость, металлический блеск и пластичность. Помимо этого, железо обладает высокой реакционной активностью. О последнем свойстве свидетельствует тот факт, что железо очень быстро подвергается коррозии при наличии высокой температуры и соответствующей влажности. В чистом кислороде этот металл хорошо горит, а если раскрошить его на очень мелкие частицы, то они будут не просто гореть, а самовозгораться.

Зачастую железом мы называем не чистый металл, а его сплавы, содержащих углерод ©, например, сталь (<2,14% C) и чугун (>2,14% C). Также важное промышленное значение имеют сплавы, в которые добавляются легирующие металлы (никель, марганец, хром и другие), за счёт них сталь становится нержавеющей, т. е. легированной. Таким образом, исходя из этого становится понятным, какое обширное промышленное применение имеет этот металл.

Характеристика Fe

Химические свойства железа

Рассмотрим подробнее особенности этого элемента.

Свойства простого вещества

  • Окисление на воздухе при высокой влажности (коррозийный процесс):

4Fe+3O2+6H2O = 4Fe (OH)3 - гидроксид (гидроокись) железа (III)

  • Горение железной проволоки в кислороде с образованием смешанного оксида (в нём присутствует элемент и со степенью окисления +2, и со степенью окисления +3):

3Fe+2O2 = Fe3O4 (железная окалина). Реакция возможна при нагревании до 160 ⁰C.

  • Взаимодействие с водой при высокой температуре (600−700 ⁰C):

3Fe+4H2O = Fe3O4+4H2

  • Реакции с неметаллами:

а) Реакция с галогенами (Важно! При данном взаимодействии приобретает степень окисления элемента +3)

2Fe+3Cl2 = 2FeCl3 - хлорид трёхвалентного железа

б) Реакция с серой (Важно! При данном взаимодействии элемент имеет степень окисления +2)

Сульфид железа (III) - Fe2S3 можно получить в ходе другой реакции:

Fe2O3+ 3H2S=Fe2S3+3H2O

в) Образование пирита

Fe+2S = FeS2 - пирит. Обратите внимание на степень окисления элементов, составляющих данное соединение: Fe (+2), S (-1).

  • Взаимодействие с солями металлов, стоящими в электрохимическом ряду активности металлов справа от Fe:

Fe+CuCl2 = FeCl2+Cu - хлорид железа (II)

  • Взаимодействие с разбавленными кислотами (например, соляной и серной):

Fe+HBr = FeBr2+H2

Fe+HCl = FeCl2+ H2

Обратите внимание, что в этих реакция получается железо со степенью окисления +2.

  • В неразбавленных кислотах, которые являются сильнейшими окислителями, реакция возможна только при нагревании, в холодных кислотах металл пассивируется:

Fe+H2SO4 (концентрированная) = Fe2 (SO4)3+3SO2+6H2O

Fe+6HNO3 = Fe (NO3)3+3NO2+3H2O

  • Амфотерные свойства железа проявляются только при взаимодействии с концентрированными щелочами:

Fe+2KOH+2H2O = K2+H2 - тетрагидроксиферрат (II) калия выпадает в осадок.

Процесс производства чугуна в доменной печи

  • Обжиг и последующее разложение сульфидных и карбонатных руд (выделение оксидов металла):

FeS2 —> Fe2O3 (O2, 850 ⁰C, -SO2). Эта реакция также является первым этапом промышленного синтеза серной кислоты.

FeCO3 —> Fe2O3 (O2, 550−600 ⁰C, -CO2).

  • Сжигание кокса (в избытке):

С (кокс)+O2 (возд.) —> CO2 (600−700 ⁰C)

CO2+С (кокс) —> 2CO (750−1000 ⁰C)

  • Восстановление руды, содержащий оксид, угарным газом:

Fe2O3 —> Fe3O4 (CO, -CO2)

Fe3O4 —> FeO (CO, -CO2)

FeO —> Fe (CO, -CO2)

  • Науглероживание железа (до 6,7%) и расплавление чугуна (t⁰плавления - 1145 ⁰C)

Fe (твёрдый)+С (кокс) —> чугун. Температура реакции - 900−1200 ⁰C.

В чугуне всегда присутствует в виде зёрен цементит (Fe2C) и графит.

Характеристика соединений, содержащих Fe

Изучим особенности каждого соединения отдельно.

Fe3O4

Смешанный или двойной оксид железа, имеющий в своём составе элемент со степенью окисления как +2, так и +3. Также Fe3O4 называют железной окалиной . Это соединение стойко переносит высокие температуры. Не вступает реакцию с водой, парами воды. Подвергается разложению минеральными кислотами. Может быть подвергнуто восстановлению водородом либо железом при высокой температуре. Как вы могли понять из вышеизложенной информации, является промежуточным продуктом в цепочке реакция промышленного производства чугуна.

Непосредственно же железную окалину применяют в производстве красок на минеральной основе, цветного цемента и изделий из керамики. Fe3O4 - это то, что получается при чернении и воронении стали. Получают смешанный оксид путём сгорания железа на воздухе (реакция приведена выше). Руда, содержащая оксиды, является магнетитом.

Fe2O3

Оксид железа (III), тривиальное название - красный железняк , соединение красно-коричневого цвета. Устойчиво к воздействию высоких температур. В чистом виде не образуется при окислении железа кислородом воздуха. Не вступает в реакцию с водой, образует гидраты, выпадающие в осадок. Плохо реагирует с разбавленными щелочами и кислотами. Может сплавляться с оксидами других металлов, образуя шпинели - двойные оксиды.

Красный железняк применяется в качестве сырья при промышленном получении чугуна доменным способом. Также ускоряет реакцию, то есть является катализатором, в аммиачной промышленности. Применяется в тех же областях, что и железная окалина. Плюс к этому использовался как носитель звука и картинки на магнитных лентах.

FeOH2

Гидроксид железа (II) , соединение, обладающее как кислотными, так и основными свойствами, преобладают последние, то есть, является амфотерным. Вещество белого цвета, которое быстро окисляется на воздухе, «буреет», до гидроокиси железа (III). Подвержено распаду при воздействии температуры. Вступает в реакцию и со слабыми растворами кислот, и со щелочами. В воде не растворим. В реакции выступает в роли восстановителя. Является промежуточным продуктом в реакции коррозии.

Обнаружение ионов Fe2+ и Fe3+ («качественные» реакции)

Распознавание ионов Fe2+ и Fe3+ в водных растворах производят с помощью сложных комплексных соединений - K3, красная кровяная соль, и K4, жёлтая кровяная соль, соответственно. В обеих реакциях выпадает осадок насыщенного синего цвета с одинаковым количественным составом, но различным положением железа с валентностью +2 и +3. Этот осадок также часто называют берлинской лазурью или турнбуллевой синью.

Реакция, записанная в ионном виде

Fe2++K++3-  K+1Fe+2

Fe3++K++4-  K+1Fe+3

Хороший реактив для выявления Fe3+ — тиоцианат-ион (NCS-)

Fe3++ NCS-  3- — эти соединения имеют ярко-красную («кровавую») окраску.

Этот реактив, например, тиоцианат калия (формула - KNCS), позволяет определить даже ничтожно малую концентрацию железа в растворах. Так, он способен при исследовании водопроводной воды определить, не заржавели ли трубы.


Тема: Железо, его физические и химические свойства.

Цель урока : сформировать представление о физических и химических свойствах железа в зависимости от проявляемой им С.О. и природы окислителя.
Задачи: 1. образовательная : объяснить существенное различие в строении атомов металлов главных и побочных подгрупп, причину разнообразия соединений металлов побочных подгрупп, в зависимость окислительно-восстановительных свойств от С.О. Продолжить формировать умения характеризовать элемент по его положению в ПСХЭ, на основе строения атома объяснять физические и химические свойства металла, совершенствовать умения учащихся при составлении уравнений химических реакций;
2. развивающая : продолжить развивать критическое мышление, навыки самостоятельности и способности к рефлексии, коммуникативные умения в ходе коллективной работы, умения работать с химическими веществами, с текстом учебника;
3. воспитательная : продолжить воспитание положительной мотивации учения, правильной самооценки, активность, чувства ответственности.
Оборудование: компьютер, проектор, ПСХЭ, таблица растворимости веществ, ряд активности металлов, тесты, пробирки. Магнит, железные опилки.
Вещества: на каждый стол: Техническое железо: скрепки и кнопки. Минералы: магнитный железняк Fе3О4, гематит или красный железняк Fе2О3, лимонит или бурый железняк Fе2О3 3Н2О, железный колчедан Fе2S, железо металлическое, растворы НСl, CuSO4, пробирка с водой и скрепкой, 2 пробирки с железными опилками.
Тип урока: изучение нового материала.

План (каждому на стол)

Железо – химический элемент

1. Строение и свойства атомов:

а) положение элемента в п.с.х.э. Д.И.Менделеева (порядковый номер, период, группа и подгруппа).

б) строение его атомов.

Железо – простое вещество

2. Нахождение в природе.

3. Физические свойства железа.

4. Химические свойства железа:

а) взаимодействие с простыми веществами (неметаллами);

б) взаимодействие со сложными веществами.

Ход урока:

І. Активизация знаний уч-ся:


Загадка:

Очень древний я металл,

Счёт столетьям потерял,
Был нескромным я не в меру,

Тысячи лет до нашей эры,


А за блеск, мерцавший холодом,

Люди там платили золотом!


Я давно в названии века , в организме человека,

Называют мной характер,

Из меня почти весь трактор,
Очень в яблоке полезно и зовут меня ….

Тема урока: Железо, его физические и химические свойства.

Учитель: Что бы Вы хотели узнать о железе?

Сегодня на уроке:

Вы узнаете, строение атомов ЖЕЛЕЗА и почему у них выражены восстановительные свойства.

Научитесь на основе анализа строения атомов железа определять его

окислительно-восстановительные свойства и составлять уравнения реакций.

Будите уметь объяснять все физические и химические свойства, происходящие с железом.

А эпиграфом урока могут быть слова Л.Толстого:

«Старайся дать уму как можно больше пищи».

А эту «пищу для ума» вам предстоит добыть самостоятельно, а я вам в этом помогу.

ІІ. Изучение нового материала:

1. «Железо – химический элемент»
Характеристика железа по положению в П.с.
1. Работа учащихся по ПСХЭ

2 Объяснение учителя. Строение и свойства атомов железа (объяснить существенное различие в строении атомов металлов главных и побочных подгрупп).

1.Строение атома железа: +26 56 Fe) 2 ) 8 ) 14 ) 2

2.Электронная формула железа: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 6

3.Графическая формула железа:

В атоме железа заполняется не последний энергетический уровень, а предпоследний – это особенность элементов побочных подгрупп. Подобно всем металлам атомы железа при химических взаимодействиях отдают электроны, проявляя при этом восстановительные свойства:

Fe 0 -2e = Fe- +2

Fe 0 -3e = Fe- +3

С,О. железа в соединениях: +2 и+3. Следовательно, железо образует два генетических ряда.

Вывод: Fe – элемент 8В группы.

С,О. - +2 и+3. Восстановитель.

История Алхимический знак: Символизирует войны, тюрьмы, ненависть. Этот металл оказался не только созидателем. С ним связаны многие кровавые страницы человечества. Миллиардами снарядов и бомб обрушился этот металл на людей в годы первой и второй мировых войн.

Первое железо, попавшее в глубокой древности в руки человека, было не земного, а космического происхождения. Оно входило в состав метеоритов, попавших на нашу планету.

Железо – основа всей металлургии, машиностроения. Всё – начиная от швейной иголки, гвоздя, топора и кончая огнедышащими домнами, где рождается само железо, - состоит из железа. Железо – элемент, без которого жизнь стала невозможной. Мы живем в железном веке.

В народе о железе говорят «Металл – и плуг в поле, и гвоздь в доме»

2. Нахождение в природе. Работа с коллекцией (Таблица1)

По запасам в земной коре железо занимает 4 место после O, Si, Al.

Железо в природе находится в виде соединений – руд и минералов. Самородное железо встречается очень редко. Наша страна занимает 1-е место по запасам железных руд. Крупные месторождения на Урале (Магнитогорск, Челябинск, Н-Тагил, в Оренбургской области). На заводах Урала выплавляют около 40% черного металла.

(См. таблица1). Основными железными рудами являются: магнитный железняк (магнетит) – Fe 3 O 4 ,; красный железняк (гематит) – Fe 2 O 3; бурый железняк (лимонит) – Fe 2 O 3* nH 2 O; пирит – FeS 2 .

У Александра Македонского был перстень с вставкой из гематита, который, как он полагал, делал его неуязвимым в бою.

Нахождение в природе


3. Железо – простое вещество
Физические свойства железа (На лотке кнопки, скрепки)

Кристаллической решетки – металлическая .

Химической связи - металлическая .

Каковы же физические свойства железа?

(Сам. работа по учебнику стр.76-77).

Блестящий, серебристо-белый металл, довольно мягкий, пластичный. Его можно обрабатывать: резать, ковать, прокатывать, штамповать. Ему можно придавать большую прочность и твердость путем закалки - метод термического воздействия . Железо обладает хорошими магнитными свойствами. Температура плавления 1540 С – тугоплавкий металл. Температура кипения 3070 С. Плотность 7, 87 г/см 3 . Железо высокой чистоты содержит менее 0,01 % примесей. Оно почти инертно, не корродирует. Это химически чистое железо . Получают его методом электролиза солей. Технически чистое железо содержит 0,02 -0,04 % примесей (C, O, S, N, P) – это низкоуглеродистая сталь. Ее используют для изготовления кнопок, скрепок. Свойства железа и стали сильно различаются.


Вывод: Железо - блестящий, серебристо-белый мягкий, пластичный, тугоплавкий, электропроводный, теплопроводный металл. Магнитные свойства.

Демонстрация опыта: намагничивание железных опилок.

4. Химические свойства железа (Металл средней активности)

а). «Взаимодействие железа с простыми веществами неметаллами при нагревании» (О 2 , Cl 2 , S , P , N 2 ). Если железо реагирует со слабым окислителем, то будет проявлять ст.ок +2, если с сильным окислителем, то +3.

Учитель. Видео: «Горение железа в чистом кислороде»

3Fe + 2O2 = Fe3O4 (железная окалина)

(Работа в группах) Группа №1

1. Допишите уравнения реакций взаимодействия железа с простыми веществами, если получаются следующие продукты реакций:

а) ? + ? = FeО

2. Расставьте коэффициенты и укажите тип реакций.

3. Сделайте вывод:

а) Какую степень окисления проявляет железо.

б) Чем является железо в данных реакциях.

4. Выполнив задание, покажите работу консультанту.

5. Подготовьте сообщение для класса.

Группа №2

1. Напишите уравнения реакций взаимодействия железа азотом (N2), фосфором, если С.О. у железа в данных соединениях +3.


  1. Назовите продукты реакций.

  2. Составьте для первого уравнения ОВР.

Группа №3

1.Составьте схему « Взаимодействие железа с простыми веществами»:

Подготовьте сообщение для класса.

Группа №4


  1. Составьте генетический ряд железа со С.О. +2.

  2. Назовите все вещества.

  3. Выполнив задание, покажите работу консультанту.

  4. Подготовьте сообщение для класса.
Группа №5 1. Составьте генетический ряд железа со С.О. +3.

2. Назовите все вещества.

3. Выполнив задание, покажите работу консультанту.

4. Подготовьте сообщение для класса.

Группа №6

1. Напишите ОВР для железа с хлором (Сl2), если С.О. у железа в данном соединении +3.


  1. Назовите продукты реакций.

  2. Почему хлорид железа (ІІІ), а не хлорид железа (ІІ)?

  3. Подготовьте сообщение для класса.

б). «Взаимодействие железа со сложными веществами»

Урок изучения новой темы, разбила на этапы.

I этап урока . Психологический настрой на деятельность, установление психологического контакта учащихся между собой, учителем. Этот этап осуществлен через загадку «Угадай, что это?». С целью активизации познавательного интереса к уроку химии, через загадку подвести учащихся к теме и цели урока. Чтобы учащиеся сами попытались сформулировать основные цели урока в целом и каждый сам для себя.

Итог данного этапа показал, что учащиеся сформулировали цели и выполнили их.

II этап урока. Работа в группах организованна с целью изучения строения, состава, свойств и применения железа. Продолжить развивать навыки и умения работать самостоятельно с текстом учебника, по инструкционным карточкам, которые были составлены по уровням с разными заданиями и целями.

Развитие самостоятельного мышления учащихся по применению имеющихся знаний в различных ситуациях.

Развития общеучебных и предметных умений: анализировать, сравнивать, делать выводы, экспериментально решать задачи, составлять молекулярные и ОВР.

Моя задача была в том, чтобы организовать учебный процесс так, чтобы учащиеся были не пассивными слушателями, а активными участниками процесса изучения нового материала. Для достижения этой цели я применила деятельностный подход, который, на мой взгляд, позволяет создать ситуацию успеха, благоприятствует развитию у школьников мыслительных процессов, повышает осознанность восприятия информации, формирует интерес и положительную мотивацию к учению. Деятельность учащихся дифференцирована в соответствии с уровнем их учебных достижений. Школьники с низким уровнем достижений рассматривают строение атома железа и его положение в ПС. Учащиеся со средним уровнем характеризуют физические свойства. А ученики с высоким уровнем достижений изучают химические свойства, проводят химический эксперимент, составляют уравнения реакций, делают вывод. Такой прием позволяет школьникам совершенствовать свои умения или учиться у товарищей .

Это позволило на данном этапе изучить большой по объему материал и проверить умения применять полученные знания на практике. Этот момент урока старалась реализовать через различные методы обучения:

Словесно-наглядный и репродуктивный метод помог проверить сформированность умения связанно отвечать по плану. Индивидуальная работа (сообщения учащихся) для активизации деятельности и более глубокого усвоения и практического применения нового материала.

Частично-поисковый метод способствовал развитию умения сопоставлять, анализировать, обобщать, делать вывод, раскрыть знания о строении и свойствах железа, отношения железа к простым и сложным веществам, проверить умения применять полученные знания, на практике работая с лабораторным оборудованием соблюдая технику безопасности. Самостоятельная, групповая и парная работа способствовала включить в работу активную познавательную деятельность каждого ученика, проявляя доброжелательность, уважение друг к другу через атмосферу в микрогруппах.

Изучение нового материала шло через создание проблемной ситуации, Думаю, использование этого метода оправдало себя т.к. усвоение материала во многом аналогично тому, что уже пройдено и повторено учащимися. Большинство учащихся класса способно к анализу и обобщению . Работа в группах развивает коммуникативные навыки, она очень эффективна, так как позволяет ученику, проговаривая и прослушивая ответ товарища, лучше усвоить новый материал.

Использовались дидактические отношения Учитель-ученик, ученик - ученик; ученик - учебный материал. В групповой работе стимулировалось проявление инициативы, самостоятельности и самооценивание.

Ответы учащихся показали, что они поняли строение, свойства и практическое значение железа.

III этап урока. Проведена проверочная работа по ИОПам с целью проверки знаний по теме урока. В ИОПе помещены задания по уровням и вариантам. Это способствует работе ученика на индивидуальном уровне по закреплению изученного материала.

IV этап урока.

Домашнее задание дано дифференцированно по ИОПам «Право выбора» с целью развития познавательной и творческой деятельности учащихся.

V этап урока. Рефлексия

Подведены итоги урока, сделаны выводы. Каждый ученик был включен в работу, а значит в активную познавательную деятельность. Каждый предшествующий момент урока тесно связан с последующим, продолжает его и сам является базой, продолжением предшествующего. На уроке использовались технические средства обучения, работа с химическими реактивами, выступления учащихся. Все это стимулирует учащихся к дальнейшему расширению собственных возможностей в изучении межпредметных связей , дальнейший выбор учащимися профессии связанной с химией, применением ИКТ технологий как в учебной, так и в профессиональной деятельности.

Проведенный мною урок был направлен на становление и появление индивидуальных способностей учащихся, формирование положительного отношения учащихся к образованию, повышение качества образовательного процесса с использованием ИОСО, ЗСТ и ИКТ технологий.

В результате урока учащиеся смогли реализовать поставленные пред собой учебные цели, творчески раскрыть свой потенциал, показать работу в группе, применить знания, полученные на уроке.

Тема: «

I вариант


Срок

Задания по уровням

Оценка

Необходимо знать, уметь

«3»

«4»

«5»

31.10.

Знать:

Уметь


1)Дана схема превращений: Fe → FeO → FeCl2→ Fe(OH)2

Напишите уравнения реакции, с помощью которых можно осуществить указанные превращения.



1)Дана схема превращений:

Fe → FeO → FeCl2→ Fe(OH)2



1)Дана схема превращений:

Fe → FeO → FeCl2→ Fe(OH)2

Напишите уравнения реакции, с помощью которых можно осуществить указанные превращения.

2) Для первого уравнения составьте ОВР.

3) Для третьего уравнения составьте сокращенное ионное уравнение


Индивидуально ориентированный учебный план

Тема: «Железо, его физические и химические свойства»

I І вариант


Срок

Задания по уровням

Оценка

Необходимо знать, уметь

«3»

«4»

«5»

31.10.

Знать: Положение химического элемента в ПСХЭ. Строение атома железа, особенности строения электронной оболочки..

Физические и химические свойства. Получение

Уметь : составлять формулы, молекулярные уравнения, реакции ионного обмена и ОВР.


1)Дана схема превращений: Fe → FeCl3→ Fe(OH)3 → Fe2O3

Напишите уравнения реакции, с помощью которых можно осуществить указанные превращения.



1)Дана схема превращений:

Fe → FeCl3→ Fe(OH)3 → Fe2O3

Напишите уравнения реакции, с помощью которых можно осуществить указанные превращения.

2) Для первого уравнения составьте ОВР.



1)Дана схема превращений:

Fe → FeCl3→ Fe(OH)3 → Fe2O3

Напишите уравнения реакции, с помощью которых можно осуществить указанные превращения.

2) Для первого уравнения составьте ОВР.

3) Для второго уравнения составьте сокращенное ионное уравнение.


Поделитесь своими впечатлениями. Допишите предложения. Сегодня я узнал…. Теперь я умею… Я хотел бы…

Индивидуально – ориентированный учебный план

«Право выбора»

Тема: «Железо, его физические и химические свойства»



Срок

Задания по уровням

Инд. задания

Оценка

Необходимо знать, уметь

«3»

«4»

«5»

31.10-11.11

Знать: Положение химического элемента в ПСХЭ. Строение атома железа, особенности строения электронной оболочки..

Физические и химические свойства. Получение

Уметь : составлять формулы, молекулярные уравнения, реакции ионного обмена и ОВР


1.Выучить §14, стр.76-78. 2.Выполните № 4,

1.Выучить §14, стр.76-78. 2.Выполните № 5,
3. Молодая хозяйка повесила сушить белье на железную проволоку. Когда бельё высохло, она с ужасом обнаружила на чистом белье желтые пятна. Как объяснить появление пятен на белье? Напишите уравнение реакции и рассмотрите её как ОВР.

1.Выучить §14, стр.76-78. 2.Выполните № 6,

3.Чтобы обнаружить примеси железа в платиновой посуде, например, чашке, ее нагревают до температуры красного каления. Тогда ее поверхность покрывается красным налетом. С чем связано появление налета? Как удалить этот налет не повредив изделие?


1.Способы получения железа:

а) восстановление железа из его оксида (FeO) оксидом углерода (ІІ) или водородом;

б) восстановление железа из его оксида (Fe3O4) алюминотермическим методом;

Напишите возможные уравнения реакций.


Индивидуально ориентированный учебный план

«Право выбора» Тема: «Железо, его физические и химические свойства» I вариант


Срок

Задания по уровням

Оценка

Необходимо знать, уметь

«3»

«4»

«5»

17.11.

Знать: Положение химического элемента в ПСХЭ. Строение атома алюминия, особенности строения электронной оболочки. Алюминий в природе, минералы алюминия.

Физические и химические свойства. Получение

Уметь : составлять формулы, молекулярные уравнения и ОВР.


Тестовая работа

1 . У атома железа на внешнем энергетическом уровне:

а)2ê; б)4 ê; в) 3 ê; г) 14 ê.

2. Железо в соединениях проявляет С.О.:

а) +2 и +3. б) +1 и +3; в) +3 ; г) +8.

3 . Железо имеет следующую электронную формулу:

а); 1S 2 2S 2 2P 6 3S 2 3P 6 3d 6 4S 2

б) 1S 2 2S 2 2P 6 3S 2 3P 1 ;

в) 1S 2 2S 2 2P 6 3S 2 3P 6 4S 1 .

4. Атомарное железо в химических реакциях проявляет:

а) восстановительные свойства;

б) кислотные свойства;

в) окислительные свойства;

г) основные свойства.

5.При комнатной температуре железо не взаимодействует с:

а) HNO3; б)HСl ; в) H3PO4.

6 .Железо получают:

а) пирометаллургией;

б) гидрометаллургией;

в) все ответы не верны.

7 .На Земле химически чистое железо: а)не встречается; б)встречается самородное; в)содержится в морской воде; г) встречается метеоритного происхождения.

8.Ионы железа входят в состав: а)гемоглобина крови; б)эмали зубов; в) костной ткани; г) серого вещества мозга.



Тестовая работа