1 параллельные прямые признаки параллельности прямых. Прямая линия

Страница 1 из 2

Вопрос 1. Докажите, что две прямые, параллельные третьей, параллельны.
Ответ. Теорема 4.1. Две прямые, параллельные третьей, параллельны.
Доказательство. Пусть прямые a и b параллельны прямой c. Допустим, что a и b не параллельны (рис. 69). Тогда они не пересекаются в некоторой точке C. Значит, через точку C проходят две прямые, параллельные прямой c. Но это невозможно, так как через точку, не лежащую на данной прямой, можно провести не более одной прямой, параллельной данной. Теорема доказана.

Вопрос 2. Объясните, какие углы называются внутренними односторонними. Какие углы называются внутренними накрест лежащими?
Ответ. Пары углов, которые образуются при пересечении прямых AB и CD секущей AC, имеют специальные названия.
Если точки B и D лежат в одной полуплоскости относительно прямой AC, то углы BAC и DCA называются внутренними односторонними (рис. 71, а).
Если точки B и D лежат в разных полуплоскостях относительно прямой AC, то углы BAC и DCA называются внутренними накрест лежащими (рис. 71, б).


Рис. 71

Вопрос 3. Докажите, что если внутренние накрест лежащие углы одной пары равны, то внутренние накрест лежащие углы другой пары тоже равны, а сумма внутренних односторонних углов каждой пары равна 180°.
Ответ. Секущая AC образует с прямыми AB и CD две пары внутренних односторонних и две пары внутренних накрест лежащих углов. Внутренние накрест лежащие углы одной пары, например угол 1 и угол 2, являются смежными внутренним накрест лежащим углам другой пары: угол 3 и угол 4 (рис. 72).


Рис. 72

Поэтому если внутренние накрест лежащие углы одной пары равны, то внутренние накрест лежащие углы другой пары тоже равны.
Пара внутренних накрест лежащих углов, например угол 1 и угол 2, и пара внутренних односторонних углов, например угол 2 и угол 3, имеют один угол общий – угол 2, а два других угла смежные: угол 1 и угол 3.
Поэтому если внутренние накрест лежащие углы равны, то сумма внутренних углов равна 180°. И обратно: если сумма внутренних накрест лежащих углов равна 180°, то внутренние накрест лежащие углы равны. Что и требовалось доказать.

Вопрос 4. Докажите признак параллельности прямых.
Ответ. Теорема 4.2 (признак параллельности прямых). Если внутренние накрест лежащие углы равны или сумма внутренних односторонних углов равна 180°, то прямые параллельны.
Доказательство. Пусть прямые a и b образуют с секущей AB равные внутренние накрест лежащие углы (рис. 73, а). Допустим, прямые a и b не параллельны, а значит, пересекаются в некоторой точке C (рис. 73, б).


Рис. 73

Секущая AB разбивает плоскость на две полуплоскости. В одной из них лежит точка C. Построим треугольник BAC 1 , равный треугольнику ABC, с вершиной C 1 в другой полуплоскости. По условию внутренние накрест лежащие углы при параллельных a, b и секущей AB равны. Так как соответствующие углы треугольников ABC и BAC 1 с вершинами A и B равны, то они совпадают с внутренними накрест лежащими углами. Значит, прямая AC 1 совпадает с прямой a, а прямая BC 1 совпадает с прямой b. Получается, что через точки C и C 1 проходят две различные прямые a и b. А это невозможно. Значит, прямые a и b параллельны.
Если у прямых a и b и секущей AB сумма внутренних односторонних углов равна 180°, то, как мы знаем, внутренние накрест лежащие углы равны. Значит, по доказанному выше, прямые a и b параллельны. Теорема доказана.

Вопрос 5. Объясните, какие углы называются соответственными. Докажите, что если внутренние накрест лежащие углы равны, то соответственные углы тоже равны, и наоборот.

Ответ. Если у пары внутренних накрест лежащих углов один угол заменить вертикальным ему, то получится пара углов, которые называются соответственными углами данных прямых с секущей. Что и требовалось объяснить.
Из равенства внутренних накрест лежащих углов следует равенство соответственных углов, и наоборот. Допустим, у нас есть две параллельные прямые (так как по условию внутренние накрест лежащие углы равны) и секущая, которые образуют углы 1, 2, 3. Углы 1 и 2 равны как внутренние накрест лежащие. А углы 2 и 3 равны как вертикальные. Получаем: \(\angle\)1 = \(\angle\)2 и \(\angle\)2 = \(\angle\)3. По свойству транзитивности знака равенства следует, что \(\angle\)1 = \(\angle\)3. Аналогично доказывается и обратное утверждение.
Отсюда получается признак параллельности прямых по соответственным углам. Именно: прямые параллельны, если соответственные углы равны. Что и требовалось доказать.

Вопрос 6. Докажите, что через точку, не лежащую на данной прямой, можно провести параллельную ей прямую. Сколько прямых, параллельных данной, можно провести через точку, не лежащую на этой прямой?

Ответ. Задача (8). Даны прямая AB и точка C, не лежащая на этой прямой. Докажите, что через точку C можно провести прямую, параллельную прямой AB.
Решение. Прямая AC разбивает плоскость на две полуплоскости (рис. 75). Точка B лежит в одной из них. Отложим от полупрямой CA в другую полуплоскость угол ACD, равный углу CAB. Тогда прямые AB и CD будут параллельны. В самом деле, для этих прямых и секущей AC углы BAC и DCA внутренние накрест лежащие. А так как они равны, то прямые AB и CD параллельны. Что и требовалось доказать.
Сопоставляя утверждение задачи 8 и аксиомы IX (основного свойства параллельных прямых), приходим к важному выводу: через точку, не лежащую на данной прямой, можно провести параллельную ей прямую, и только одну.

Вопрос 7. Докажите, что если две прямые пересекаются третьей прямой, то внутренние накрест лежащие углы равны, а сумма внутренних односторонних углов равна 180°.

Ответ. Теорема 4.3 (обратная теореме 4.2). Если две параллельные прямые пересекаются третьей прямой, то внутренние накрест лежащие углы равны, а сумма внутренних односторонних углов равна 180°.
Доказательство. Пусть a и b – параллельные прямые и c – прямая, пересекающая их в точках A и B. Проведём через точку A прямую a 1 так, чтобы внутренние накрест лежащие углы, образованные секущей c с прямыми a 1 и b, были равны (рис. 76).
По признаку параллельности прямых прямые a 1 и b параллельны. А так как через точку A проходит только одна прямая, параллельная прямой b, то прямая a совпадает с прямой a 1 .
Значит, внутренние накрест лежащие углы, образованные секущей с
параллельными прямыми a и b, равны. Теорема доказана.

Вопрос 8. Докажите, что две прямые, перпендикулярные третьей, параллельны. Если прямая перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой.
Ответ. Из теоремы 4.2 следует, что две прямые, перпендикулярные третьей, параллельны.
Предположим, что две какие-либо прямые перпендикулярны третьей прямой. Значит, эти прямые пересекаются с третьей прямой под углом, равным 90°.
Из свойства углов, образованных при пересечении параллельных прямых секущей, следует, что если прямая перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой.

Вопрос 9. Докажите, что сумма углов треугольника равна 180°.

Ответ. Теорема 4.4. Сумма углов треугольника равна 180°.
Доказательство. Пусть ABC – данный треугольник. Проведём через вершину B прямую, параллельную прямой AC. Отметим на ней точку D так, чтобы точки A и D лежали по по разные стороны от прямой BC (рис. 78).
Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и C равна углу ABD.
А сумма всех трёх углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD и секущей AB, то их сумма равна 180°. Теорема доказана.

Вопрос 10. Докажите, что у любого треугольника по крайней мере два угла острые.
Ответ. Действительно, допустим, что у треугольника только один острый угол или вообще нет острых углов. Тогда у этого треугольника есть два угла, каждый из которых не меньше 90°. Сумма этих двух углов уже не меньше 180°. А это невозможно, так как сумма всех углов треугольника равна 180°. Что и требовалось доказать.

Инструкция

Перед началом доказательства убедитесь, что прямые лежат в одной плоскости и их можно изобразить на ней. Наиболее простым способом доказательства является метод измерения линейкой. Для этого при помощи линейки измерьте расстояние между прямыми в нескольких местах как можно дальше друг от друга. Если расстояние остается неизменным, данные прямые параллельны. Но такой метод недостаточно точен, поэтому лучше используйте другие способы.

Проведите третью прямую, так, чтобы она пересекала обе параллельные прямые. Она образует с ними четыре внешних и четыре внутренних угла. Рассмотрите внутренние углы. Те, которые лежат через секущую прямую называются накрестлежащими. Те, что лежат по одной стороне называются односторонними. При помощи транспортира измерьте два внутренних накрестлежащих угла. Если они равны между собой, то прямые будут параллельными. Если остались сомнения, измерьте односторонние внутренние углы и сложите получившиеся значения. Прямые будут параллельными, если сумма односторонних внутренних углов будет равна 180º.

Если нет транспортира, возьмите угольник с углом 90º. С его помощью постройте перпендикуляр к одной из прямых. После этого продолжите этот перпендикуляр таким образом, чтобы он пересек другую прямую. С помощью того же угольника проверьте, под каким углом этот перпендикуляр пересекает ее. Если этот угол тоже равен 90º, то прямые параллельны между собой.

В том случае, если прямые заданы в декартовой системе координат, найдите их направляющие или нормальные векторы. Если эти векторы, соответственно, между собой коллинеарны, то прямые параллельны. Приведите уравнение прямых к общему виду и найдите координаты нормального вектора каждой из прямых. Его координаты равны коэффициентам А и В. В том случае, если отношение соответствующих координат нормальных векторов одинаково, они коллинеарны, а прямые параллельны.

Например, прямые заданы уравнениями 4х-2у+1=0 и х/1=(у-4)/2. Первое уравнение – общего вида, второе – канонического. Приведите второе уравнение к общему виду. Используйте для этого правило преобразования пропорций, в результате получите 2х=у-4. После приведения к общему виду получите 2х-у+4=0. Поскольку уравнение общего вида для любой прямой записывается Ах+Ву+С=0, то для первой прямой: А=4, В=2, а для второй прямой А=2, В=1. Для первой прямой координаты нормального вектора (4;2), а для второй – (2;1). Найдите отношение соответствующих координат нормальных векторов 4/2=2 и 2/1=2. Эти числа равны, а значит вектора коллинеарны. Поскольку вектора коллинеарны, прямые параллельны.

Видеоурок «Признаки параллельности двух прямых» содержит доказательство теорем, которые описывают признаки, означающие параллельность прямых. При этом в видео описывается 1) теорема о параллельности прямых, при которых секущей созданы равные углы, 2) признак, означающий параллельность двух прямых - по равным образованным соответственным углам, 3) признак, означающий параллельность двух прямых в случае, когда при их пересечении секущей односторонние углы в сумме составляют 180°. Задача данного видеоурока - ознакомить учеников с признаками, означающими параллельность двух прямых, знание которых необходимо для решения многих практических задач, наглядно представить доказательство данных теорем, формировать навыки в доказательстве геометрических утверждений.

Преимущества видеоурока связаны с тем, что при помощи анимации, голосового сопровождения, возможности выделения цветом, он обеспечивает высокую степень наглядности, может послужить заменой подачи стандартного блока нового учебного материала учителем.

Начинается видеоурок с выведения на экран названия. Перед описанием признаков параллельности прямых ученики знакомятся с понятием секущей. Дается определение секущей как прямой, которая пересекает другие прямые. На экране изображены две прямые a и b, которые пересекаются прямой с. Построенная прямая с выделена синим цветом, акцентируя внимание на том, что они является секущей данных прямых а и b. Для того чтобы рассматривать признаки параллельности прямых необходимо более детально ознакомиться с областью пересечения прямых. Секущая в точках пересечения с прямыми образует 8 углов ∠1, ∠2, ∠3, ∠4, ∠5, ∠6, ∠7, ∠8, анализируя соотношения которых можно вывести признаки параллельности данных прямых. Отмечается, что углы ∠3 и ∠5, а также ∠2 и ∠4 называются накрест лежащими. Дается подробное объяснение при помощи анимации расположения накрест лежащих углов как углов, которые лежат между параллельными прямыми, и примыкают к прямым, располагаясь накрест. Затем дается понятие односторонних углов, в число которых входят пары ∠4 и ∠5, а также ∠3 и ∠6. Также указываются пары соответственных углов, которых на построенном изображении 4 пары - ∠1-∠5, ∠4-∠8, ∠2-∠6, ∠3-∠7.

В следующей части видеоурока рассматриваются три признака параллельности любых двух прямых. На экран выводится первое описание. Теорема утверждает, что при равенстве накрест лежащих углов, образуемых секущей, данные прямые будут параллельны. Утверждение сопровождается рисунком, на котором изображены две прямые а и b и секущая АВ. Отмечается, что образуемые накрест лежащие углы ∠1 и ∠2 равны между собой. Данное утверждение требует доказательства.

Наиболее просто доказываемый частный случай - когда данные образуемые накрест лежащие углы являются прямыми. Это означает, что секущая является перпендикуляром к прямым, а по уже доказанной теореме в этом случае прямые а и b не будут пересекаться, то есть являются параллельными. Доказательство для данного частного случая описывается на примере изображения, построенного рядом с первым рисунком, выделяя важные детали доказательства при помощи анимации.

Для доказательства в общем случае необходимо проведение дополнительного перпендикуляра из середины отрезка АВ на прямую а. Далее на прямой b откладывается отрезок ВН 1 , равный отрезку АН. Из полученной при этом точки Н 1 проводится отрезок, соединяющий точки О и Н 1 . Далее рассматриваются два треугольника ΔОНА и ΔОВН 1 , равенство которых доказывается по первому признаку равенства двух треугольников. Стороны ОА и ОВ равны по построению, так как точка О отмечалась как середина отрезка АВ. Стороны НА и Н 1 В также равны по построению, так как мы откладывали отрезок Н 1 В, равный НА. А углы ∠1=∠2 по условию задачи. Так как образованные треугольники равны между собой, то и соответствующие оставшиеся пары углов и сторон также равны между собой. Из этого следует, что и отрезок ОН 1 является продолжением отрезка ОН, составляя один отрезок НН 1 . При этом отмечается, что так как построенный отрезок ОН - перпендикуляр к прямой а, то соответственно и отрезок НН 1 является перпендикулярным к прямым а и b. Данный факт означает, используя теорему о параллельности прямых, к которым построен один перпендикуляр, что данные прямые а и b являются параллельными.

Следующая теорема, требующая доказательства - признак равенства параллельных прямых по равенству соответственных углов, образованных при пересечении секущей. Утверждение указанной теоремы выведено на экран и может быть предложено под запись учениками. Доказательство начинается с построения на экране двух параллельных прямых а и b, к которым построена секущая с. Выделенная на рисунке синим цветом. Секущей образованы соответственные углы ∠1 и ∠2, которые по условию равны между собой. Также отмечаются смежные углы ∠3 и ∠4. ∠2 по отношению к углу ∠3 является вертикальным углом. А вертикальные углы всегда равны. К тому же углы ∠1 и ∠3 являются накрест лежащими между собой - их равенство (по уже доказанному утверждению) означает, что прямые а и b параллельны. Теорема доказана.

Последняя часть видеоурока посвящена доказательству утверждения о том, что если сумма односторонних углов, которые образованы при пересечении двух некоторых прямых секущей прямой, будет равняться 180°, в этом случае данные прямые будут параллельны между собой. Доказательство демонстрируется, используя рисунок, на котором изображены прямые а и b, пересекающиеся с секущей с. Образованные пересечением углы отмечены аналогично предыдущему доказательству. По условию, сумма углов ∠1 и ∠4 равна 180°. При этом известно, что сумма углов ∠3 и ∠4 равна 180°, так как они являются смежными. Это означает, что углы ∠1 и ∠3 равны между собой. Данный вывод дает право утверждать, что прямые а и b параллельны. Теорема доказана.

Видеоурок «Признаки параллельности двух прямых» может быть использован учителем в качестве самостоятельного блока, демонстрирующего доказательства названных теорем, заменяющего объяснение учителя или сопровождающего его. А подробное объяснение дает возможность использовать материал для самостоятельного изучения учениками и поможет в объяснении материала при дистанционном обучении.

Параллельность двух прямых можно доказать на основе теоремы, согласно которой, два проведенных перпендикуляра по отношению к одной прямой, будут параллельны. Существуют определенные признаки параллельности прямых – всего их три, и все их мы рассмотрим более конкретно.

Первый признак параллельности

Прямые параллельны, если при пересечении их третьей прямой, образуемые внутренние углы, лежащие накрест, будут равны.

Допустим, при пересечении прямых АВ и СD прямой линией ЕF, были образованы углы /1 и /2. Они равны, так как прямая линия ЕF проходит под одним уклоном по отношению к двум остальным прямым. В местах пересечения линий, ставим точки Ки L – у нас получился отрезок секущей ЕF. Находим его середину и ставим точку О (черт. 189).

На прямую АВ опускаем перпендикуляр из точки О. Назовем его ОМ. Продолжаем перпендикуляр до тех пор, пока он не пересечется с прямой СD. В результате, первоначальная прямая АВ строго перпендикулярна МN, а это значит, что и СD_|_МN, но это утверждение требует доказательства. В результате проведения перпендикуляра и линии пересечения, у нас образовалось два треугольника. Один из них – МОЕ, второй – NОК. Рассмотрим их более подробно. признаки параллельности прямых 7 класс

Данные треугольники равны, поскольку, в соответствии с условиями теоремы, /1 =/2, а в соответствии с построением треугольников, сторона ОK = стороне ОL. Угол МОL =/NОК, поскольку это вертикальные углы. Из этого следует, что сторона и два угла, прилежащие к ней одного из треугольников соответственно равны стороне и двум углам, прилежащим к ней, другого из треугольников. Таким образом, треугольник МОL =треугольникуNОК, а значит, и угол LМО = углу КNО, но нам известно, что/LМО прямой, значит, и соответствующий ему, угол КNО тоже прямой. То есть, нам удалось доказать, что к прямой МN, как прямая АВ, так и прямая СD перпендикулярны. То есть, АВ и СD по отношению друг к другу являются параллельными. Это нам и требовалось доказать. Рассмотрим остальные признаки параллельности прямых (7 класс), которые отличаются от первого признака по способу доказательства.

Второй признак параллельности

Согласно второму признаку параллельности прямых, нам необходимо доказать, что углы, полученные в процессе пересечения параллельных прямых АВ и СD прямой ЕF, будут равны. Таким образом, признаки параллельности двух прямых, как первый, так и второй, основывается на равности углов, получаемых при пересечении их третьей линией. Допускаем, что /3 = /2, а угол 1 = /3, поскольку он вертикален ему. Таким образом, и /2 будет равен углу1, однако следует учитывать, что как угол 1, так и угол 2 являются внутренними, накрест лежащими углами. Следовательно, нам остается применить свои знания, а именно то, что два отрезка будут параллельными, если при их пересечении третьей прямой образованные, накрест лежащие углы будут равными. Таким образом, мы выяснили, что АВ || СD.

Нам удалось доказать, что при условии параллельности двух перпендикуляров к одной прямой, согласно соответствующей теореме, признак параллельности прямых очевиден.

Третий признак параллельности

Существует еще и третий признак параллельности, который доказывается посредством суммы односторонних внутренних углов. Такое доказательство признака параллельности прямых позволяет сделать вывод, что две прямые будут параллельны, если при пересечении их третье прямой, сумма полученных односторонних внутренних углов, будет равна 2d. См. рисунок 192.

Параллельные прямые. Свойства и признаки параллельных прямых

1. Аксиома параллельных. Через данную точку можно провести не более одной прямой, параллельной данной.

2. Если две прямые параллельны одной и той же прямой, то они параллельны между собой.

3. Две прямые, перпендикулярные одной и той же прямой, параллельны.

4. Если две параллельные прямые пересечь третьей, то образованные при этом внутренние накрест лежащие углы равны; соответственные углы равны; внутренние односторонние углы в сумме составляют 180°.

5. Если при пересечении двух прямых третьей образуются равные внутренние накрест лежащие углы, то прямые параллельны.

6. Если при пересечении двух прямых третьей образуются равные соответственные углы, то прямые параллельны.

7. Если при пересечении двух прямых третьей сумма внутренних односторонних углов равна 180°, то прямые параллельны.

Теорема Фалеса . Если на одной стороне угла отложить равные отрезки и через их концы провести параллельные прямые, пересекающие вторую сторону угла, то на второй стороне угла отложатся также равные отрезки.

Теорема о пропорциональных отрезках . Параллельные прямые, пересекающие стороны угла, высекают на них пропорциональные отрезки.

Треугольник. Признаки равенства треугольников .

1. Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то треугольники равны.

2. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то треугольники равны.

3. Если три стороны одного треугольника соответственно равны трём сторонам другого треугольника, то треугольники равны.


Признаки равенства прямоугольных треугольников

1. По двум катетам.

2. По катету и гипотенузе.

3. По гипотенузе и острому углу.

4. По катету и острому углу.

Теорема о сумме углов треугольника и следствия из неё

1. Сумма внутренних углов треугольника равна 180°.

2. Внешний угол треугольника равен сумме двух внутренних не смежных с ним углов.

3. Сумма внутренних углов выпуклого n-угольника равна

4. Сумма внешних углов га-угольника равна 360°.

5. Углы со взаимно перпендикулярными сторонами равны, если они оба острые или оба тупые.

6. Угол между биссектрисами смежных углов равен 90°.

7. Биссектрисы внутренних односторонних углов при параллельных прямых и секущей перпендикулярны.

Основные свойства и признаки равнобедренного треугольника

1. Углы при основании равнобедренного треугольника равны.

2. Если два угла треугольника равны, то он равнобедренный.

3. В равнобедренном треугольнике медиана, биссектриса и высота, проведенные к основанию, совпадают.

4. Если в треугольнике совпадает любая пара отрезков из тройки - медиана, биссектриса, высота, то он является равнобедренным.

Неравенство треугольника и следствия из него

1. Сумма двух сторон треугольника больше его третьей стороны.

2. Сумма звеньев ломаной больше отрезка, соединяющего начало

первого звена с концом последнего.

3. Против большего угла треугольника лежит большая сторона.

4. Против большей стороны треугольника лежит больший угол.

5. Гипотенуза прямоугольного треугольника больше катета.

6. Если из одной точки проведены к прямой перпендикуляр и наклонные, то

1) перпендикуляр короче наклонных;

2) большей наклонной соответствует большая проекция и наоборот.

Средняя линия треугольника.

Отрезок, соединяющий середины двух сторон треугольника, называется средней линией треугольника.

Теорема о средней линии треугольника .

Средняя линия треугольника параллельна стороне треугольника и равна её половине.

Теоремы о медианах треугольника

1. Медианы треугольника пересекаются в одной точке и делятся ею в отношении 2: 1, считая от вершины.

2. Если медиана треугольника равна половине стороны, к которой она проведена, то треугольник прямоугольный.

3. Медиана прямоугольного треугольника, проведенная из вершины прямого угла, равна половине гипотенузы.

Свойство серединных перпендикуляров к сторонам треугольника . Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке, которая является центром окружности, описанной около треугольника.

Теорема о высотах треугольника . Прямые, содержащие высоты треугольника, пересекаются в одной точке.

Теорема о биссектрисах треугольника . Биссектрисы треугольника пересекаются в одной точке, которая является центром окружности, вписанной в треугольник.

Свойство биссектрисы треугольника . Биссектриса треугольника делит его сторону на отрезки, пропорциональные двум другим сторонам.

Признаки подобия треугольников

1. Если два угла одного треугольника соответственно равны двум углам другого, то треугольники подобны.

2. Если две стороны одного треугольника соответственно пропорциональны двум сторонам другого, а углы, заключенные между этими сторонами, равны, то треугольники подобны.

3. Если три стороны одного треугольника соответственно пропорциональны трём сторонам другого, то треугольники подобны.

Площади подобных треугольников

1. Отношение площадей подобных треугольников равно квадрату коэффициента подобия.

2. Если два треугольника имеют равные углы, то их площади относятся как произведения сторон, заключающих эти углы.

В прямоугольном треугольнике

1. Катет прямоугольного треугольника равен произведению гипотенузы на синус противолежащего или на косинус прилежащего к этому катету острого угла.

2. Катет прямоугольного треугольника равен другому катету, умноженному на тангенс противолежащего или на котангенс прилежащего к этому катету острого угла.

3. Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы.

4. Если катет прямоугольного треугольника равен половине гипотенузы, то угол, противолежащий этому катету, равен 30°.

5. R = ; г = , где а, b - катеты, а с - гипотенуза прямоугольного треугольника; г и R - радиусы вписанной и описанной окружности соответственно.

Теорема Пифагора и теорема, обратная теореме Пифагора

1. Квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов.

2. Если квадрат стороны треугольника равен сумме квадратов двух других его сторон, то треугольник - прямоугольный.

Средние пропорциональные в прямоугольном треугольнике.

Высота прямоугольного треугольника, проведённая из вершины прямого угла, есть среднее пропорциональное проекций катетов на гипотенузу, а каждый катет есть среднее пропорциональное гипотенузы и своей проекции на гипотенузу.


Метрические соотношения в треугольнике

1. Теорема косинусов. Квадрат стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними.

2. Следствие из теоремы косинусов. Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.

3. Формула для медианы треугольника. Если m - медиана треугольника, проведенная к стороне с, то m = , где а и b - остальные стороны треугольника.

4. Теорема синусов. Стороны треугольника пропорциональны синусам противолежащих углов.

5. Обобщённая теорема синусов. Отношение стороны треугольника к синусу противолежащего угла равно диаметру окружности, описанной около треугольника.

Формулы площади треугольника

1. Площадь треугольника равна половине произведения основания на высоту.

2. Площадь треугольника равна половине произведения двух его сторон на синус угла между ними.

3. Площадь треугольника равна произведению его полупериметра на радиус вписанной окружности.

4. Площадь треугольника равна произведению трёх его сторон, делённому на учетверённый радиус описанной окружности.

5. Формула Герона: S=, где p - полупериметр; а, b, с - стороны треугольника.

Элементы равностороннего треугольника . Пусть h, S, r, R - высота, площадь, радиусы вписанной и описанной окружностей равностороннего треугольника со стороной а. Тогда
Четырёхугольники

Параллелограмм. Параллелограммом называется четырёхугольник, противоположные стороны которого попарно параллельны.

Свойства и признаки параллелограмма .

1. Диагональ разбивает параллелограмм на два равных треугольника.

2. Противоположные стороны параллелограмма попарно равны.

3. Противоположные углы параллелограмма попарно равны.

4. Диагонали параллелограмма пересекаются и делятся точкой пересечения пополам.

5. Если противоположные стороны четырёхугольника попарно равны, то этот четырёхугольник - параллелограмм.

6. Если две противоположные стороны четырёхугольника равны и параллельны, то этот четырёхугольник - параллелограмм.

7. Если диагонали четырёхугольника делятся точкой пересечения пополам, то этот четырёхугольник - параллелограмм.

Свойство середин сторон четырёхугольника . Середины сторон любого четырёхугольника являются вершинами параллелограмма, площадь которого равна половине площади четырёхугольника.

Прямоугольник. Прямоугольником называется параллелограмм с прямым углом.

Свойства и признаки прямоугольника.

1. Диагонали прямоугольника равны.

2. Если диагонали параллелограмма равны, то этот параллелограмм - прямоугольник.

Квадрат. Квадратом называется прямоугольник, все стороны которого равны.

Ромб. Ромбом называется четырёхугольник, все стороны которого равны.

Свойства и признаки ромба.

1. Диагонали ромба перпендикулярны.

2. Диагонали ромба делят его углы пополам.

3. Если диагонали параллелограмма перпендикулярны, то этот параллелограмм - ромб.

4. Если диагонали параллелограмма делят его углы пополам, то этот параллелограмм - ромб.

Трапеция. Трапецией называется четырёхугольник, у которого только две противоположные стороны (основания) параллельны. Средней линией трапеции называется отрезок, соединяющий середины непараллельных сторон (боковых сторон).

1. Средняя линия трапеции параллельна основаниям и равна их полусумме.

2. Отрезок, соединяющий середины диагоналей трапеции, равен полуразности оснований.

Замечательное свойство трапеции . Точка пересечения диагоналей трапеции, точка пересечения продолжений боковых сторон и середины оснований лежат на одной прямой.

Равнобедренная трапеция . Трапеция называется равнобедренной, если её боковые стороны равны.

Свойства и признаки равнобедренной трапеции.

1. Углы при основании равнобедренной трапеции равны.

2. Диагонали равнобедренной трапеции равны.

3. Если углы при основании трапеции равны, то она равнобедренная.

4. Если диагонали трапеции равны, то она равнобедренная.

5. Проекция боковой стороны равнобедренной трапеции на основание равна полуразности оснований, а проекция диагонали - полусумме оснований.

Формулы площади четырёхугольника

1. Площадь параллелограмма равна произведению основания на высоту.

2. Площадь параллелограмма равна произведению его соседних сторон на синус угла между ними.

3. Площадь прямоугольника равна произведению двух его соседних сторон.

4. Площадь ромба равна половине произведения его диагоналей.

5. Площадь трапеции равна произведению полусуммы оснований на высоту.

6. Площадь четырёхугольника равна половине произведения его диагоналей на синус угла между ними.

7. Формула Герона для четырёхугольника, около которого можно описать окружность:

S = , где а, b, с, d - стороны этого четырёхугольника, p - полупериметр, а S - площадь.

Подобные фигуры

1. Отношение соответствующих линейных элементов подобных фигур равно коэффициенту подобия.

2. Отношение площадей подобных фигур равно квадрату коэффициента подобия.

Правильный многоугольник .

Пусть а n - сторона правильного n-угольника, а г n и R n - радиусы вписанной и описанной окружностей. Тогда

Окружность.

Окружностью называется геометрическое место точек плоскости, удаленных от данной точки, называемой центром окружности, на одно и то же положительное расстояние.

Основные свойства окружности

1. Диаметр, перпендикулярный хорде, делит хорду и стягиваемые ею дуги пополам.

2. Диаметр, проходящий через середину хорды, не являющейся диаметром, перпендикулярен этой хорде.

3. Серединный перпендикуляр к хорде проходит через центр окружности.

4. Равные хорды удалены от центра окружности на равные расстояния.

5. Хорды окружности, удалённые от центра на равные расстояния, равны.

6. Окружность симметрична относительно любого своего диаметра.

7. Дуги окружности, заключённые между параллельными хордами, равны.

8. Из двух хорд больше та, которая менее удалена от центра.

9. Диаметр есть наибольшая хорда окружности.

Касательная к окружности . Прямая, имеющая с окружностью единственную общую точку, называется касательной к окружности.

1. Касательная перпендикулярна радиусу, проведённому в точку касания.

2. Если прямая а, проходящая через точку на окружности, перпендикулярна радиусу, проведённому в эту точку, то прямая а - касательная к окружности.

3. Если прямые, проходящие через точку М, касаются окружности в точках А и В, то MA = MB и ﮮАМО = ﮮВМО, где точка О - центр окружности.

4. Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.

Касающиеся окружности . Говорят, что две окружности касаются, если они имеют единственную общую точку (точку касания).

1. Точка касания двух окружностей лежит на их линии центров.

2. Окружности радиусов г и R с центрами О 1 и О 2 касаются внешним образом тогда и только тогда, когда R + г = O 1 O 2 .

3. Окружности радиусов г и R (г

4. Окружности с центрами О 1 и O 2 касаются внешним образом в точке К. Некоторая прямая касается этих окружностей в различных точках А и В и пересекается с общей касательной, проходящей через точку К, в точке С. Тогда ﮮАК В = 90° и ﮮО 1 СО 2 = 90°.

5. Отрезок общей внешней касательной к двум касающимся окружностям радиусов г и R равен отрезку общей внутренней касательной, заключённому между общими внешними. Оба эти отрезка равны .

Углы, связанные с окружностью

1. Величина дуги окружности равна величине центрального угла, на неё опирающегося.

2. Вписанный угол равен половине угловой величины дуги, на которую он опирается.

3. Вписанные углы, опирающиеся на одну и ту же дугу, равны.

4. Угол между пересекающимися хордами равен полусумме противоположных дуг, высекаемых хордами.

5. Угол между двумя секущими, пересекающимися вне круга, равен полуразности дуг, высекаемых секущими на окружности.

6. Угол между касательной и хордой, проведённой из точки касания, равен половине угловой величины дуги, высекаемой на окружности этой хордой.

Свойства хорд окружности

1. Линия центров двух пересекающихся окружностей перпендикулярна их общей хорде.

2. Произведения длин отрезков хорд АВ и CD окружности, пересекающихся в точке Е, равны, то есть АЕ ЕВ = СЕ ED.

Вписанные и описанные окружности

1. Центры вписанной и описанной окружностей правильного треугольника совпадают.

2. Центр окружности, описанной около прямоугольного треугольника, - середина гипотенузы.

3. Если в четырёхугольник можно вписать окружность, то суммы его противоположных сторон равны.

4. Если четырёхугольник можно вписать в окружность, то сумма его противоположных углов равна 180°.

5. Если сумма противоположных углов четырёхугольника равна 180°, то около него можно описать окружность.

6. Если в трапецию можно вписать окружность, то боковая сторона трапеции видна из центра окружности под прямым углом.

7. Если в трапецию можно вписать окружность, то радиус окружности есть среднее пропорциональное отрезков, на которые точка касания делит боковую сторону.

8. Если в многоугольник можно вписать окружность, то его площадь равна произведению полупериметра многоугольника на радиус этой окружности.

Теорема о касательной и секущей и следствие из неё

1. Если из одной точки проведены к окружности касательная и секущая, то произведение всей секущей на её внешнюю часть равно квадрату касательной.

2. Произведение всей секущей на её внешнюю часть для данной точки и данной окружности постоянно.

Длина окружности радиуса R равна C= 2πR