Детерминированные и стохастические системы примеры. Разработка сценариев возможного развития ситуации

МАТЕМАТИЧЕСКИЕ МОДЕЛИ

2.1. Постановка задачи

Детерминированные модели описывают процессы в детерминированных системах.

Детерминированные системы характеризуются однозначным соответствием (соотношением) между входными и выходными сигналами (процессами).

Если задан входной сигнал такой системы, известны ее характеристикаy = F(x), а также ее состояние в начальный момент времени, то значение сигнала на выходе системы в любой момент времени определяется однозначно (рис. 2.1).

Существует два подхода к исследованию физических систем: детерминированный и стохастический.

Детерминированный подход основан на применении детерминированной математической модели физической системы.

Стохастический подход подразумевает использование стохастической математической модели физической системы.

Стохастическая математическая модель наиболее адекватно (достоверно) отображает физические процессы в реальной системе, функцио-нирующей в условиях влияния внешних и внутренних случайных факторов (шумов).

2.2. Случайные факторы (шумы)

Внутренние факторы

1) температурная и временная нестабильность электронныхкомпонентов;

2) нестабильность питающего напряжения;

3) шум квантования в цифровых системах;

4) шумы в полупроводниковых приборах в результате неравномерности процессов генерации и рекомбинации основных носителей заряда;

5) тепловой шум в проводниках за счет теплового хаотического движения носителей заряда;

6) дробовой шум в полупроводниках, обусловленный случайным характером процесса преодоления носителями потенциального барьера;

7) фликкер – шум, обусловленный медленными случайными флуктуациями физико-химического состояния отдельных областей материалов электронных устройств и т. д.

Внешние факторы

1) внешние электрические и магнитные поля;

2) электромагнитные бури;

3) помехи, связанные с работой промышленности и транспорта;

4) вибрации;

5) влияние космических лучей, тепловое излучение окружающих объектов;

6) колебания температуры, давления, влажности воздуха;

7) запыленность воздуха и т. д.

Влияние (наличие) случайных факторов приводит к одной из ситуаций, приведенных на рис. 2.2:

Следовательно, предположение о детерминированном характере физической системы и описание ее детерминированной математической моделью являетсяидеализацией реальной системы. Фактически имеем ситуацию, изображенную на рис. 2.3.

Детерминированная модель допустима в следующих случаях:

1) влияние случайных факторов столь незначительно, что пренебрежение ими не приведет к ощутимому искажению результатов моделирования.

2) детерминированная математическая модель отображает реальные физические процессы в усредненном смысле.

В тех задачах, где не требуется высокой точности результатов моделирования, предпочтение отдается детерминированной модели. Это объясняется тем, что реализация и анализ детерминированной математической модели много проще, чем стохастической.

Детерминированная модель недопустима в следующих ситуациях: случайные процессы ω(t) соизмеримы с детерминированными x(t). Результаты, полученные с помощью детерминированной математической модели, будут неадекватными реальным процессам. Это относится к системам радиолокации, к системам наведения и управления летательными аппаратами, к системам связи, телевидению, к системам навигации, к любым системам, работающим со слабыми сигналами, в электронных устройствах контроля, в прецизионных измерительных устройствах и т. д.

В математическом моделировании случайный процесс часто рассматривают как случайную функцию времени, мгновенные значения которой являются случайными величинами.

2.3. Суть стохастической модели

Стохастическая математическая модель устанавливает вероятностные соотношения между входом и выходом системы . Такая модель позволяет сделать статистические выводы о некоторых вероятностных характеристиках исследуемого процесса y(t):

1) математическое ожидание (среднее значение):

2) дисперсия (мера рассеивания значений случайного процесса y(t) относительно его среднего значения):

3) среднее квадратичное отклонение:

(2.3)

4) корреляционная функция (характеризует степень зависимости – корреляции – между значениями процесса y(t), отстоящими друг от друга на время τ):

5) спектральная плотность случайного процесса y(t) описывает его частотные свойства:

(2.5)

преобразование Фурье.

Стохастическаямодель формируется на основе стохастического дифференциального либо стохастического разностного уравнения.

Различают три типа стохастических дифференциальных уравнений: со случайными параметрами, со случайными начальными условиями, со случайным входным процессом (случайной правой частью). Приведем пример стохастического дифференциального уравнения третьего типа:

, (2.6)

где
аддитивный случайный процесс – входной шум.

В нелинейных системах присутствуют мультипликативные шумы .

Анализ стохастических моделей требует использования довольно сложного математического аппарата, особенно для нелинейных систем.

2.4. Понятие типовой модели случайного процесса. Нормальный (гауссовский) случайный процесс

При разработке стохастической модели важное значение имеет определение характера случайного процесса
. Случайный процесс может быть описан набором (последовательностью) функций распределения – одномерной, двумерной, … , n-мерной или соответствующими плотностями распределения вероятности. В большинстве практических задач ограничиваются определением одномерного и двумерного законов распределения.

В некоторых задачах характер распределения
априорно известен.

В большинстве случаев, когда случайный процесс
представляет собой результат воздействия на физическую систему совокупности значительного числа независимых случайных факторов, полагают, что
обладает свойствами нормального (гауссовского) закона распределения . В этом случае говорят, что случайный процесс
заменяется его типовой моделью – гауссовским случайным процессом. Одномерная плотность распределения вероятности нормального (гауссовского)случайного процесса приведена на рис. 2.4.

Нормальное (гауссовское) распределение случайного процесса обладает следующими свойствами .

1. Значительное количество случайных процессов в природе подчиняются нормальному (гауссовскому) закону распределения.

2. Возможность достаточно строго определить (доказать) нормальный характер случайного процесса.

3. При воздействии на физическую систему совокупности случайных факторов с различными законами распределения их суммарный эффект подчиняется нормальному закону распределения (центральная предельная теорема ).

4. При прохождении через линейную систему нормальный процесс сохраняет свои свойства в отличие от других случайных процессов.

5. Гауссовский случайный процесс может быть полностью описан с помощью двух характеристик – математического ожидания и дисперсии.

Впроцессе моделирования часто возникает задача –определить характер распределения некоторой случайной величины x по результатам её многократных измерений (наблюдений)
.Для этого составляют гистограмму – ступенчатый график, позволяющий по результатам измерения случайной величины оценить её плотность распределения вероятности.

При построении гистограммы диапазон значений случайной величины
разбивают на некоторое количество интервалов, а затем подсчитывают частоту (процент) попадания данных в каждый интервал. Таким образом, гистограмма отображает частоту попадания значений случайной величины в каждый из интервалов. Если аппроксимировать построенную гистограмму непрерывной аналитической функцией, то эта функция может рассматриваться как статистическая оценка неизвестной теоретической плотности распределения вероятности.

При формировании непрерывных стохастических моделей используется понятие «случайный процесс». Разработчики разностных стохастических моделей оперируют понятием «случайная последовательность».

Особую роль в теории стохастического моделирования играют марковские случайные последовательности. Для них справедливо следующее соотношение для условной плотности вероятности:

Из него следует, что вероятностный закон, описывающий поведение процесса в момент времени , зависит только от предыдущего состояния процесса в момент времени
и абсолютно не зависит от его поведения в прошлом (т. е. в моменты времени
).

Перечисленные выше внутренние и внешние случайные факторы (шумы) представляют собой случайные процессы различных классов. Другими примерами случайных процессов являются турбулентные течения жидкостей и газов, изменение нагрузки энергосистемы, питающей большое количество потребителей, распространение радиоволн при наличии случайных замираний радиосигналов, изменение координат частицы в броуновском движении, процессы отказов аппаратуры, поступления заявок на обслуживание, распределение числа частиц в малом объеме коллоидного раствора, задающее воздействие в радиолокационных следящих системах, процесс термоэлектронной эмиссии с поверхности металла и т. д.

Любому реальному процессу свойственны случайные колебания, вызываемые физической изменчивостью каких- либо факторов во времени. Кроме того, могут существовать случайные внешние воздействия на систему. Поэтому при равном среднем значении входных в параметров в различные моменты времени выходные параметры будут неодинаковы. Следовательно, если случайные воздействия на исследуемую систему существенны, необходимо разрабатывать вероятностную (стохастическую) модель объекта, учитывая статистические законы распределения параметров системы и выбирая соответствующий математический аппарат.

При построении детерминированных моделей случайными факторами пренебрегают, учитывая лишь конкретные условия решаемой задачи, свойства и внутренние связи объекта (по этому принципу построены практически все разделы классической физики)

Идея детерминистических методов - в использовании собственной динамики модели при эволюции системы.

В нашем курсе эти методы представляют: метод молекулярной динамики , преимуществами которого являться: точность и определенность численного алгоритма; недостатком - трудоемкость из- за подсчета сил взаимодействия между частицами (для системы N частиц на каждом шаге нужно выполнить
операций подсчета этих сил).

При детерминистическом подходе задаються, и интегрируются по времени уравнения движения. Мы будем рассматривать системы из многих частиц. Положение частиц дают вклад потенциальной энергии в полную энергию системы, а их скорости определяют вклад кинетической энергии. Система движется вдоль траектории с постоянной энергией в фазовом пространстве (далее будут пояснения). Для детерминированных методов естественным является микроканонический ансамбль, энергия которого - это интеграл движения. Кроме того, можно исследовать и системы, для которых интегралом движения являться температура и (или) давление. В этом случае система незамкнута, и ее можно представить в контакте с тепловым резервуаром (канонический ансамбль). Для ее моделирования можно использовать подход, при котором мы ограничиваем ряд степеней свободы системы (например, задаем условие
).

Как мы уже отмечали, в случае, когда процессы в системе происходят непредсказуемо, такие события и связанные с ними величины называют случайными , а алгоритмы моделирования процессов в системе - вероятностными (стохастическими) . Греческое stoohastikos - означает буквально “тот, кто может угадать”.

Стохастические методы используют несколько иной подход, чем детерминистические: требуется насчитать лишь конфигурационную часть задачи. Уравнения для импульса системы всегда можно проинтегрировать. Проблема, которая затем встает - каким образом вести переходы от одной конфигурации к другой, которые в детерминистическом подходе определяться импульсом. Такие переходы в стохастических методах осуществляться при вероятностной эволюции в марковском процессе . Марковский процесс является вероятностным аналогом собственной динамики модели.

Этот подход имеет то преимущество, что позволяет моделировать системы, не имеющие какой - бы то ни было собственной динамики.

В отличие от детерминистических, стохастические методы на ПК реализуют проще, быстрее, однако для получения близких к истинным величин необходима хорошая статистика, что требует моделирования большого ансамбля частиц.

Примером полностью стохастического метода является метод Монте-Карло . Стохастические методы используют важную концепцию марковского процесса (марковской цепи). Марковский процесс является вероятностным аналогом процесса в классической механике. Марковская цепь характеризуется отсутствием памяти, т. е. статистические характеристики ближайшего будущего определяться только настоящим, без учета прошлого.

Практичне заняття 2.

Модель случайного блуждания

Пример (формальный)

Предположим, что в узлах двумерной решетки в произвольных позициях размещены частицы. На каждом временном шаге частица “прыгает” в одну из блажащих позиций. Значит, частица имеет возможность выбора направления прыжка в любое из четырех ближайших мест. После прыжка частица "не помнит", откуда она прыгнула. Этот случай соответствует случайному блужданию и является марковской цепью. Результатом на каждом шаге является новое состояние системы частиц. Переход из одного состояния в другое зависит только от предыдущего состояния, т. е. вероятность нахождения системы в состоянии i зависит только от состояния i-1.

Какие же физические процессы в твердом теле напоминают нам (подобие) описанной формальной модели случайного блуждания?

Конечно же, диффузионные, т. е. самые, процессы, механизмы которых мы рассматривали курсе тепло - массопереноса (3 курс). В качестве примера вспомним обычную классическую самодиффузию в кристалле, когда, не меняя своих видимых свойств атомы периодически меняют места временной оседлости и блуждают по решетке, с помощью так называемого “вакансионного” механизма. Он же - один из важнейших механизмов диффузии в сплавах. Явление миграции атомов в твердых телах играют решающую роль во многих традиционных и нетрадиционных технологиях - металлургии, металлообработке, создании полупроводников и сверхпроводников, защитных покрытий и тонких пленок.

Его открыл Роберт Аустен в 1896 году, наблюдая диффузию золота и свинца. Диффузия - процесс перераспределения концентраций атомов в пространстве путем хаотической (тепловой) миграции. Причины , с точки зрения термодинамики, могут быть две: энтропийная (всегда) и энергетическая (иногда). Энтропийная причина - это увеличение хаоса при перемешивании атомов резного сорта. Энергетическая - способствует образованию сплава, когда выгоднее быть рядом атомом разного сорта, и способствует диффузионному распаду, когда энергетический выиграш, обеспечивается размещением вместе атомов одного сорта.

Наиболее распространенными механизмами диффузии являются:

    вакансионный

    межузловой

    механизм вытеснения

Для реализации вакансионного механизма необходима хотя бы одна вакансия. Миграция вакансий осуществляется путем перехода в незанятый узел одного из соседних атомов. Атом же может осуществить диффузионный скачок, если рядом с ним оказалась вакансия. Вакансия см, с периодом тепловых колебаний атома в узле решеткис, при температуре Т=1330 К (на 6 К < точки плавления), число скачков, которое совершает вакансия в 1с, путь за одну секунду-см=3 м (=10 км/ч). По прямой же путь, проходимый вакансиейсм, т. е. в 300 раз короче пути по ломаной.

Природе понадобилось. чтобы вакансия в течении 1с раз изменила место оседлости, прошла по ломаной 3м, а сместилась по прямой всего лишь на 10 мкм. Атомы ведут себя спокойнее вакансий. Но и они миллион раз в секунду меняют место оседлости и движутся со скоростью примерно 1м/час.

Так. что достаточно одной вакансии на несколько тысяч атомов, чтобы при температуре, близкой к плавлению, перемещать атомы на микро уровне.

Сформируем теперь модель случайного блуждания для явления диффузии в кристалле. Процесс блуждания атома - хаотический и непредсказуемый. Однако для ансамбля блуждающих атомов должны проявляться статистические закономерности. Мы рассмотрим некоррелированные скачки.

Это значит, что если
и
- перемещение атомов приi и j-м скачках, то после усреднения по ансамблю блуждающих атомов:

(среднее произведение= произведению средних. Если блуждания полностью случайны, все направления равноправны и
=0.)

пусть каждая частица ансамбля совершает N элементарных скачков. Тогда ее полное перемещение равно:

;

а средний квадрат перемещения

Так как корреляции нет, то второе слагаемое =0.

Пусть каждый скачок имеет одинаковую длину h и случайное направление, а среднее число скачков в единицу времени- v. Тогда

Очевидно, что

Назовем величину
- коэффициентом диффузии блуждающих атомов. Тогда
;

Для трехмерного случая -
.

Мы получили параболический закон диффузии - средний квадрат смещения пропорционален времени блужданий.

Именно эту задачу нам предстоит решить на следующей лабораторной работе - моделирование случайных одномерных блужданий.

Численная модель.

Мы задаем ансамбль из М частиц, каждая из которых совершает N шагов, независимо друг от друга, вправо или влево с одинаковой вероятностью. Длина шага = h.

Для каждой частицы вычисляем квадрат смещения
заN шагов. Затем проводим усреднение по ансамблю -
. Величина
, если
, т. е. Средний квадрат смещения пропорционален времени случайных блужданий
- среднее время одного шага) - параболический закон диффузии.

23 января 2017

Стохастическая модель описывает ситуацию, когда присутствует неопределенность. Другими словами, процесс характеризуется некоторой степенью случайности. Само прилагательное «стохастический» происходит от греческого слова «угадывать». Поскольку неопределенность является ключевой характеристикой повседневной жизни, то такая модель может описывать все что угодно.

Однако каждый раз, когда мы ее применяем, будет получаться разный результат. Поэтому чаще используются детерминированные модели. Хотя они и не являются максимально приближенными к реальному положению вещей, однако всегда дают одинаковый результат и позволяют облегчить понимание ситуации, упрощают ее, вводя комплекс математических уравнений.

Основные признаки

Стохастическая модель всегда включает одну или несколько случайных величин. Она стремится отразить реальную жизнь во всех ее проявлениях. В отличие от детерминированной модели, стохастическая не имеет цели все упростить и свести к известным величинам. Поэтому неопределенность является ее ключевой характеристикой. Стохастические модели подходят для описания чего угодно, но все они имеют следующие общие признаки:

  • Любая стохастическая модель отражает все аспекты проблемы, для изучения которой создана.
  • Исход каждого из явлений является неопределенным. Поэтому модель включает вероятности. От точности их расчета зависит правильность общих результатов.
  • Эти вероятности можно использовать для прогнозирования или описания самих процессов.

Детерминированные и стохастические модели

Для некоторых жизнь представляется чередой случайных событий, для других - процессов, в которых причина обуславливает следствие. На самом же деле для нее характерна неопределенность, но не всегда и не во всем. Поэтому иногда трудно найти четкие различия между стохастическими и детерминированными моделями. Вероятности являются достаточно субъективным показателем.

Например, рассмотрим ситуацию с подбрасыванием монетки. На первый взгляд кажется, что вероятность того, что выпадет «решка», составляет 50%. Поэтому нужно использовать детерминированную модель. Однако на деле оказывается, что многое зависит от ловкости рук игроков и совершенства балансировки монетки. Это означает, что нужно использовать стохастическую модель. Всегда есть параметры, которые мы не знаем. В реальной жизни причина всегда обуславливает следствие, но существует и некоторая степень неопределенности. Выбор между использованием детерминированной и стохастической моделей зависит от того, чем мы готовы поступиться - простотой анализа или реалистичностью.

Видео по теме

В теории хаоса

В последнее время понятие о том, какая модель называется стохастической, стало еще более размытым. Это связано с развитием так называемой теории хаоса. Она описывает детерминированные модели, которые могут давать разные результаты при незначительном изменении исходных параметров. Это похоже на введение в расчет неопределенности. Многие ученые даже допустили, что это уже и есть стохастическая модель.

Лотар Брейер изящно объяснил все с помощью поэтических образов. Он писал: «Горный ручеек, бьющееся сердце, эпидемия оспы, столб восходящего дыма - все это является примером динамического феномена, который, как кажется, иногда характеризуется случайностью. В реальности же такие процессы всегда подчинены определенному порядку, который ученые и инженеры еще только начинают понимать. Это так называемый детерминированный хаос». Новая теория звучит очень правдоподобно, поэтому многие современные ученые являются ее сторонниками. Однако она все еще остается мало разработанной, и ее достаточно сложно применить в статистических расчетах. Поэтому зачастую используются стохастические или детерминированные модели.

Построение

Стохастическая математическая модель начинается с выбора пространства элементарных исходов. Так в статистике называют перечень возможных результатов изучаемого процесса или события. Затем исследователь определяет вероятность каждого из элементарных исходов. Обычно это делается на основе определенной методики.

Однако вероятности все равно являются достаточно субъективным параметром. Затем исследователь определяет, какие события представляются наиболее интересными для решения проблемы. После этого он просто определяет их вероятность.

Пример

Рассмотрим процесс построения самой простой стохастической модели. Предположим, мы кидаем кубик. Если выпадет «шесть» или «один», то наш выигрыш составит десять долларов. Процесс построения стохастической модели в этом случае будет выглядеть следующим образом:

  • Определим пространство элементарных исходов. У кубика шесть граней, поэтому могут выпасть «один», «два», «три», «четыре», «пять» и «шесть».
  • Вероятность каждого из исходов будет равна 1/6, сколько бы мы ни подбрасывали кубик.
  • Теперь нужно определить интересующие нас исходы. Это выпадение грани с цифрой «шесть» или «один».
  • Наконец, мы может определить вероятность интересующего нас события. Она составляет 1/3. Мы суммируем вероятности обоих интересующих нас элементарных событий: 1/6 + 1/6 = 2/6 = 1/3.

Концепция и результат

Стохастическое моделирование часто используется в азартных играх. Но незаменимо оно и в экономическом прогнозировании, так как позволяют глубже, чем детерминированные, понять ситуацию. Стохастические модели в экономике часто используются при принятии инвестиционных решений. Они позволяют сделать предположения о рентабельности вложений в определенные активы или их группы.

Моделирование делает финансовое планирование более эффективным. С его помощью инвесторы и трейдеры оптимизируют распределение своих активов. Использование стохастического моделирования всегда имеет преимущества в долгосрочной перспективе. В некоторых отраслях отказ или неумение его применять может даже привести к банкротству предприятия. Это связано с тем, что в реальной жизни новые важные параметры появляются ежедневно, и если их не учитывать, это может иметь катастрофические последствия.

Вероятностно-детерминированные математические прогнозирующие модели графиков энергетических нагрузок являются комбинацией статистических и детерминированных моделей. Именно эти модели позволяют обеспечить наилучшую точность прогнозирования, адаптивность к изменяющемуся процессу электропотребления .

Они базируются на концепции стандартизованного моделирования нагрузки , т.е. аддитивной декомпозиции фактической нагрузки на стандартизованный график (базовой составляющей, детерминированного тренда) и остаточную составляющую :

где t – время внутри суток; d – номер суток, например, в году.

В стандартной составляющей при моделировании также осуществляют аддитивное выделение отдельных составляющих, учитывающих : изменение средней сезонной нагрузки ; недельную цикличность изменения электропотребления ; трендовую составляющую, моделирующую дополнительные эффекты, связанные с изменением времени восхода и захода солнца от сезона к сезону ; составляющую, учитывающую зависимость электропотребления от метеофакторов , в частности температуры и т.п.

Рассмотрим подробнее подходы моделирования отдельных составляющих на основе упомянутых выше детерминированных и статистических моделей .

Моделирование средней сезонной нагрузки зачастую осуществляют с использованием простого скользящего усреднения :

где N – число обычных регулярных (рабочих дней), содержащихся в n прошедших неделях. , так как из недель исключаются «специальные», «нерегулярные дни», праздники и т.п. Осуществляется ежедневное обновление путем усреднения данных за n прошедших недель.

Моделирование недельной цикличности также осуществляют скользящим усреднением вида

с обновлением еженедельно путем усреднения данных за n прошедших недель, либо используя экспоненциально взвешенное скользящее среднее :

где – эмпирически определяемый параметр сглаживания ().

В работе для моделирования и используется семь составляющих , для каждого дня недели, причем каждое определяется отдельно с использованием модели экспоненциального сглаживания.

Авторы работы для моделирования используют двойное экспоненциальное сглаживание типа Холта – Винтерса. В работе для моделирования используют гармоническое представление вида

с параметрами , оцениваемыми по эмпирическим данным (значение «52» определяет число недель в году). Однако задача адаптивного оперативного оценивания этих параметров в указанной работе не решена полностью.

Моделирование , в ряде случаев осуществляют с помощью конечных рядов Фурье : с недельным периодом , с суточным периодом , либо с раздельным моделированием рабочих и выходных дней соответственно с периодами пять и двое суток :

Для моделирования трендовой составляющей используют либо полиномы 2-го – 4-го порядков , либо различные нелинейные эмпирические функции, например, вида :

где – полином четвертой степени, описывающий относительно медленные сглаженные изменения нагрузки в дневные часы по сезонам; , , – функции моделирующие эффекты, связанные с изменением времени восхода и захода солнца по сезонам.

Для учета зависимости электропотребления от метеофакторов в ряде случаев вводят дополнительную составляющую . В работе теоретически обосновывается включение в модель, но возможности моделирования температурного эффекта при этом рассматриваются лишь в ограниченном объеме . Так, для представления температурной составляющей для условий Египта используется полиномиальная модель

где – температура воздуха в t-й час.

Применяется регрессионный метод для «нормализации» максимумов и провалов реализации процесса с учетом температуры, при этом нормализованные данные представляются одномерной моделью авторегрессии интегрированного скользящего среднего (АРИСС) .

Используют также для моделирования с учетом температуры рекурсивный фильтр Калмана, в который включаются внешние факторы – прогноз температуры. Либо используют в краткосрочном диапазоне полиномиальную кубическую интерполяцию часовых нагрузок и при этом в модели учитывают влияние температуры .

Для учета среднесуточных прогнозов температуры, различных метеоусловий на реализации анализируемого процесса и в то же время повышения устойчивости модели предлагается использовать особую модификацию модели скользящего среднего

,

где для различных метеоусловий, связанных с вероятностями формируется ряд из m графиков нагрузки , а прогноз определяется как условное математическое ожидание. Вероятности уточняются по методу Байеса по мере поступления новых фактических значений нагрузки и факторов в течении суток.

Моделирование остаточной составляющей осуществляют как с использованием одномерных моделей, так и многомерных, учитывающих метеорологические и другие внешние факторы. Так, в качестве одномерной (однофакторной) модели зачастую используют модель авторегрессии АР(k) порядка k

,

где – остаточный белый шум. Для прогнозирования часовых (получасовых) отсчетов используют модели АР(1), АР(2) и даже АР(24) . Даже в случае использования обобщенной модели АРИСС для все равно ее применение сводится к моделям АР(1), АР(2) как для пятиминутных , так и часовых измерений нагрузки .

Иной однофакторной моделью моделирования составляющей является модель простого или двойного экспоненциального сглаживания . Эта модель позволяет эффективно выявлять краткосрочные тренды в процессе изменения остаточной нагрузки . Простота, экономичность, рекурсивность и вычислительная эффективность обеспечивают методу экспоненциального сглаживания широкое применение. С помощью простого экспоненциального сглаживания по при различных постоянных и определяют две экспоненциальные средние и . Прогноз остаточной составляющей с упреждением определяют по формуле

Страница
6

Метод разработки решения. Некоторые решения, как правило, типичные, повторяющиеся, могут быть с успехом формализованы, т.е. приниматься по заранее определённому алгоритму. Другими словами, формализованное решение – это результат выполнения заранее определённой последовательности действий. Например, при составлении графика ремонтного обслуживания оборудования начальник цеха может исходить из норматива, требующего определённого соотношения между количеством оборудования и обслуживающим персоналом. Если в цехе имеется 50 единиц оборудования, а норматив обслуживания составляет 10 единиц на одного ремонтного рабочего, значит, в цехе необходимо иметь пять ремонтников. Точно так же, когда финансовый менеджер принимает решение об инвестировании свободных средств в государственные ценные бумаги, он выбирает между различными видами облигаций в зависимости от того, какие из них обеспечивают в данное время наибольшую прибыль на вложенный капитал. Выбор производится на основе простого расчета конечной доходности по каждому варианту и установления самого выгодного.

Формализация принятия решений повышает эффективность управления в результате снижения вероятности ошибки и экономии времени: не нужно заново разрабатывать решение каждый раз, когда возникает соответствующая ситуация. Поэтому руководство организаций часто формализует решения для определённых, регулярно повторяющихся ситуаций, разрабатывая соответствующие правила, инструкции и нормативы.

В то же время в процессе управления организациями часто встречаются новые, нетипичные ситуации и нестандартные проблемы, которые не поддаются формализованному решению. В таких случаях большую роль играют интеллектуальные способности, талант и личная инициатива менеджеров.

Конечно, на практике большинство решений занимает промежуточное положение между этими двумя крайними точками, допуская в процессе их разработки как проявление личной инициативы, так и применение формальной процедуры. Конкретные методы, используемые в процессе принятия решений, рассмотрены ниже.

· Количество критериев выбора .

Если выбор наилучшей альтернативы производится только по одному критерию (что характерно для формализованных решений), то принимаемое решение будет простым, однокритериальным. И наоборот, когда выбранная альтернатива должна удовлетворять одновременно нескольким критериям, решение будет сложным, многокритериальным. В практике менеджмента подавляющее большинство решений многокритериальны, так как они должны одновременно отвечать таким критериям, как: объем прибыли, доходность, уровень качества, доля рынка, уровень занятости, срок реализации и т.п.

· Форма принятия решений .

Лицом, осуществляющим выбор из имеющихся альтернатив окончательного решения, может быть один человек и его решение будет соответственно единоличным. Однако в современной практике менеджмента всё чаще встречаются сложные ситуации и проблемы, решение которых требует всестороннего, комплексного анализа, т.е. участия группы менеджеров и специалистов. Такие групповые, или коллективные, решения называются коллегиальными. Усиление профессионализации и углубление специализации управления приводят к широкому распространению коллегиальных форм принятия решений. Необходимо также иметь в виду, что определённые решения и законодательно отнесены к группе коллегиальных. Так, например, определённые решения в акционерном обществе (о выплате дивидендов, распределении прибыли и убытков, совершении крупных сделок, избрании руководящих органов, реорганизации и др.) отнесены к исключительной компетенции общего собрания акционеров. Коллегиальная форма принятия решении, разумеется, снижает оперативность управления и “размывает” ответственность за его результаты, однако препятствует грубым ошибкам и злоупотреблениям и повышает обоснованность выбора.

· Способ фиксации решения.

По этому признаку управленческие решения могут быть разделены на фиксированные, или документальные (т.е. оформленные в виде какого либо документа - приказа, распоряжения, письма и т.п.) , и недокументированные (не имеющие документальной формы, устные). Большинство решений в аппарате управления оформляется документально, однако мелкие, несущественные решения, а также решения, принятые в чрезвычайных, острых, не терпящих промедления ситуациях, могут и не фиксироваться документально.

· Характер использованной информации . В зависимости от степени полноты и достоверности информации, которой располагает менеджер, управленческие решения могут быть детерминированными (принятыми в условиях определённости) или вероятностными (принятыми в условиях риска или неопределённости). Эти условия играют чрезвычайно важную роль при принятии решений, поэтому рассмотрим их более подробно.

Детерминированные и вероятностные решения.

Детерминированные решения принимаются в условиях определённости, когда руководитель располагает практически полной и достоверной информацией в отношении решаемой проблемы, что позволяет ему точно знать результат каждого из альтернативных вариантов выбора. Такой результат только один, и вероятность его наступления близка к единице. Примером детерминированного решения может быть выбор в качестве инструмента инвестирования свободной наличности 20 % - ных облигаций федерального займа с постоянным купонным доходом. Финансовый менеджер в этом случае точно знает, что за исключением крайне маловероятных чрезвычайных обстоятельств, из-за которых правительство РФ не сможет выполнить свои обязательства, организация получит ровно 20 % годовых на вложенные средства. Подобным образом, принимая решение о запуске в производство определённого изделия, руководитель может точно определить уровень издержек производства, так как ставки арендной платы, стоимость материалов и рабочей силы могут быть рассчитаны довольно точно.

Анализ управленческих решений в условиях определенности это самый простой случай: известно количество возможных ситуаций (вариантов) и их исходы. Нужно выбрать один из возможных вариантов. Степень сложности процедуры выбора в данном случае определяется лишь количеством альтернативных вариантов. Рассмотрим две возможные ситуации:

а) Имеется два возможных варианта;

В данном случае аналитик должен выбрать (или рекомендовать к выбору) один из двух возможных вариантов. Последовательность действий здесь следующая:

· определяется критерий по которому будет делаться выбор;

· методом “ прямого счета ” исчисляются значения критерия для сравниваемых вариантов;

Возможны различные методы решения этой задачи. Как правило они подразделяются на две группы:

методы основанные на дисконтированных оценках;

методы, основанные на учетных оценках.