График системы неравенств. Графическое изображение линейного неравенства на координатной плоскости

см. также Решение задачи линейного программирования графически , Каноническая форма задач линейного программирования

Система ограничений такой задачи состоит из неравенств от двух переменных:
и целевая функция имеет вид F = C 1 x + C 2 y , которую необходимо максимизировать.

Ответим на вопрос: какие пары чисел ( x ; y ) являются решениями системы неравенств, т. е. удовлетворяют каждому из неравенств одновременно? Другими словами, что значит решить систему графически?
Предварительно необходимо понять, что является решением одного линейного неравенства с двумя неизвестными.
Решить линейное неравенство с двумя неизвестными – это значит определить все пары значений неизвестных, при которых неравенство выполняется.
Например, неравенству 3x – 5 y ≥ 42 удовлетворяют пары (x , y ) : (100, 2); (3, –10) и т. д. Задача состоит в нахождении всех таких пар.
Рассмотрим два неравенства: ax + by c , ax + by c . Прямая ax + by = c делит плоскость на две полуплоскости так, что координаты точек одной из них удовлетворяют неравенству ax + by >c , а другой неравенству ax + +by <c .
Действительно, возьмем точку с координатой x = x 0 ; тогда точка, лежащая на прямой и имеющая абсциссу x 0 , имеет ординату

Пусть для определенности a < 0, b >0, c >0. Все точки с абсциссой x 0 , лежащие выше P (например, точка М ), имеют y M >y 0 , а все точки, лежащие ниже точки P , с абсциссой x 0 , имеют y N <y 0 . Поскольку x 0 –произвольная точка, то всегда с одной стороны от прямой будут находиться точки, для которых ax + by > c , образующие полуплоскость, а с другой стороны – точки, для которых ax + by < c .

Рисунок 1

Знак неравенства в полуплоскости зависит от чисел a , b , c .
Отсюда вытекает следующий способ графического решения систем линейных неравенств от двух переменных. Для решения системы необходимо:

  1. Для каждого неравенства выписать уравнение, соответствующее данному неравенству.
  2. Построить прямые, являющиеся графиками функций, задаваемых уравнениями.
  3. Для каждой прямой определить полуплоскость, которая задается неравенством. Для этого взять произвольную точку, не лежащую на прямой, подставить ее координаты в неравенство. если неравенство верное, то полуплоскость, содержащая выбранную точку, и является решением исходного неравенства. Если неравенство неверное, то полуплоскость по другую сторону прямой является множеством решений данного неравенства.
  4. Чтобы решить систему неравенств, необходимо найти область пересечения всех полуплоскостей, являющихся решением каждого неравенства системы.

Эта область может оказаться пустой, тогда система неравенств не имеет решений, несовместна. В противном случае говорят, что система совместна.
Решений может быть конечное число и бесконечное множество. Область может представлять собой замкнутый многоугольник или же быть неограниченной.

Рассмотрим три соответствующих примера.

Пример 1. Решить графически систему:
x + y – 1 ≤ 0;
–2 x – 2y + 5 ≤ 0.

  • рассмотрим уравнения x+y–1=0 и –2x–2y+5=0 , соответствующие неравенствам;
  • построим прямые, задающиеся этими уравнениями.

Рисунок 2

Определим полуплоскости, задаваемые неравенствами. Возьмем произвольную точку, пусть (0; 0). Рассмотрим x + y– 1 0, подставим точку (0; 0): 0 + 0 – 1 ≤ 0. значит, в той полуплоскости, где лежит точка (0; 0), x + y 1 ≤ 0, т.е. полуплоскость, лежащая ниже прямой, является решением первого неравенства. Подставив эту точку (0; 0), во второе, получим: –2 ∙ 0 – 2 ∙ 0 + 5 ≤ 0, т.е. в полуплоскости, где лежит точка (0; 0), –2x – 2y + 5≥ 0, а нас спрашивали, где –2x – 2y + 5 ≤ 0, следовательно, в другой полуплоскости – в той, что выше прямой.
Найдем пересечение этих двух полуплоскостей. Прямые параллельны, поэтому плоскости нигде не пересекаются, значит система данных неравенств решений не имеет, несовместна.

Пример 2. Найти графически решения системы неравенств:

Рисунок 3
1. Выпишем уравнения, соответствующие неравенствам, и построим прямые.
x + 2y – 2 = 0

x 2 0
y 0 1

y x – 1 = 0
x 0 2
y 1 3

y + 2 = 0;
y = –2.
2. Выбрав точку (0; 0), определим знаки неравенств в полуплоскостях:
0 + 2 ∙ 0 – 2 ≤ 0, т.е. x + 2y – 2 ≤ 0 в полуплоскости ниже прямой;
0 – 0 – 1 ≤ 0, т.е. y x – 1 ≤ 0 в полуплоскости ниже прямой;
0 + 2 =2 ≥ 0, т.е. y + 2 ≥ 0 в полуплоскости выше прямой.
3. Пересечением этих трех полуплоскостей будет являться область, являющаяся треугольником. Нетрудно найти вершины области, как точки пересечения соответствующих прямых


Таким образом, А (–3; –2), В (0; 1), С (6; –2).

Рассмотрим еще один пример, в котором получившаяся область решения системы не ограничена.

Графическое представление функций позволяет приближённо решать неравенства с одним неизвестным и системы неравенств с одним и двумя неизвестными. Чтобы решить графически неравенство с одним неизвестным , необходимо перенести все его члены в одну часть, т.e. привести к виду:

f (x ) > 0 ,

и построить график функции y = f ( x ). После этого, используя построенный график, можно найти нули функции , которые разделят ось Х на несколько интервалов. Теперь на основе этого определим интервалы x , внутри которых знак функции соответствует знаку неравенства. Например, нули нашей функции: a и b (рис.30). Тогда из графика очевидно, что интервалы, внутри которых f ( x ) > 0: x < a и x > b (они выделеныжирными стрелками). Ясно, что знак > здесь условный; вместо него может быть любой другой: < , .


Чтобы решить графически систему неравенств с одним неизвестным, нужно перенести в каждом из них все члены в одну часть, т.e. привести неравенства к виду:

и построить графики функций y = f (x ), y = g (x ) , ... , y = h (x ). Каждое из этих неравенств решается графическим методом, описанным выше. После этого нужно найти пересечение решений всех неравенств, т.e. их общую часть.

П р и м е р. Решить графически систему неравенств:

Р е ш е н и е. Сначала построим графики функций y = - 2 / 3 x + 2 и

y = x 2 -1 (рис.31):


Решением первого неравенства является интервал x > 3, обозначенный на рис.31 чёрной стрелкой; решение второго неравенства состоит из двух интервалов: x < -1 и x > 1, обозначенных на рис.31 серыми стрелками.

Из графика видно, что пересечением этих двух решений является интервал x > 3. Это и есть решение заданной системы неравенств.

Чтобы решить графически систему двух неравенств сдвумя неизвестными, надо:

1) в каждом из них перенести все члены в одну часть, т.e. привести

неравенства к виду:

2) построить графики функций, заданных неявно: f ( x, y ) = 0 и g (x, y ) = 0;

3) каждый их этих графиков делит координатную плоскость на две части:

в одной из них неравенство справедливо, в другой - нет; чтобы решить

графически каждое из этих неравенств, достаточно проверить

справедливость неравенства в одной произвольной точке внутри любой

части плоскости; если неравенство имеет место в этой точке, значит

эта часть координатной плоскости является его решением, если нет - то

решением является противоположная часть плоскости ;

4) решением заданной системы неравенств является пересечение

(общая область) частей координатной плоскости.

П р и м е р. Решить систему неравенств:

Р е ш е н и е. Сначала строим графики линейных функций: 5x - 7y = -11 и

2x + 3y = 10 (рис.32). Для каждой из них находим полуплоскость,

Внутри которой соответствующее заданное неравенство

Справедливо. Мы знаем, что достаточно проверить справедливость

Неравенства в одной произвольной точке области; в данном

Случае легче всего использовать для этого начало координат O (0, 0).

Подставляя его координаты в наши неравенства вместо x и y ,

Получим: 5 · 0 - 7 · 0 = 0 > -11, следовательно, нижняя

Полуплоскость (жёлтого цвета) является решением первого

Неравенства; 2 · 0 + 3 · 0 = 0 < 10, поэтому второе неравенство

Имеет своим решением также нижнюю полуплоскость (голубого

Цвета). Пересечение этих полуплоскостей (область цвета бирюзы)

Является решением нашей системы неравенств.

В ходе урока вы сможете самостоятельно изучить тему «Графическое решение уравнений, неравенств». Преподаватель на занятии разберет графические методы решения уравнений и неравенств. Научит строить графики, анализировать их и получать решения уравнений и неравенств. На уроке также будут разобраны конкретные примеры по этой теме.

Тема: Числовые функции

Урок: Графическое решение уравнений, неравенств

1. Тема урока, введение

Мы рассмотрели графики элементарных функций, в том числе графики степенных функций c разными показателями. Также мы рассмотрели правила сдвига и преобразований графиков функций. Все эти навыки необходимо применить, когда требуется графическое решение уравнений или графическое решение неравенств .

2. Решение уравнений и неравенств графическим способом

Пример 1. Графически решить уравнение:

Построим графики функций (Рис. 1).

Графиком функции является парабола, проходящая через точки

График функции - прямая, построим её по таблице.

Графики пересекаются в точке Других точек пересечения нет, т. к. функция монотонно возрастает, функция монотонно убывает, а, значит, их точка пересечения является единственной.

Пример 2. Решить неравенство

a. Чтобы выполнялось неравенство, график функции должен располагаться над прямой (Рис. 1). Это выполняется при

b. В этом случае, наоборот, парабола должна находиться под прямой. Это выполняется при

Пример 3. Решить неравенство

Построим графики функций (Рис. 2).

Найдем корень уравнения При нет решений. При существует одно решение .

Чтобы выполнялось неравенство гипербола должна располагаться над прямой Это выполняется при .

Пример 4. Решить графически неравенство:

Область определения:

Построим графики функций для (Рис. 3).

a. График функции должен располагаться под графиком это выполняется при

b. График функции расположен над графиком при Но т. к. в условии имеем нестрогий знак, важно не потерять изолированный корень

3. Заключение

Мы рассмотрели графический метод решения уравнений и неравенств; рассмотрели конкретные примеры, при решении которых использовали такие свойства функций, как монотонность и четность.

1. Мордкович А. Г. и др. Алгебра 9 кл.: Учеб. Для общеобразоват. Учреждений.- 4-е изд. - М.: Мнемозина, 2002.-192 с.: ил.

2. Мордкович А. Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М.: Мнемозина, 2002.-143 с.: ил.

3. Макарычев Ю. Н. Алгебра. 9 класс: учеб. для учащихся общеобразоват. учреждений / Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, И. Е. Феоктистов. — 7-е изд., испр. и доп. — М.: Мнемозина, 2008.

4. Алимов Ш. А., Колягин Ю. М., Сидоров Ю. В. Алгебра. 9 класс. 16-е изд. - М., 2011. - 287 с.

5. Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. — 12-е изд., стер. — М.: 2010. — 224 с.: ил.

6. Алгебра. 9 класс. В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Л. А. Александрова, Т. Н. Мишустина и др.; Под ред. А. Г. Мордковича. — 12-е изд., испр. — М.: 2010.-223 с.: ил.

1. Раздел College. ru по математике.

2. Интернет-проект «Задачи» .

3. Образовательный портал «РЕШУ ЕГЭ» .

1. Мордкович А. Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М. : Мнемозина, 2002.-143 с.: ил. № 355, 356, 364.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ИНСТИТУТ РАЗВИТИЯ ОБРАЗОВАНИЯ

«Графические методы решения уравнений и неравенств с параметрами»

Выполнил

учитель математики

МОУ СОШ №62

Липецк 2008

ВВЕДЕНИЕ.................................................................................................... 3

х ;у ) 4

1.1. Параллельный перенос........................................................................... 5

1.2. Поворот................................................................................................... 9

1.3. Гомотетия. Сжатие к прямой................................................................ 13

1.4. Две прямые на плоскости..................................................................... 15

2. ГРАФИЧЕСКИЕ ПРИЕМЫ. КООРДИНАТНАЯ ПЛОСКОСТЬ (х ;а ) 17

ЗАКЛЮЧЕНИЕ........................................................................................... 20

БИБЛИОГРАФИЧЕСКИЙ СПИСОК........................................................ 22

ВВЕДЕНИЕ

Проблемы, возникающие у школьников при решении нестандартных уравнений и неравенств, вызваны как относительной сложностью этих задач, так и тем, что в школе, как правило, основное внимание уделяется решению стандартных задач.

Многие школьники воспринимают параметр как «обычное» число. Действительно, в некоторых задачах параметр можно считать посто­янной величиной, но эта постоянная величина принимает неизвестные значения! Поэтому необходимо рассматривать задачу при всех возмож­ных значениях этой постоянной величины. В других задачах бывает удобно искусственно объявить параметром одну из неизвестных.

Иные школьники относятся к параметру как к неизвестной величине и, не смущаясь, могут выразить в ответе параметр через переменную х.

На выпускных и вступительных экзаменах встречаются, в осно­вном, два типа задач с параметрами. Вы сразу отличите их по формулировке. Первый: «Для каждого значения параметра найти все решения некоторого уравнения или неравенства». Второй: «Найти все значения параметра, при каждом из которых для данного уравнения или неравенства выполняются некоторые условия». Соответственно и ответы в задачах этих двух типов различаются по существу. В ответе к задаче первого типа перечисляются все возможные значения параметра и для каждого из этих значений записываются решения уравнения. В ответе к задаче второго типа указываются все значения параметра, при которых выполняются условия, указанные в задаче.

Решением уравнения с параметром для данного фиксированного зна­чения параметра называется такое значение неизвестной, при подста­новке которого в уравнение, последнее обращается в верное числовое ра­венство. Аналогично определяется решение неравенства с параметром. Решить уравнение (неравенство) с параметром - это значит для каждого допустимого значения параметра найти множество всех решений данного уравнения (не­равенства).

1. ГРАФИЧЕСКИЕ ПРИЕМЫ. КООРДИНАТНАЯ ПЛОСКОСТЬ (х ;у )

Наряду с основными аналитическими при­емами и методами решений задач с параметрами существуют способы обраще­ния к наглядно-графическим интерпретациям.

В зависимости от того какая роль параметру отводится в задаче (неравноправная или равноправная с переменной), можно соответственно выделить два основных графических приема: первый – построение графического образа на коорди­натной плоскости ; у), второй – на ; а).

На плоскости (х; у) функция у = f ; а) задает семейство кривых, зависящих от параметра а. Понятно, что каждое семейство f обладает определенными свойствами. Нас же в первую очередь будет интересовать, с помощью какого преобра­зования плоскости (параллельный перенос, поворот и т. д.) можно перейти от одной кривой семейства к какой-либо другой. Каждому из таких преобразований будет посвящен отдельный пункт. Как нам кажется, подобная классификация облегчает решающему поиск необходимого графического образа. Отметим, что при таком подходе идейная часть решения не зависит от того, какая фигура (прямая, окружность, парабола и т. п.) будет являться членом семейства кривых.

Разумеется, не всегда графический образ семейства у = f ; а) описывается простым преобразованием. Поэтому в подобных ситуациях полезно сосредоточить внимание не на том, как связаны кривые одного семейства, а на самих кривых. Иными словами можно выделить еще один тип задач, в которых идея решения прежде всего основана на свойствах конкретных геометрических фигур, а не семейства в целом. Какие же фигуры (точнее семейства этих фигур) нас будут интересовать в первую очередь? Это прямые и параболы. Такой выбор обусловлен особым (основным) положением линейной и квадратичной функций в школьной математике.

Говоря о графических методах, невозможно обойти одну проблему, «рожденную» практикой конкурсного экзамена. Мы имеем в виду вопрос о строгости, а следовательно, о законности решения, основанного на графических соображениях. Несомнен­но, с формальной точки зрения результат, снятый с «картинки», не подкрепленный аналитически, получен нестрого. Однако кем, когда и где определен уровень строгости, которого следует придерживаться старшекласснику? По нашему мнению, требования к уровню математической строгости для школьника должны определяться здравым смыслом. Мы понимаем степень субъек­тивности такой точки зрения. Более того, графический метод – всего лишь одно из средств наглядности. А наглядность может быть обманчивой..gif" width="232" height="28"> имеет единственное решение.

Решение. Для удобства обоз­начим lg b = а. Запишем урав­нение, равносильное исходному: https://pandia.ru/text/78/074/images/image004_56.gif" width="125" height="92">

Строим график функции с областью определе­ния и (рис. 1). Полученный график семейство прямых у = а должно пересекать только в одной точке. Из рисунка видно, что это требование выполняется лишь при а > 2, т. е. lg b > 2, b > 100.

Ответ. https://pandia.ru/text/78/074/images/image010_28.gif" width="15 height=16" height="16"> определить число решений уравнения .

Решение . Построим график функции 102" height="37" style="vertical-align:top">



Рассмотрим . Это прямая параллельна оси ОХ.

Ответ ..gif" width="41" height="20">, то 3 решения;

если , то 2 решения;

если , 4 решения.

Перейдем к новой серии задач..gif" width="107" height="27 src=">.

Решение. Построим прямую у = х +1 (рис. 3)..gif" width="92" height="57">

иметь одно решение, что равносильно для уравнения (х +1)2 = х + а иметь один корень..gif" width="44 height=47" height="47"> исходное неравенство решений не имеет. Заметим, что тот, кто знаком с произ­водной, может получить этот результат иначе.

Далее, смещая «полупараболу» влево, зафиксируем послед­ний момент, когда графики у = х + 1 и имеют две общие точки (положение III). Такое расположение обеспечива­ется требованием а = 1.

Ясно, что при отрезок [х 1; х 2], где х 1 и х 2 – абсциссы точек пересечения графиков, будет решением исходно­го неравенства..gif" width="68 height=47" height="47">, то

Когда «полупарабола» и прямая пересекаются только в одной точке (это соответствует случаю а > 1), то решением будет отрезок [-а ; х 2"], где х 2" – больший из корней х 1 и х 2 (положение IV).

Пример 4 ..gif" width="85" height="29 src=">.gif" width="75" height="20 src=">. Отсюда получаем .

Рассмотрим функции и . Среди них лишь одна задает семейство кривых. Теперь мы видим, что произведенная замена приносит несомненную пользу. Парал­лельно отметим, что в предыдущей задаче аналогичной заменой можно заставить двигаться не «полупараболу», а прямую. Обратимся к рис. 4. Очевидно, если абсцисса вершины «полупараболы» больше единицы, т. е. –3а > 1, , то уравнение корней не имеет..gif" width="89" height="29"> и име­ют разный характер моно­тонности.

Ответ. Если то уравнение имеет один корень; если https://pandia.ru/text/78/074/images/image039_10.gif" width="141" height="81 src=">

имеет решения.

Решение. Ясно, что прямые семейства https://pandia.ru/text/78/074/images/image041_12.gif" width="61" height="52">..jpg" width="259" height="155">

Значение k1 найдем, подставив в первое уравнение системы пару (0;0). Отсюда k 1 =-1/4. Значение k 2 получим, потребовав от системы

https://pandia.ru/text/78/074/images/image045_12.gif" width="151" height="47"> при k > 0 иметь один корень. Отсюда k2 = 1/4.

Ответ. .

Сделаем одно замечание. В некоторых примерах этого пункта нам придется решать стандартную задачу: для прямой семейства находить ее угловой коэффициент, соответствующий моменту касания с кривой. Покажем, как это сделать в общем виде при помощи производной.

Если (х0 ; y 0) = центр поворота, то координаты 1; у 1) точки касания с кривой у = f (х) можно найти, решив систему

Искомый угловой коэффициент k равен .

Пример 6 . При каких значениях параметра уравнение имеет единственное решение?

Решение ..gif" width="160" height="29 src=">..gif" width="237" height="33">, дуга АВ.

Все лучи проходящие между ОА и ОВ пересекают дугу АВ в одной точке, также в одной точке пересекают дугу АВ ОВ и ОМ (касательная)..gif" width="16" height="48 src=">. Угловой коэффициент касательной равен . Легко находится из системы

Итак, прямые семейства https://pandia.ru/text/78/074/images/image059_7.gif" width="139" height="52">.

Ответ . .

Пример 7 ..gif" width="160" height="25 src="> имеет решение?

Решение ..gif" width="61" height="24 src="> и убывает на . Точка - является точкой максимума.

Функция же - это семейство прямых, проходящих через точку https://pandia.ru/text/78/074/images/image062_7.gif" width="153" height="28"> является дуга АВ. Прямые , которые будут находиться между прямыми ОА и ОВ, удовлетворяют условию задачи..gif" width="17" height="47 src=">.

Ответ ..gif" width="15" height="20">решений нет.

1.3. Гомотетия. Сжатие к прямой.

Пример 8. Сколько решений имеет система

https://pandia.ru/text/78/074/images/image073_1.gif" width="41" height="20 src="> система решений не имеет. При фиксированном а > 0 графиком первого уравнения является квадрат с вершинами (а ; 0), (0;-а ), (-a ;0), (0;а). Таким образом, членами семейства являются гомотетичные квадраты (центр гомотетии – точка О(0; 0)).

Обратимся к рис. 8..gif" width="80" height="25"> каж­дая сторона квадрата име­ет две общие точки с ок­ружностью, а значит, сис­тема будет иметь восемь решений. При окружность окажется вписанной в квадрат, т. е. решений станет опять четыре. Очевидно при система решений не имеет.

Ответ. Если а < 1 или https://pandia.ru/text/78/074/images/image077_1.gif" width="56" height="25 src=">, то решений четыре; если , то решений восемь.

Пример 9 . Найти все значения параметра , при каждом из которых уравнение https://pandia.ru/text/78/074/images/image081_0.gif" width="181" height="29 src=">. Рассмотрим функцию ..jpg" width="195" height="162">

Число корней будет соответствовать числу 8 тогда, когда радиус полуокружности будет больше и меньше , то есть . Заметим, что есть .

Ответ . или .

1.4. Две прямые на плоскости

По существу, в основе идеи решения задач настоящего пункта лежит вопрос об исследовании взаимного расположения двух прямых: и . Несложно показать решение этой задачи в общем виде. Мы же обратимся непосредственно к конкретным характерным примерам, что, на наш взгляд, не нанесет ущерба общей стороне вопроса.

Пример 10. При каких a и b система

https://pandia.ru/text/78/074/images/image094_0.gif" width="160" height="25 src=">..gif" width="67" height="24 src=">, т..gif" width="116" height="55">

Неравенство системы задает полуплоскость с границей у = – 1 (рис. 10). Легко сооб­разить, что полученная система имеет решение, если прямая ах + by = 5 пересекает границу полуплоскости или, будучи па­раллельной ей, лежит в полупло­скости у 2х + 1 < 0.

Начнем со случая b = 0. Тогда, казалось бы, урав­нение ах + by = 5 задает верти­кальную прямую, которая оче­видно пересекает прямую у = 2х – 1. Однако это утверж­дение справедливо лишь при ..gif" width="43" height="20 src="> система имеет решения..gif" width="99" height="48">. В этом случае условие пересечения прямых достигается при , т. е. ..gif" width="52" height="48">.gif" width="41" height="20"> и , или и , или и https://pandia.ru/text/78/074/images/image109_0.gif" width="69" height="24 src=">.

− В координатной плоскости xOa строим график функции .

− Рассмотрим прямые и выделим те промежутки оси Oa, на которых эти прямые удовлетворяют следующим условиям: a) не пересекает график функции https://pandia.ru/text/78/074/images/image109_0.gif" width="69" height="24"> в одной точке, в) в двух точках, г) в трех точках и так далее.

− Если поставлена задача найти значения x, то выражаем x через a для каждого из найденных промежутков значения a в отдельности.

Взгляд на параметр как на равноправную переменную находит свое отражение в графических методах..jpg" width="242" height="182">

Ответ. а = 0 или а = 1.

ЗАКЛЮЧЕНИЕ

Мы надеемся, что разобранные задачи достаточно убедитель­но демонстрируют эффективность предложенных методов. Одна­ко, к сожалению, сфера применения этих методов ограничена трудностями, с которыми можно столкнуться при построении графического образа. А так ли это плохо? По-видимому, нет. Ведь при таком подходе в большой степени теряется главная дидактическая ценность задач с параметрами как модели миниатюрного исследования. Впрочем, приведенные соображения адресованы учителям, а для абитуриентов вполне приемлема формула: цель оправдывает средства. Более того возьмем на себя смелость сказать, что в немалом числе вузов составители конкурсных задач с параметрами идут по пути от картинки к условию.

В этих задачах обсуждались те возможности решения задач с пара­метром, которые открываются нам при изображении на листе бумаге графиков функций, входящих в левую и правую части уравнений или неравенств. В связи с тем, что параметр может принимать произ­вольные значения, один или оба из изображаемых графиков движутся определенным образом на плоскости. Можно говорить о том, что получается целое семейство графиков, соответствующих различным значениям параметра.

Решительно подчеркнем две детали.

Во-первых, речь не идет о «графическом» решении. Все значения, координаты, корни вычисляются строго, аналитически, как решения соответствующих уравнений, систем. Это же относится к случаям касания или пересечения графиков. Они определяются не на глазок, а с помощью дискриминантов, производных и других доступных Вам инструментов. Картинка лишь дает путь решения.

Во-вторых, даже если Вы не найдете никакого пути решения задачи, связанного изображенными графиками, Ваше представление о задаче значительно расширится, Вы получите информацию для самопроверки и шансы на успех значительно возрастут. Точно представляя себе, что происходит в задаче при различных значениях параметра, Вы, возможно, найдет правильный алгоритм решения.

Поэтому эти слова завершим настоятельным предло­жением: если в хоть мало-мальски сложной задаче встречаются функции, графики которых Вы рисовать умеете, обязательно сделайте это, не пожалеете.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Черкасов, : Справочник для старшеклассников и поступающих в вузы [Текст] / , . – М.: АСТ-ПРЕСС, 2001. – 576 с.

2. Горштейн, с параметрами [Текст]: 3-е издание, дополненное и переработанное / , . – М.: Илекса, Харьков: Гимназия, 1999. – 336 с.

Графический метод является одним из основных методов решения квадратных неравенств. В статье мы приведем алгоритм применения графического метода, а затем рассмотрим частные случаи на примерах.

Суть графического метода

Метод применим для решения любых неравенств, не только квадратных. Суть его вот в чем: правую и левую части неравенства рассматривают как две отдельные функции y = f (x) и y = g (x) , их графики строят в прямоугольной системе координат и смотрят, какой из графиков располагается выше другого, и на каких промежутках. Оцениваются промежутки следующим образом:

Определение 1

  • решениями неравенства f (x) > g (x) являются интервалы, где график функции f выше графика функции g ;
  • решениями неравенства f (x) ≥ g (x) являются интервалы, где график функции f не ниже графика функции g ;
  • решениями неравенства f (x) < g (x) являются интервалы, где график функции f ниже графика функции g ;
  • решениями неравенства f (x) ≤ g (x) являются интервалы, где график функции f не выше графика функции g ;
  • абсциссы точек пересечения графиков функций f и g являются решениями уравнения f (x) = g (x) .

Рассмотрим приведенный выше алгоритм на примере. Для этого возьмем квадратное неравенство a · x 2 + b · x + c < 0 (≤ , > , ≥) и выведем из него две функции. Левая часть неравенства будет отвечать y = a · x 2 + b · x + c (при этом f (x) = a · x 2 + b · x + c) , а правая y = 0 (при этом g (x) = 0).

Графиком первой функции является парабола, второй прямая линия, которая совпадает с осью абсцисс О х. Проанализируем положение параболы относительно оси О х. Для этого выполним схематический рисунок.

Ветви параболы направлены вверх. Она пересекает ось О х в точках x 1 и x 2 . Коэффициент а в данном случае положительный, так как именно он отвечает за направление ветвей параболы. Дискриминант положителен, что указывает на наличие двух корней у квадратного трехчлена a · x 2 + b · x + c . Корни трехчлена мы обозначили как x 1 и x 2 , причем приняли, что x 1 < x 2 , так как на оси О х изобразили точку с абсциссой x 1 левее точки с абсциссой x 2 .

Части параболы, расположенные выше оси О х обозначим красным, ниже – синим. Это позволит нам сделать рисунок более наглядным.

Выделим промежутки, которые соответствуют этим частям и отметим их на рисунке полями определенного цвета.

Красным мы отметили промежутки (− ∞ , x 1) и (x 2 , + ∞) , на них парабола выше оси О х. Они являются a · x 2 + b · x + c > 0 . Синим мы отметили промежуток (x 1 , x 2) , который является решением неравенства a · x 2 + b · x + c < 0 . Числа x 1 и x 2 будут отвечать равенству a · x 2 + b · x + c = 0 .

Сделаем краткую запись решения. При a > 0 и D = b 2 − 4 · a · c > 0 (или D " = D 4 > 0 при четном коэффициенте b) мы получаем:

  • решением квадратного неравенства a · x 2 + b · x + c > 0 является (− ∞ , x 1) ∪ (x 2 , + ∞) или в другой записи x < x 1 , x > x 2 ;
  • решением квадратного неравенства a · x 2 + b · x + c ≥ 0 является (− ∞ , x 1 ] ∪ [ x 2 , + ∞) или в другой записи x ≤ x 1 , x ≥ x 2 ;
  • решением квадратного неравенства a · x 2 + b · x + c < 0 является (x 1 , x 2) или в другой записи x 1 < x < x 2 ;
  • решением квадратного неравенства a · x 2 + b · x + c ≤ 0 является [ x 1 , x 2 ] или в другой записи x 1 ≤ x ≤ x 2 ,

где x 1 и x 2 – корни квадратного трехчлена a · x 2 + b · x + c , причем x 1 < x 2 .

На данном рисунке парабола касается оси O х только в одной точке, которая обозначена как x 0 a > 0 . D = 0 , следовательно, квадратный трехчлен имеет один корень x 0 .

Парабола расположена выше оси O х полностью, за исключением точки касания координатной оси. Обозначим цветом промежутки (− ∞ , x 0) , (x 0 , ∞) .

Запишем результаты. При a > 0 и D = 0 :

  • решением квадратного неравенства a · x 2 + b · x + c > 0 является (− ∞ , x 0) ∪ (x 0 , + ∞) или в другой записи x ≠ x 0 ;
  • решением квадратного неравенства a · x 2 + b · x + c ≥ 0 является (− ∞ , + ∞) или в другой записи x ∈ R ;
  • квадратное неравенство a · x 2 + b · x + c < 0 не имеет решений (нет интервалов, на которых парабола расположена ниже оси O x );
  • квадратное неравенство a · x 2 + b · x + c ≤ 0 имеет единственное решение x = x 0 (его дает точка касания),

где x 0 - корень квадратного трехчлена a · x 2 + b · x + c .

Рассмотрим третий случай, когда ветви параболы направлены вверх и не касаются оси O x . Ветви параболы направлены вверх, что означает, что a > 0 . Квадратный трехчлен не имеет действительных корней, так как D < 0 .

На графике нет интервалов, на которых парабола была бы ниже оси абсцисс. Это мы будем учитывать при выборе цвета для нашего рисунка.

Получается, что при a > 0 и D < 0 решением квадратных неравенств a · x 2 + b · x + c > 0 и a · x 2 + b · x + c ≥ 0 является множество всех действительных чисел, а неравенства a · x 2 + b · x + c < 0 и a · x 2 + b · x + c ≤ 0 не имеют решений.

Нам осталось рассмотреть три варианта, когда ветви параболы направлены вниз. На этих трех вариантах можно не останавливаться подробно, так как при умножении обеих частей неравенства на − 1 мы получаем равносильное неравенство с положительным коэффициентом при х 2 .

Рассмотрение предыдущего раздела статьи подготовило нас к восприятию алгоритма решения неравенств с использованием графического способа. Для проведения вычислений нам необходимо будет каждый раз использовать чертеж, на котором будет изображена координатная прямая O х и парабола, которая отвечает квадратичной функции y = a · x 2 + b · x + c . Ось O у мы в большинстве случаев изображать не будем, так как для вычислений она не нужна и будет лишь перегружать чертеж.

Для построения параболы нам необходимо будет знать две вещи:

Определение 2

  • направление ветвей, которое определяется значением коэффициента a ;
  • наличие точек пересечения параболы и оси абсцисс, которые определяются значением дискриминанта квадратного трехчлена a · x 2 + b · x + c .

Точки пересечения и касания мы будет обозначать обычным способом при решении нестрогих неравенств и пустыми при решении строгих.

Наличие готового чертежа позволяет перейти к следующему шагу решения. Он предполагает определение промежутков, на которых парабола располагается выше или ниже оси O х. Промежутки и точки пересечения и являются решением квадратного неравенства. Если точек пересечения или касания нет и нет интервалов, то считается, что заданное в условиях задачи неравенство не имеет решений.

Теперь решим несколько квадратных неравенств, используя приведенный выше алгоритм.

Пример 1

Необходимо решить неравенство 2 · x 2 + 5 1 3 · x - 2 графическим способом.

Решение

Нарисуем график квадратичной функции y = 2 · x 2 + 5 1 3 · x - 2 . Коэффициент при x 2 положительный, так как равен 2 . Это значит, что ветви параболы будут направлены вверх.

Вычислим дискриминант квадратного трехчлена 2 · x 2 + 5 1 3 · x - 2 для того, чтобы выяснить, имеет ли парабола с осью абсцисс общие точки. Получаем:

D = 5 1 3 2 - 4 · 2 · (- 2) = 400 9

Как видим, D больше нуля, следовательно, у нас есть две точки пересечения: x 1 = - 5 1 3 - 400 9 2 · 2 и x 2 = - 5 1 3 + 400 9 2 · 2 , то есть, x 1 = − 3 и x 2 = 1 3 .

Мы решаем нестрогое неравенство, следовательно проставляем на графике обычные точки. Рисуем параболу. Как видите, рисунок имеет такой же вид как и в первом рассмотренном нами шаблоне.

Наше неравенство имеет знак ≤ . Следовательно, нам нужно выделить промежутки на графике, на которых парабола расположена ниже оси O x и добавить к ним точки пересечения.

Нужный нам интервал − 3 , 1 3 . Добавляем к нему точки пересечения и получаем числовой отрезок − 3 , 1 3 . Это и есть решение нашей задачи. Записать ответ можно в виде двойного неравенства: − 3 ≤ x ≤ 1 3 .

Ответ: − 3 , 1 3 или − 3 ≤ x ≤ 1 3 .

Пример 2

− x 2 + 16 · x − 63 < 0 графическим методом.

Решение

Квадрат переменной имеет отрицательный числовой коэффициент, поэтому ветви параболы будут направлены вниз. Вычислим четвертую часть дискриминанта D " = 8 2 − (− 1) · (− 63) = 64 − 63 = 1 . Такой результат подсказывает нам, что точек пересечения будет две.

Вычислим корни квадратного трехчлена: x 1 = - 8 + 1 - 1 и x 2 = - 8 - 1 - 1 , x 1 = 7 и x 2 = 9 .

Получается, что парабола пересекает ось абсцисс в точках 7 и 9 . Отметим эти точки на графике пустыми, так как мы работаем со строгим неравенством. После этого нарисуем параболу, которая пересекает ось O х в отмеченных точках.

Нас будут интересовать промежутки, на которых парабола располагается ниже оси O х. Отметим эти интервалы синим цветом.

Получаем ответ: решением неравенства являются промежутки (− ∞ , 7) , (9 , + ∞) .

Ответ: (− ∞ , 7) ∪ (9 , + ∞) или в другой записи x < 7 , x > 9 .

В тех случаях, когда дискриминант квадратного трехчлена равен нулю, необходимо внимательно подходить к вопросу о том, стоит ли включать в ответ абсциссы точки касания. Для того, чтобы принять правильное решение, необходимо учитывать знак неравенства. В строгих неравенствах точка касания оси абсцисс не является решением неравенства, в нестрогих является.

Пример 3

Решите квадратное неравенство 10 · x 2 − 14 · x + 4 , 9 ≤ 0 графическим методом.

Решение

Ветви параболы в данном случае будут направлены вверх. Она будет касаться оси O х в точке 0 , 7 , так как

Построим график функции y = 10 · x 2 − 14 · x + 4 , 9 . Ее ветви направлены вверх, так как коэффициент при x 2 положительный, и она касается оси абсцисс в точке с абсциссой 0 , 7 , так как D " = (− 7) 2 − 10 · 4 , 9 = 0 , откуда x 0 = 7 10 или 0 , 7 .

Поставим точку и нарисуем параболу.

Мы решаем нестрогое неравенство со знаком ≤ . Следовательно. Нас будут интересовать промежутки, на которых парабола располагается ниже оси абсцисс и точка касания. На рисунке нет интервалов, которые удовлетворяли бы нашим условиям. Есть лишь точка касания 0 , 7 . Это и есть искомое решение.

Ответ: Неравенство имеет только одно решение 0 , 7 .

Пример 4

Решите квадратное неравенство – x 2 + 8 · x − 16 < 0 .

Решение

Ветви параболы направлены вниз. Дискриминант равен нулю. Точка пересечения x 0 = 4 .

Отмечаем точку касания на оси абсцисс и рисуем параболу.

Мы имеем дело со строгим неравенством. Следовательно, нас интересуют интервалы, на которых парабола расположена ниже оси O х. Отметим их синим.

Точка с абсциссой 4 не является решением, так как в ней парабола не расположена ниже оси O x . Следовательно, мы получаем два интервала (− ∞ , 4) , (4 , + ∞) .

Ответ: (− ∞ , 4) ∪ (4 , + ∞) или в другой записи x ≠ 4 .

Не всегда при отрицательном значении дискриминанта неравенство не будет иметь решений. Есть случаи, когда решением будет являться множество всех действительных чисел.

Пример 5

Решите квадратное неравенство 3 · x 2 + 1 > 0 графическим способом.

Решение

Коэффициент а положительный. Дискриминант отрицательный. Ветви параболы будут направлены вверх. Точек пересечения параболы с осью O х нет. Обратимся к рисунку.

Мы работаем со строгим неравенством, которое имеет знак > . Это значит, что нас интересуют промежутки, на которых парабола располагается выше оси абсцисс. Это как раз тот случай, когда ответом является множество всех действительный чисел.

Ответ: (− ∞ , + ∞) или так x ∈ R .

Пример 6

Необходимо найти решение неравенства − 2 · x 2 − 7 · x − 12 ≥ 0 графическим способом.

Решение

Ветви параболы направлены вниз. Дискриминант отрицательный, следовательно, общих точек параболы и оси абсцисс нет. Обратимся к рисунку.

Мы работаем с нестрогим неравенством со знаком ≥ , следовательно, интерес для нас представляют промежутки, на которых парабола располагается выше оси абсцисс. Судя по графику, таких промежутков нет. Это значит, что данное у условии задачи неравенство не имеет решений.

Ответ: Нет решений.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter