Какую роль играет физика в медицине. Влияние технического прогресса и успехов естественных наук на медицину

ученица 11 «А» класса МБОУ «СОШ №14» имени А.М. Мамонова г. Старый Оскол Краевская Екатерина Николаевна.

Физика в медицине

чем стремление к знанию».

М. Монтень

Древние называли физикой любое исследование окружающего мира и явлений природы. Такое понимание термина «физика » сохранилось до конца 17 века. МЕДИЦИНА [латинское medicina (ars) - врачебная, лечебная (наука и искусство)] - область науки и практическая деятельность, направленные на сохранение и укрепление здоровья людей, предупреждение и лечение болезней. Вершиной врачебного искусства в древнем мире была деятельность Гиппократа. Анатомо-физиологические открытия А. Везалия, У. Гарвея, труды Парацельса, клиническая деятельность А. Паре и Т. Сиденхема способствовали становлению медицины на основе опытного знания.

В настоящее время обширная линия соприкосновения этих наук всё время расширяется и упрочняется. Нет ни одной области медицины, где бы ни применялись физические знания и приборы.

Скачать:

Предварительный просмотр:

Эссе

«Физика в медицине»

МБОУ «СОШ №14»

имени А.М. Мамонова

г. Старый Оскол

Краевская Екатерина Николаевна.

Руководитель работы:

учитель физики

Попова Людмила Леонасовна.

Старый Оскол 2011 г

Физика в медицине

«Нет стремления более естественного,

чем стремление к знанию».

М. Монтень

Древние называли физикой любое исследование окружающего мира и явлений природы. Такое понимание термина « физика » сохранилось до конца 17 века. МЕДИЦИНА [латинское medicina (ars) - врачебная, лечебная (наука и искусство)] - область науки и практическая деятельность, направленные на сохранение и укрепление здоровья людей, предупреждение и лечение болезней. Вершиной врачебного искусства в древнем мире была деятельность Гиппократа. Анатомо-физиологические открытия А. Везалия, У. Гарвея, труды Парацельса, клиническая деятельность А. Паре и Т. Сиденхема способствовали становлению медицины на основе опытного знания.

Физика и медицина… Наука о явлениях природы и наука о болезнях человека, их лечении и предупреждении… В настоящее время обширная линия соприкосновения этих наук всё время расширяется и упрочняется. Нет ни одной области медицины, где бы ни применялись физические знания и приборы.

Использование достижений физики в лечении заболеваний:

Становление научной медицины было бы невозможно без достижений в области естествознания и техники, методов объективного исследования больного и способов лечения.

В процессе развития медицина дифференцировалась на ряд самостоятельных отраслей.

В терапии, хирургии и др. областях медицины широко используются достижения физической науки и техники.

Физика помогает диагностике заболеваний.

В диагностике заболеваний широко применяются рентгеновские лучи, ультразвуковое обследование, иридодиагностика, радиодиагностика.

Рентгенология - область медицины, изучающая применение рентгеновского излучения для исследования строения и функций органов и систем и диагностики заболеваний. Рентгеновские лучи открыл немецкий физик Вильгельм Рентген (1845 – 1923).

Рентгеновские лучи.

Рентгеновские лучи - не видимое глазом электромагнитное излучение.

Проникают через некоторые непрозрачные для видимого света материалы. Рентгеновские лучи применяют в рентгеновском структурном анализе, медицине и др.

Проникая сквозь мягкие ткани, рентгеновские лучи высвечивают кости скелета и внутренние органы. На снимках, получаемых с помощью рентгеновской аппаратуры, можно выявить болезнь на ранних стадиях и примять необходимые меры. Однако нужно считаться с тем, что любое облучение безопасно лишь в определённых дозах – недаром работа в рентгеновском кабинете считается вредной для здоровья.

Помимо рентгена, сегодня применяют такие методы диагностики:

Ультразвуковое обследование (исследование, когда высокочастотный звуковой луч прощупывает наш организм, словно эхолот – морское дно, и создаёт его «карту», отмечая все отклонения от нормы).

Ультразвук.

Ультразвук - не слышимые человеческим ухом упругие волны.

Ультразвук содержится в шуме ветра и моря, издается и воспринимается рядом животных (летучие мыши, рыбы, насекомые и др.), присутствует в шуме машин.

Применяется в практике физических, физико-химических и биологических исследований, а также в технике для целей дефектоскопии, навигации, подводной связи и других процессов и в медицине - для диагностики и лечения.

В настоящее время лечение ультразвуковыми колебаниями получили очень большое распространение. Используется, в основном, ультразвук частотой от 22 – 44 кГц и от 800 кГц до 3 МГц. Глубина проникновения ультразвука в ткани при ультразвуковой терапии составляет от 20 до 50 мм, при этом ультразвук оказывает механическое, термическое, физико-химическое воздействие, под его влиянием активизируются обменные процессы и реакции иммунитета. Ультразвук используемых в терапии характеристик обладает выраженным обезболивающим, спазмолитическим, противовоспалительным, противоаллергическим и общетонизирующим действием, он стимулирует крово- и лимфообращение, как уже было сказано, процессы регенерации; улучшает трофику тканей. Благодаря этому ультразвуковая терапия нашла широкое применение в клинике внутренних болезней, в артрологии, дерматологии, отоларингологии и др.

Специальными приборами ультразвук можно сфокусировать и точно направить на небольшой участок ткани – например, на опухоль. Под действием сфокусированного луча высокой интенсивности, местно, клетки нагреваются до температуры 42°C. Раковые клетки начинают гибнуть при повышении температуры, и рост опухоли замедляется.

Иридодиагностика - метод распознавания болезней человека путем осмотра радужной оболочки глаза. Основана на представлении о том, что некоторые заболевания внутренних органов сопровождаются характерными внешними изменениями определенных участков радужной оболочки.

Радиодиагностика. Основана на использовании радиоактивных изотопов. Например, для диагностики и лечения заболеваний щитовидной железы применяют радиоактивные изотопы йода.

Лазер как физический прибор. Лазер (оптический квантовый генератор)- усиление света в результате вынужденного излучения, источник оптического когерентного излучения, характеризующегося высокой направленностью и большой плотностью энергии. Лазеры получили широкое применение в научных исследованиях (в физике, химии, биологии и др.), в практической медицине (хирургия, офтальмология и др.), а также в технике (лазерная технология).

Использование лазеров в хирургии:

С их помощью выполняются сложнейшие операции на мозге.

Лазер используют в онкологи. Мощный лазерный пучок соответствующего диаметра уничтожает злокачественную опухоль.

Мощными лазерными импульсами «приваривают» отслоившуюся сетчатку и выполняют другие офтальмологические операции.

Плазменный скальпель.

Кровотечение – неприятная помеха при операциях, так как оно ухудшает обзор операционного поля и может привести к обескровливанию организма.

В помощь хирургу были созданы миниатюрные генераторы высокотемпературной плазмы.

Плазменный скальпель рассекает ткань, кости без крови. Раны после операции заживают быстрее.

В медицине широко применяются приборы и аппараты, способные временно заменить органы человека. Например, в настоящее время медики используют аппараты искусственного кровообращения. Искусственное кровообращение - временное выключение сердца из кровообращения и осуществление циркуляции крови в организме с помощью аппарата искусственного кровообращения (АИК).

Итак, мы убедились, что физика имеет важное значения для медицины, а, следовательно, и для здоровья человека. Поэтому нужно изучать физику, способствовать её развитию .

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http :// www . allbest . ru /

ГБПОУ ММК

Доклад

на тему «Физика в медицине»

В ыполнила:

Арсланова А.Р.

Проверила:

Квысбаева Г.М

2015 Медногорск

Древние называли физикой любое исследование окружающего мира и явлений природы. Такое понимание термина « физика » сохранилось до конца 17 века. МЕДИЦИНА [латинское medicina (ars) -- врачебная, лечебная (наука и искусство)] - область науки и практическая деятельность, направленные на сохранение и укрепление здоровья людей, предупреждение и лечение болезней. Вершиной врачебного искусства в древнем мире была деятельность Гиппократа. Анатомо-физиологические открытия А. Везалия, У. Гарвея, труды Парацельса, клиническая деятельность А. Паре и Т. Сиденхема способствовали становлению медицины на основе опытного знания.

Физика и медицина… Наука о явлениях природы и наука о болезнях человека, их лечении и предупреждении… В настоящее время обширная линия соприкосновения этих наук всё время расширяется и упрочняется. Нет ни одной области медицины, где бы ни применялись физические знания и приборы. рентгеновский иридодиагностика скальпель хирургия

Использование достижений физики в лечении заболеваний:

Становление научной медицины было бы невозможно без достижений в области естествознания и техники, методов объективного исследования больного и способов лечения.

В процессе развития медицина дифференцировалась на ряд самостоятельных отраслей.

В терапии, хирургии и др. областях медицины широко используются достижения физической науки и техники.

Физика помогает диагностике заболеваний.

В диагностике заболеваний широко применяются рентгеновские лучи, ультразвуковое обследование, иридодиагностика, радиодиагностика.

Рентгенология - область медицины, изучающая применение рентгеновского излучения для исследования строения и функций органов и систем и диагностики заболеваний. Рентгеновские лучи открыл немецкий физикВильгельм Рентген (1845 - 1923).

Рентгеновские лучи.

Рентгеновские лучи - не видимое глазом электромагнитное излучение.

Проникают через некоторые непрозрачные для видимого света материалы. Рентгеновские лучи применяют в рентгеновском структурном анализе, медицине и др.

Проникая сквозь мягкие ткани, рентгеновские лучи высвечивают кости скелета и внутренние органы. На снимках, получаемых с помощью рентгеновской аппаратуры, можно выявить болезнь на ранних стадиях и примять необходимые меры. Однако нужно считаться с тем, что любое облучение безопасно лишь в определённых дозах - недаром работа в рентгеновском кабинете считается вредной для здоровья.

Помимо рентгена, сегодня применяют такие методы диагностики:

Ультразвуковое обследование (исследование, когда высокочастотный звуковой луч прощупывает наш организм, словно эхолот - морское дно, и создаёт его «карту», отмечая все отклонения от нормы).

Ультразвук.

Ультразвук - не слышимые человеческим ухом упругие волны.

Ультразвук содержится в шуме ветра и моря, издается и воспринимается рядом животных (летучие мыши, рыбы, насекомые и др.), присутствует в шуме машин.

Применяется в практике физических, физико-химических и биологических исследований, а также в технике для целей дефектоскопии, навигации, подводной связи и других процессов и в медицине -- для диагностики и лечения.

В настоящее время лечение ультразвуковыми колебаниями получили очень большое распространение. Используется, в основном, ультразвук частотой от 22 - 44 кГц и от 800 кГц до 3 МГц. Глубина проникновения ультразвука в ткани при ультразвуковой терапии составляет от 20 до 50 мм, при этом ультразвук оказывает механическое, термическое, физико-химическое воздействие, под его влиянием активизируются обменные процессы и реакции иммунитета. Ультразвук используемых в терапии характеристик обладает выраженным обезболивающим, спазмолитическим, противовоспалительным, противоаллергическим и общетонизирующим действием, он стимулирует крово- и лимфообращение, как уже было сказано, процессы регенерации; улучшает трофику тканей. Благодаря этому ультразвуковая терапия нашла широкое применение в клинике внутренних болезней, в артрологии, дерматологии, отоларингологии и др.

Специальными приборами ультразвук можно сфокусировать и точно направить на небольшой участок ткани - например, на опухоль. Под действием сфокусированного луча высокой интенсивности, местно, клетки нагреваются до температуры 42°C. Раковые клетки начинают гибнуть при повышении температуры, и рост опухоли замедляется.

Иридодиагностика - метод распознавания болезней человека путем осмотра радужной оболочки глаза. Основана на представлении о том, что некоторые заболевания внутренних органов сопровождаются характерными внешними изменениями определенных участков радужной оболочки.

Радиодиагностика. Основана на использовании радиоактивных изотопов. Например, для диагностики и лечения заболеваний щитовидной железы применяют радиоактивные изотопы йода.

Лазер как физический прибор. Лазер (оптический квантовый генератор)-- усиление света в результате вынужденного излучения, источник оптического когерентного излучения, характеризующегося высокой направленностью и большой плотностью энергии. Лазеры получили широкое применение в научных исследованиях (в физике, химии, биологии и др.), в практической медицине (хирургия, офтальмология и др.), а также в технике (лазерная технология).

Использование лазеров в хирургии:

С их помощью выполняются сложнейшие операции на мозге.

Лазер используют в онкологи. Мощный лазерный пучок соответствующего диаметра уничтожает злокачественную опухоль.

Мощными лазерными импульсами «приваривают» отслоившуюся сетчатку и выполняют другие офтальмологические операции.

Плазменный скальпель.

Кровотечение - неприятная помеха при операциях, так как оно ухудшает обзор операционного поля и может привести к обескровливанию организма.

В помощь хирургу были созданы миниатюрные генераторы высокотемпературной плазмы.

Плазменный скальпель рассекает ткань, кости без крови. Раны после операции заживают быстрее.

В медицине широко применяются приборы и аппараты, способные временно заменить органы человека. Например, в настоящее время медики используют аппараты искусственного кровообращения. Искусственное кровообращение - временное выключение сердца из кровообращения и осуществление циркуляции крови в организме с помощью аппарата искусственного кровообращения (АИК).

Размещено на Allbest.ru

...

Подобные документы

    Открытие Х-лучей Вильгельмом Рентгеном, история и значение данного процесса в истории. Устройство рентгеновской трубки и взаимосвязь ее главных элементов, принципы работы. Свойства рентгеновского излучения, его биологическое воздействие, роль в медицине.

    презентация , добавлен 21.11.2013

    Диагностика неврологических заболеваний. Инструментальные методы исследований. Использование рентгеновских лучей. Компьютерная томография головного мозга. Исследование функционального состояния мозга путем регистрации его биоэлектрической активности.

    презентация , добавлен 13.09.2016

    Использование ядерной физики в диагностике органов человека, применение регистрирующей аппаратуры. История развития ядерной медицины, методы и формы лечения заболеваний с помощью радиоактивного йода. Применение радиоактивного газа ксенона в терапии.

    реферат , добавлен 07.10.2013

    Процесс лазерного излучения. Исследования в области лазеров в диапазоне рентгеновских волн. Медицинское применение CO2–лазеров и лазеров на ионах аргона и криптона. Генерация лазерного излучения. Коэффициент полезного действия лазеров различных типов.

    реферат , добавлен 17.01.2009

    Зарождение медицинской физики в Средние века и Новое время. Ятрофизика и создание микроскопа. Применения электричества в медицине. Спор Гальвани и Вольта. Опыты Петрова и начало электродинамики. Развитие лучевой диагностики и ультразвуковой терапии.

    дипломная работа , добавлен 23.02.2014

    Инструментальные методы исследования в медицине с применением аппаратов, приборов и инструментов. Использование рентгеновских лучей в диагностике. Рентгенологическое исследование желудка и двенадцатиперстной кишки. Способы подготовки к исследованию.

    презентация , добавлен 14.04.2015

    Анализ и история применения чаги в лечении и профилактике раковых заболеваний, рецепты приготовления различных лекарственных форм из нее. Особенности применения народной медицины в медикаментозном лечении рака. Характеристика комплексной терапии рака.

    реферат , добавлен 03.05.2010

    Физические основы применения лазерной техники в медицине. Типы лазеров, принципы действия. Механизм взаимодействия лазерного излучения с биотканями. Перспективные лазерные методы в медицине и биологии. Серийно выпускаемая медицинская лазерная аппаратура.

    реферат , добавлен 30.08.2009

    Классификация сердечнососудистых заболеваний, основные способы их лечения лекарственными растениями. Описание и способы применения лекарственных растений с гипотензивным, мочегонным и тонизирующим действием при лечении сердечнососудистых заболеваний.

    реферат , добавлен 09.10.2010

    Характеристика некоторых заболеваний ЛОР-органов и методы их лечения: синуситы, аллергический ринит, сенсо-невральная тугоухость, простуда (ОРВИ). Роль витаминов в лечении и профилактике заболеваний ЛОР-органов, обоснование их применения и источники.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

«ЧИТИНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Институт переподготовки и повышения квалификации

Реферат

по дисциплине: ИСТОРИЯ ФИЗИКИ

Тема: Физика XX века и медицина

Выполнил ст. гр. ТКС-10

Кунгурова О.Е.

Проверил: Кузьмина Т.В.

Введение………………………………………………………………………3

1. Применение ультразвука………………………………………………….4

2. Светолечение………………………………………………………………8

Список используемой литературы………………………………………….17

Введение

Тесная связь физики с другими науками объясняется важностью физики, её значением, так как физика знакомит нас с наиболее общими законами природы, управ­ляющими течением процессов в ок­ружающем нас мире и во Вселен­ной в целом.

Цель физики заключается в отыскании общих законов природы и в объяснении конкретных процес­сов на их основе. По мере продви­жения к этой цели перед учеными постепенно вырисовывалась вели­чественная и сложная картина единства природы. Мир представ­ляет собой не совокупность разроз­ненных, независимых друг от друга событий, а разнообразные и много­численные проявления одного целого.

Современная физика нашла применение во многих отраслях нашей жизни - медицине, промышленности, связи, энергетике.

Мы рассмотрим применение ее в медицине.

1.Применение ультразвука

1) Приготовление смесей с помощью ультразвука

Широко применяется ультразвук для приготовления однородных смесей (гомогенизации). Еще в 1927 году американские ученые Лимус и Вуд обнаружили, что если две несмешивающиеся жидкости (например, масло и воду) слить в одну мензурку и подвергнуть облучению ультразвуком, то в мензурке образуется эмульсия, то есть мелкая взвесь масла в воде. Подобные эмульсии играют большую роль в промышленности: это лаки, краски, фармацевтические изделия, косметика. Широкое внедрение такого метода приготовления эмульсий в промышленность началось после изобретения жидкостного свистка.

2)Применение ультразвука в биологии.

Способность ультразвука разрывать оболочки клеток нашла применение в биологических исследованиях, например, при необходимости отделить клетку от ферментов. Ультразвук используется также для разрушения таких внутриклеточных структур, как митохондрии и хлоропласты с целью изучения взаимосвязи между их структурой и функциями (аналитическая цитология). Другое применение ультразвука в биологии связано с его способностью вызывать мутации. Исследования, проведенные в Оксфорде, показали, что ультразвук даже малой интенсивности может повредить молекулу ДНК. Искусственное целенаправленное создание мутаций играет большую роль в селекции растений. Главное преимущество ультразвука перед другими мутагенами (рентгеновские лучи, ультрафиолетовые лучи) заключается в том, что с ним чрезвычайно легко работать.

3)Применение ультразвука для диагностики.

Ультразвуковые колебания при распространении подчиняются законам геометрической оптики. В однородной среде они распространяются прямолинейно и с постоянной скоростью. На границе различных сред с неодинаковой акустической плотностью часть лучей отражается, а часть преломляется, продолжая прямолинейное распространение. Чем выше градиент перепада акустической плотности граничных сред, тем большая часть ультразвуковых колебаний отражается. Так как на границе перехода ультразвука из воздуха на кожу происходит отражение 99,99 % колебаний, то при ультразвуковом сканировании больного необходимо смазывание поверхности кожи водным желе, которое выполняет роль переходной среды. Отражение зависит от угла падения луча (наибольшее при перпендикулярном направлении) и частоты ультразвуковых колебаний (при более высокой частоте большая часть отражается).

Виды ультразвукового сканирования (схема): а - линейное (параллельное);
б - конвексное; в - секторное.

Отраженные эхосигналы поступают в усилитель и специальные системы реконструкции, после чего появляются на экране телевизионного монитора в виде изображения срезов тела, имеющие различные оттенки черно-белого цвета. Оптимальным является наличие не менее 64 градиентов цвета черно-белой шкалы. При позитивной регистрации максимальная интенсивность эхосигналов проявляется на экране белым цветом (эхопозитивные участки), а минимальная - черным (эхонегативные участки). При негативной регистрации наблюдается обратное положение.

Выбор позитивной или негативной регистрации не имеет значения. Полученное изображение фиксируется на экране монитора, а затем регистрируется с помощью термопринтера.

Первая попытка изготовить фонограммы человеческого тела относится к 1942 году. Немецкий ученый Дуссиле "освещал" ультразвуковым пучком человеческое тело и затем измерял интенсивность пучка, прошедшего через тело (методика работы с рентгеновскими лучами Мюльхаузера). Вначале 50-х годов американские ученые Уилд и Хаури впервые и довольно успешно применили ультразвук в клинических условиях. Свои исследования они сосредоточили на мозге, так как диагностика с помощью рентгеновских лучей не только сложна, но и опасна. Применение ультразвука для диагноза при серьезных повреждениях головы позволяет хирургу точно определить места кровоизлияний.

4)Использование эффекта Доплера в диагностике.

Особый интерес в диагностике вызывает использование эффекта Доплера. Суть эффекта заключается в изменении частоты звука вследствие относительного движения источника и приемника звука. Когда звук отражается от движущегося объекта, частота отраженного сигнала изменяется (происходит сдвиг частоты).

При наложении первичных и отраженных сигналов возникают биения, которые прослушиваются с помощью наушников или громкоговорителя. В настоящее время на основе эффекта Доплера исследованы только движение крови и биение сердца. Этот эффект широко применяется в акушерстве, так как звуки, идущие от матки легко регистрируются.

5)Применение ультразвука в терапии и хирургии

Ультразвук, применяемый в медицине, может быть условно разделен на ультразвук низких и высоких интенсивностей. Основная задача применения ультразвука низких интенсивностей (0,125 - 3,0 Вт/см2) - неповреждающий нагрев или какие-либо нетепловые эффекты, а также стимуляция и ускорение нормальных физиологических реакций при лечении повреждений. При более высоких интенсивностях (> 5 Вт/см 2) основная цель - вызвать управляемое избирательное разрушение в тканях.

Первое направление включает в себя большинство применений ультразвука в физиотерапии и некоторые виды терапии рака, второе - ультразвуковую хирургию.

Существуют две основные области применения ультразвука в хирургии. В первой из них используется способность сильно фокусированного пучка ультразвука вызывать локальные разрушения в тканях, а во второй механические колебания ультразвуковой частоты накладываются на хирургические инструменты типа лезвий, пил, механических наконечников.

Хирургическая техника должна обеспечивать управляемость разрушения тканей, воздействовать только на четко ограниченную область, быть быстродействующей, вызывать минимальные потери крови. Мощный фокусированный ультразвук обладает большинством из этих качеств.
Возможность использования фокусированного ультразвука для создания зон поражения в глубине органа без разрушения вышележащих тканей изучено в основном в операциях на мозге. Позже операции проводились на печени, спинном мозге, почках и глазе.

6) Применение ультразвука в физиотерапии

Ускорение регенерации тканей.

Одно из наиболее распространенных применений ультразвука в физиотерапии - это ускорение регенерации тканей и заживления ран. Восстановление тканей можно описать с помощью трех перекрывающихся фаз.
В течение воспалительной фазы фагоцитарная активность макрофагов и полиморфнонуклеарных лейкоцитов ведет к удалению клеточных фрагментов и патогенных частиц. Переработка этого материала происходит главным образом при помощи лизосомальных ферментов макрофагов. Известно, что ультразвук терапевтических интенсивностей может вызвать изменения в лизосомальных мембранах, тем самым ускоряя прохождение этой фазы.

Вторая фаза в залечивании ран - пролиферация или фаза разрастания. Клетки мигрируют в область поражения и начинают делиться. Фибробласты начинают синтезировать коллаген. Интенсивность заживления начинает увеличиваться, и специальные клетки, миофибробласты, заставляют рану стягиваться. Показано, что ультразвук значительно ускоряет синтез коллагена фибробластами как in vitro, так и in vivo. Если диплоидные фибробласты человека облучить ультразвуком частотой 3 МГц и интенсивностью 0,5 Вт/см 2 in vitro, то количество синтезированного белка увеличится. Исследование таких клеток в электронном микроскопе показало, что по сравнению с контрольными клетками в них содержится больше свободных рибосом, шероховатой эндоплазматической сети.

Третья фаза - восстановление. Эластичность нормальной соединительной ткани обусловлена упорядоченной структурой коллагеновой сетки, позволяющей ткани напрягаться и расслабляться без особых деформаций. В рубцовой ткани волокна часто располагаются нерегулярно и запутанно, что не позволяет ей растягиваться без разрывов. Рубцовая ткань, формировавшаяся при воздействии ультразвука, прочнее и эластичнее по сравнению с "нормальной" рубцовой тканью.

Лечение трофических язв.

При облучении хронических варикозных язв на ногах ультразвуком частотой 3 МГц и интенсивностью 1 Вт/см 2 в импульсном режиме 2 мс: 8 мс были получены следующие результаты: после 12 сеансов лечения средняя площадь язв составляла примерно 66,4% от их первоначальной площади, в то время как площадь контрольных язв уменьшилась всего до 91,6%. Ультразвук может также способствовать приживлению пересаженных лоскутов кожи на края трофических язв.

Ускорение рассасывания отеков.

Ультразвук может ускорить рассасывание отеков, вызванных повреждениями мягких тканей, что скорее всего обусловлено увеличением кровотока или местными изменениями в тканях под действием акустических микропотоков.

Заживление переломов.

При экспериментальном исследовании переломов малой берцовой кости у крыс было обнаружено, что ультразвуковое облучение во время воспалительной и ранней пролиферативной фаз ускоряет и улучшает выздоровление. Костная мозоль у таких животных содержала больше костной ткани и меньше хрящей. Однако в поздней пролиферативной фазе приводило к негативным эффектам - усиливался рост хрящей и задерживалось образование костной ткани.

2.Светолечение

Светолечение - это метод физиотерапии, заключающийся в дозированном воздействии на организм больного инфракрасного, видимого или ультрафиолетового излучения.

1)Инфракрасное излучение

Механизм действия:

    местная гипертермия;

    спазм сосудов, сменяющийся их расширением, усиление кровотока;

    увеличение проницаемости стенок капилляров;

    усиление тканевого обмена, активация окислительно-восстановительных процессов;

    высвобождение биологически-активных веществ, в том числе гистаминоподобных, что также приводит к увеличению проницаемости капилляров;

    противовоспалительный эффект;

    ускорение обратного развития воспалительных процессов;

    ускорение тканевой регенерации;

    увеличение местной сопротивляемости тканей к инфекции;

    рефлекторное снижение тонуса поперечно-полосатой и гладкой мускулатуры - уменьшение болей, связанных с их спазмом.

2)Ультрафиолетовое излучение

Механизм действия:

    нервно-рефлекторный: лучистая энергия как раздражитель действует через кожу с ее мощным рецепторным аппаратом на центральную нервную систему, а через нее на все органы и ткани организма человека;

    часть поглощенной лучистой энергии превращается в теплоту, под ее влияние в тканях происходит ускорение физико-химических процессов, что сказывается на повышении тканевого и общего обмена;

    фотоэлектрический эффект - отщепленные при этом электроны и появившиеся положительно заряженные ионы влекут за собой изменения "ионной конъюнктуры" в клетках и тканях, а следовательно и изменение электрических свойств коллоидов; в результате этого увеличивается проницаемость клеточных мембран и увеличивается обмен между клеткой и окружающей средой;

    возникновение вторичного электромагнитного излучения в тканях;

    бактерицидное действие света, зависящее от спектрального состава, интенсивности излучения; бактерицидное действие складывается из непосредственного действия лучистой энергии на бактерий и повышение реактивности организма (образование БАВ, повышение иммунологических свойств крови);

    прямое разрушение токсинов: дифтерийного и столбнячного;

    при воздействии ультрафиолетового излучения появляется пигментация кожи, повышающая устойчивость кожи к повторным облучениям;

    изменение физико-химических свойств кожи (снижение рН за счет снижения уровня катионов и повышения уровня анионов).

3)Лазеротерапия

Механизм действия:

    улучшение микроциркуляции;

    увеличение проницаемости клеточных мембран и интенсификация обмена веществ между клеткой и окружающей средой;

    активация защитных сил организма (активация фагоцитоза и других неспецифических факторов защиты организма);

    анальгетическое действие;

    гипотензивное действие.

4)Аэроионотерапия отрицательными зарядами электричества

Еще в 30-х годах Л.Л.Васильевым совместно с А.Л.Чижевским была предложена теория "тканевого электрообмена", согласно которой в легких, наряду с газовым и водным обменом, происходит также обмен электрических зарядов между альвеолярным воздухом и кровью. При этом частицы крови заряжаются, а затем уносятся по кровеносному руслу к органам. Там они отдают свой заряд, пополняя тем самым естественные электрические ресурсы различных тканей организма.

Наряду с описанным выше, существует еще и рефлекторный механизм воздействия аэроионов на организм. Основан он на раздражении рецепторов (нервных окончаний), расположенных в легких. Возникшие нервные импульсы передаются затем в центральную нервную систему, которая, в свою очередь, воздействует на другие органы и ткани. Оба эти механизма действуют не изолированно, а в постоянной взаимосвязи.

Исследования показали, что наиболее благотворно влияют на здоровье легкие отрицательные ионы кислорода воздуха. Предположительно, поток ионов взаимодействует с биологическими мембранами, на которых существует электрический потенциал. Кроме того, отрицательные аэроионы кислорода могут вмешиваться в самые разные виды биологического окисления, происходящего в организме.

Аэроионы влияют на работу нервной системы, кровяное давление, тканевое дыхание, обмен веществ, температуру тела, кроветворение, при их воздействии изменяются физико-химические свойства крови, содержание сахара в крови, электрокинетический потенциал эритроцитов. Это далеко не полный список. Такого рода универсальность физиологического воздействия аэроионов объясняется тем, что они влияют на основные физико-химические процессы, протекающие в организме.

Список используемой литературы

1.Иванов В.А.”Лазер”

2.Кондарев С.В. ”Лечение УВЧ”

3.Самойлов Д.М. “Магнитотерапия”

4.Заявлова С.А. “Светолечение”

Доктор биологических наук Ю. ПЕТРЕНКО.

Несколько лет назад в Московском государственном университете был открыт факультет фундаментальной медицины, на котором готовят врачей, обладающих широкими знаниями в естественных дисциплинах: математике, физике, химии, молекулярной биологии. Но вопрос о том, насколько необходимы фундаментальные знания врачу, продолжает вызывать острые споры.

Наука и жизнь // Иллюстрации

Среди символов медицины, изображенных на фронтонах здания библиотеки Российского государственного медицинского университета, - надежда и исцеление.

Настенная роспись в фойе Российского государственного медицинского университета, на которой изображены великие врачи прошлого, сидящие в раздумье за одним длинным столом.

У. Гильберт (1544-1603), придворный врач английской королевы, естествоиспытатель, открывший земной магнетизм.

Т. Юнг (1773-1829), известный английский врач и физик, один из создателей волновой теории света.

Ж.-Б. Л. Фуко (1819-1868), французский врач, увлекавшийся физическими исследованиями. С помощью 67-метрового маятника доказал вращение Земли вокруг оси и сделал много открытий в области оптики и магнетизма.

Ю. Р. Майер (1814-1878), немецкий врач, установивший основные принципы закона сохранения энергии.

Г. Гельмгольц (1821-1894), немецкий врач, занимался физиологической оптикой и акустикой, сформулировал теорию свободной энергии.

Надо ли преподавать физику будущим врачам? В последнее время этот вопрос волнует многих, и не только тех, кто готовит профессионалов в области медицины. Как обычно, существуют и сталкиваются два крайних мнения. Те, кто "за", рисуют мрачную картину, которая явилась плодом пренебрежительного отношения к базисным дисциплинам в образовании. Те, кто "против", считают, что в медицине должен доминировать гуманитарный подход и врач прежде всего должен быть психологом.

КРИЗИС МЕДИЦИНЫ И КРИЗИС ОБЩЕСТВА

Современная теоретическая и практическая медицина достигла больших успехов, и физические знания ей сильно в этом помогли. Но в научных статьях и публицистике не перестают звучать голоса о кризисе медицины вообще и медицинского образования в частности. Факты, свидетельствующие о кризисе, определенно есть - это и появление "божественных" целителей, и возрождение экзотических методов врачевания. Заклинания типа "абракадабры" и амулеты вроде лягушачьей лапки вновь в ходу, как в доисторические времена. Приобретает популярность неовитализм, один из основоположников которого, Ханс Дриш, считал, что сущность жизненных явлений составляет энтелехия (своего рода душа), действующая вне времени и пространства, и что живое не может сводиться к совокупности физико-химических явлений. Признание энтелехии в качестве жизненной силы отрицает значение физико-химических дисциплин для медицины.

Можно привести множество примеров того, как псевдонаучные представления подменяют и вытесняют подлинно научные знания. Почему так происходит? По мнению нобелевского лауреата, открывателя структуры ДНК Фрэнсиса Крика, когда общество становится очень богатым, молодежь проявляет нежелание работать: она предпочитает жить легкой жизнью и заниматься пустяками, вроде астрологии. Это справедливо не только для богатых стран.

Что касается кризиса в медицине, то преодолеть его можно, только повышая уровень фундаментальности. Обычно считают, что фундаментальность - это более высокий уровень обобщения научных представлений, в данном случае - представлений о природе человека. Но и на этом пути можно дойти до парадоксов, например, рассматривать человека как квантовый объект, полностью абстрагируясь от физико-химических процессов, протекающих в организме.

ВРАЧ-МЫСЛИТЕЛЬ ИЛИ ВРАЧ-ГУРУ?

Никто не отрицает, что вера больного в исцеление играет важную, иногда даже решающую роль (вспомним эффект плацебо). Так какой же врач нужен больному? Уверенно произносящий: "Ты будешь здоров" или же долго раздумывающий, какое лекарство выбрать, чтобы получить максимальный эффект и при этом не навредить?

По воспоминаниям современников, знаменитый английский ученый, мыслитель и врач Томас Юнг (1773-1829) нередко застывал в нерешительности у постели больного, колебался в установлении диагноза, часто и надолго умолкал, погружаясь в себя. Он честно и мучительно искал истину в сложнейшем и запутанном предмете, о котором писал так: "Нет науки, сложностью превосходящей медицину. Она выходит за пределы человеческого разума".

С точки зрения психологии врач-мыслитель мало соответствует образу идеального врача. Ему недостает смелости, самонадеянности, безапелляционности, нередко свойственных именно невеждам. Наверное, такова природа человека: заболев, уповать на быстрые и энергичные действия врачующего, а не на размышления. Но, как сказал Гёте, "нет ничего страшнее деятельного невежества". Юнг как врач большой популярности у больных не приобрел, а вот среди коллег его авторитет был высоким.

ФИЗИКУ СОЗДАВАЛИ ВРАЧИ

Познай самого себя, и ты познаешь весь мир. Первым занимается медицина, вторым - физика. Изначально связь между медициной и физикой была тесной, недаром совместные съезды естествоиспытателей и врачей проходили вплоть до начала XX века. И между прочим, физику во многом создали врачи, а к исследованиям их часто побуждали вопросы, которые ставила медицина.

Врачи-мыслители древности первыми задумались над вопросом, что есть теплота. Они знали, что здоровье человека связано с теплотой его тела. Великий Гален (II век н.э.) ввел в обиход понятия "температура" и "градус", ставшие основополагающими для физики и других дисциплин. Так что врачи древности заложили основы науки о тепле и изобрели первые термометры.

Уильям Гильберт (1544-1603), лейб-медик английской королевы, изучал свойства магнитов. Он назвал Землю большим магнитом, доказал это экспериментально и придумал модель для описания земного магнетизма.

Томас Юнг, о котором уже упоминалось, был практикующим врачом, но при этом сделал великие открытия во многих областях физики. Он по праву считается, вместе с Френелем, создателем волновой оптики. Кстати, именно Юнг открыл один из дефектов зрения - дальтонизм (неспособность различать красный и зеленый цвета). По иронии судьбы это открытие обессмертило в медицине имя не врача Юнга, а физика Дальтона, который оказался первым, у кого обнаружился этот дефект.

Юлиус Роберт Майер (1814-1878), внесший огромный вклад в открытие закона сохранения энергии, служил врачом на голландском корабле "Ява". Он лечил матросов кровопусканием, которое считалось в то время средством от всех болезней. По этому поводу даже острили, что врачи выпустили больше человеческой крови, чем ее было пролито на полях сражений за всю историю человечества. Майер обратил внимание, что, когда корабль находится в тропиках, при кровопускании венозная кровь почти такая же светлая, как артериальная (обычно венозная кровь темнее). Он предположил, что человеческий организм, подобно паровой машине, в тропиках, при высокой температуре воздуха, потребляет меньше "топлива", а потому и "дыма" выделяет меньше, вот венозная кровь и светлеет. Кроме того, задумавшись над словами одного штурмана о том, что во время штормов вода в море нагревается, Майер пришел к выводу, что всюду должно существовать определенное соотношение между работой и теплотой. Он высказал положения, которые легли по существу в основу закона сохранения энергии.

Выдающийся немецкий ученый Герман Гельмгольц (1821-1894), тоже врач, независимо от Майера сформулировал закон сохранения энергии и выразил его в современной математической форме, которой до настоящего времени пользуются все, кто изучает и использует физику. Помимо этого Гельмгольц сделал великие открытия в области электромагнитных явлений, термодинамике, оптике, акустике, а также в физиологии зрения, слуха, нервных и мышечных систем, изобрел ряд важных приборов. Получив медицинское образование и будучи профессиональным медиком, он пытался применить физику и математику к физиологическим исследованиям. В 50 лет профессиональный врач стал профессором физики, а в 1888 году - директором физико-математического института в Берлине.

Французский врач Жан-Луи Пуазейль (1799-1869) экспериментально изучал мощность сердца как насоса, качающего кровь, и исследовал законы движения крови в венах и капиллярах. Обобщив полученные результаты, он вывел формулу, оказавшуюся чрезвычайно важной для физики. За заслуги перед физикой его именем названа единица динамической вязкости - пуаз.

Картина, показывающая вклад медицины в развитие физики, выглядит достаточно убедительной, но можно добавить к ней еще несколько штрихов. Любой автомобилист слышал о карданном вале, передающем вращательное движение под разными углами, но мало кто знает, что изобрел его итальянский врач Джероламо Кардано (1501-1576). Знаменитый маятник Фуко, сохраняющий плоскость колебаний, носит имя французского ученого Жан-Бернара-Леона Фуко (1819-1868), врача по образованию. Знаменитый русский врач Иван Михайлович Сеченов (1829-1905), чье имя носит Московская государственная медицинская академия, занимался физической химией и установил важный физико-химический закон, описывающий изменение растворимости газов в водной среде в зависимости от присутствия в ней электролитов. Этот закон и сейчас изучают студенты, причем не только в медицинских вузах.

"НАМ ФОРМУЛ НЕ ПОНЯТЬ!"

В отличие от врачей прошлого многие современные студенты-медики попросту не понимают, зачем им преподают естественно-научные дисциплины. Вспоминается одна история из моей практики. Напряженная тишина, второкурсники факультета фундаментальной медицины МГУ пишут контрольную. Тема - фотобиология и ее применение в медицине. Заметим, что фотобиологические подходы, основанные на физических и химических принципах действия света на вещество, признаются сейчас самыми перспективными для лечения онкологических заболеваний. Незнание этого раздела, его основ - серьезный ущерб в медицинском образовании. Вопросы не слишком сложные, все в рамках материала лекционных и семинарских занятий. Но итог неутешителен: почти половина студентов получили двойки. И для всех, кто не справился с заданием, характерно одно - в школе физику не учили или учили спустя рукава. На некоторых этот предмет наводит самый настоящий ужас. В стопке контрольных работ мне попался листок со стихами. Студентка, не сумевшая ответить на вопросы, в поэтической форме жаловалась, что ей приходится зубрить не латынь (вечное мучение студентов-медиков), а физику, и в конце восклицала: "Что делать? Ведь мы - медики, нам формул не понять!" Юная поэтесса, назвавшая в своих стихах контрольную "судным днем", испытания физикой не выдержала и в конце концов перевелась на гуманитарный факультет.

Когда студенты, будущие медики, оперируют крысу, никому и в голову не придет спрашивать, зачем это надо, хотя организмы человека и крысы различаются довольно сильно. Зачем будущим врачам физика - не так очевидно. Но сможет ли врач, не понимающий основных физических законов, грамотно работать со сложнейшим диагностическим оборудованием, которым "напичканы" современные клиники? Кстати, многие студенты, преодолев первые неудачи, начинают с увлечением заниматься биофизикой. В конце учебного года, когда были изучены такие темы, как "Молекулярные системы и их хаотические состояния", "Новые аналитические принципы рН-метрии", "Физическая природа химических превращений веществ", "Антиоксидантное регулирование процессов перекисного окисления липидов", второкурсники написали: "Мы открывали фундаментальные законы, определяющие основу живого и, возможно, мироздания. Открывали их не на основе умозрительных теоретических построений, а в реальном объективном эксперименте. Нам было тяжело, но интересно". Возможно, среди этих ребят есть будущие Федоровы, Илизаровы, Шумаковы.

"Лучший способ изучить что-либо - это открыть самому, - утверждал немецкий физик и писатель Георг Лихтенберг. - То, что вы были принуждены открыть сами, оставляет в вашем уме дорожку, которой вы сможете снова воспользоваться, когда в том возникнет необходимость". Этот самый эффективный принцип обучения стар как мир. Он лежит в основе "метода Сократа" и носит название принципа активного обучения. Именно на этом принципе построено обучение биофизике на факультете фундаментальной медицины.

РАЗВИВАЯ ФУНДАМЕНТАЛЬНОСТЬ

Фундаментальность для медицины - залог ее сегодняшней состоятельности и будущего развития. По-настоящему достичь цели можно, рассматривая организм как систему систем и идя путем более углубленного ее физико-химического осмысления. А как быть с медицинским образованием? Ответ ясен: повышать уровень знаний студентов в области физики и химии. В 1992 году в МГУ создан факультет фундаментальной медицины. Цель состояла в том, чтобы не только вернуть в университет медицину, но и, не снижая качества врачебной подготовки, резко усилить естественно-научную базу знаний будущих врачей. Такая задача требует интенсивной работы и преподавателей и студентов. Предполагается, что студенты сознательно выбирают фундаментальную медицину, а не обычную.

Еще раньше серьезной попыткой в этом направлении стало создание медико-биологического факультета в Российском государственном медицинском университете. За 30 лет работы факультета подготовлено большое число врачей-специалистов: биофизиков, биохимиков и кибернетиков. Но проблема этого факультета в том, что до сих пор его выпускники могли заниматься только медицинскими научными исследованиями, не имея права лечить больных. Сейчас эта проблема решается - в РГМУ совместно с Институтом повышения квалификации врачей создан учебно-научный комплекс, который позволяет студентам старших курсов пройти дополнительную врачебную подготовку.

Доктор биологических наук Ю. ПЕТРЕНКО.