Кислород – характеристика элемента, распространённость в природе, физические и химические свойства, получение.

ОПРЕДЕЛЕНИЕ

Кислород - восьмой по счету элемент Периодической таблицы. Относится к неметаллам. Расположен во втором периоде VI группы A подгруппы.

Порядковый номер равен 8. Заряд ядра равен +8. Атомный вес - 15,999а.е.м. В природе встречаются три изотопа кислорода: 16 O, 17 O и 18 O, из которых наиболее распространенным является 16 O (99,762 %).

Электронное строение атома кислорода

Атом кислорода имеет две оболочки, как и все элементы, расположенные во втором периоде. Номер группы -VI (халькогены) - свидетельствует о том, что на внешнем электронном уровне атома азота находится 6 валентных электронов. Обладает высокой окислительной способностью (выше только у фтора).

Рис. 1. Схематичное изображение строения атома кислорода.

Электронная конфигурация основного состояния записывается следующим образом:

1s 2 2s 2 2p 4 .

Кислород - элемент p-семейства. Энергетическая диаграмма для валентных электронов в невозбужденном состоянии выглядит следующим образом:

У кислорода есть 2 пары спаренных электронов и два неспаренных электрона. Во всех своих соединениях кислород проявляет валентность II.

Рис. 2. Пространственное изображение строения атома кислорода.

Примеры решения задач

ПРИМЕР 1

Министерство образования и науки РФ

«КИСЛОРОД»

Выполнил:

Проверил:


Общая характеристика кислорода.

КИСЛОРОД (лат. Oxygenium), O (читается «о»), химический элемент с атомным номером 8, атомная масса 15,9994. В периодической системе элементов Менделеева кислород расположен во втором периоде в группе VIA.

Природный кислород состоит из смеси трех стабильных нуклидов с массовыми числами 16 (доминирует в смеси, его в ней 99,759 % по массе), 17 (0,037%) и 18 (0,204%). Радиус нейтрального атома кислорода 0,066 нм. Конфигурация внешнего электронного слоя нейтрального невозбужденного атома кислорода 2s2р4. Энергии последовательной ионизации атома кислорода 13,61819 и 35,118 эВ, сродство к электрону 1,467 эВ. Радиус иона О 2 – при разных координационных числах от 0,121 нм (координационное число 2) до 0,128 нм (координационное число 8). В соединениях проявляет степень окисления –2 (валентность II) и, реже, –1 (валентность I). По шкале Полинга электроотрицательность кислорода 3,5 (второе место среди неметаллов после фтора).

В свободном виде кислород - газ без цвета, запаха и вкуса.

Особенности строения молекулы О 2: атмосферный кислород состоит из двухатомных молекул. Межатомное расстояние в молекуле О 2 0,12074 нм. Молекулярный кислород (газообразный и жидкий) - парамагнитное вещество, в каждой молекуле О 2 имеется по 2 неспаренных электрона. Этот факт можно объяснить тем, что в молекуле на каждой из двух разрыхляющих орбиталей находится по одному неспаренному электрону.

Энергия диссоциации молекулы О 2 на атомы довольно высока и составляет 493,57 кДж/моль.

Физические и химические свойства

Физические и химические свойства: в свободном виде встречается в виде двух модификаций О 2 («обычный» кислород) и О 3 (озон). О 2 - газ без цвета и запаха. При нормальных условиях плотность газа кислорода 1,42897 кг/м 3 . Температура кипения жидкого кислорода (жидкость имеет голубой цвет) равна –182,9°C. При температурах от –218,7°C до –229,4°C существует твердый кислород с кубической решеткой (-модификация), при температурах от –229,4°C до –249,3°C - -модификация с гексагональной решеткой и при температурах ниже –249,3°C - кубическая -модификация. При повышенном давлении и низких температурах получены и другие модификации твердого кислорода.

При 20°C растворимость газа О 2: 3,1 мл на 100 мл воды, 22 мл на 100 мл этанола, 23,1 мл на 100 мл ацетона. Существуют органические фторсодержащие жидкости (например, перфторбутилтетрагидрофуран), в которых растворимость кислорода значительно более высокая.

Высокая прочность химической связи между атомами в молекуле О2 приводит к тому, что при комнатной температуре газообразный кислород химически довольно малоактивен. В природе он медленно вступает в превращения при процессах гниения. Кроме того, кислород при комнатной температуре способен реагировать с гемоглобином крови (точнее с железом II гема), что обеспечивает перенос кислорода от органов дыхания к другим органам.

Со многими веществами кислород вступает во взаимодействие без нагревания, например, со щелочными и щелочноземельными металлами (образуются соответствующие оксиды типа Li 2 O, CaO и др., пероксиды типа Na 2 O2, BaO 2 и др. и супероксиды типа КО 2 , RbO 2 и др.), вызывает образование ржавчины на поверхности стальных изделий. Без нагревания кислород реагирует с белым фосфором, с некоторыми альдегидами и другими органическими веществами.

При нагревании, даже небольшом, химическая активность кислорода резко возрастает. При поджигании он реагирует с взрывом с водородом, метаном, другими горючими газами, с большим числом простых и сложных веществ. Известно, что при нагревании в атмосфере кислорода или на воздухе многие простые и сложные вещества сгорают, причем образуются различные оксиды, например:

S+O 2 = SO 2 ; С + O 2 = СО 2

4Fe + 3O 2 = 2Fe 2 O 3 ; 2Cu + O 2 = 2CuO

4NH 3 + 3O 2 = 2N 2 + 6H 2 O; 2H 2 S + 3O 2 = 2H 2 O + 2SO 2

Если смесь кислорода и водорода хранить в стеклянном сосуде при комнатной температуре, то экзотермическая реакция образования воды

2Н 2 + О 2 = 2Н 2 О + 571 кДж

протекает крайне медленно; по расчету, первые капельки воды должны появиться в сосуде примерно через миллион лет. Но при внесении в сосуд со смесью этих газов платины или палладия (играющих роль катализатора), а также при поджигании реакция протекает с взрывом.

С азотом N 2 кислород реагирует или при высокой температуре (около 1500-2000°C), или при пропускании через смесь азота и кислорода электрического разряда. При этих условиях обратимо образуется оксид азота (II):

N 2 + O 2 = 2NO

Возникший NO затем реагирует с кислородом с образованием бурого газа (диоксида азота):

2NO + О 2 = 2NO2

Из неметаллов кислород напрямую ни при каких условиях не взаимодействует с галогенами, из металлов - с благородными металлами серебром, золотом, платиной и др.

Бинарные соединения кислорода, в которых степень окисления атомов кислорода равна –2, называют оксидами (прежнее название - окислы). Примеры оксидов: оксид углерода (IV) CO 2 ,оксид серы (VI) SO 3 , оксид меди (I) Cu 2 O, оксид алюминия Al 2 O 3 , оксид марганца (VII) Mn 2 O 7 .

Кислород образует также соединения, в которых его степень окисления равна –1. Это - пероксиды (старое название - перекиси), например, пероксид водорода Н 2 О 2 , пероксид бария ВаО 2 , пероксид натрия Na 2 O 2 и другие. В этих соединениях содержится пероксидная группировка - О - О -. С активными щелочными металлами, например, с калием, кислород может образовывать также супероксиды, например, КО 2 (супероксид калия), RbO 2 (супероксид рубидия). В супероксидах степень окисления кислорода –1/2. Можно отметить, что часто формулы супероксидов записывают как К 2 О 4 , Rb 2 O 4 и т.д.

С самым активным неметаллом фтором кислород образует соединения в положительных степенях окисления. Так, в соединении O 2 F 2 степень окисления кислорода +1, а в соединении O 2 F - +2. Эти соединения принадлежат не к оксидам, а к фторидам. Фториды кислорода можно синтезировать только косвенным путем, например, действуя фтором F 2 на разбавленные водные растворы КОН.

История открытия

История открытия кислорода, как и азота, связана с продолжавшимся несколько веков изучением атмосферного воздуха. О том, что воздух по своей природе не однороден, а включает части, одна из которых поддерживает горение и дыхание, а другая - нет, знали еще в 8 веке китайский алхимик Мао Хоа, а позднее в Европе - Леонардо да Винчи. В 1665 английский естествоиспытатель Р. Гук писал, что воздух состоит из газа, содержащегося в селитре, а также из неактивного газа, составляющего большую часть воздуха. О том, что воздух содержит элемент, поддерживающий жизнь, в 18 веке было известно многим химикам. Шведский аптекарь и химик Карл Шееле начал изучать состав воздуха в 1768. В течение трех лет он разлагал нагреванием селитры (KNO 3 , NaNO 3) и другие вещества и получал «огненный воздух», поддерживающий дыхание и горение. Но результаты своих опытов Шееле обнародовал только в 1777 году в книге «Химический трактат о воздухе и огне». В 1774 английский священник и натуралист Дж. Пристли нагреванием «жженой ртути» (оксида ртути HgO) получил газ, поддерживающий горение. Будучи в Париже, Пристли, не знавший, что полученный им газ входит в состав воздуха, сообщил о своем открытии А. Лавуазье и другим ученым. К этому времени был открыт и азот. В 1775 Лавуазье пришел к выводу, что обычный воздух состоит из двух газов - газа, необходимого для дыхания и поддерживающего горение, и газа «противоположного характера» - азота. Лавуазье назвал поддерживающий горение газ oxygene - «образующий кислоты» (от греч. oxys - кислый и gennao - рождаю; отсюда и русское название «кислород»), так как он тогда считал, что все кислоты содержат кислород. Давно уже известно, что кислоты бывают как кислородсодержащими, так и бескислородными, но название, данное элементу Лавуазье, осталось неизменным. На протяжении почти полутора веков 1/16 часть массы атома кислорода служила единицей сравнения масс различных атомов между собой и использовалась при численной характеристике масс атомов различных элементов (так называемая кислородная шкала атомных масс).

Нахождение в природе: кислород - самый распространенный на Земле элемент, на его долю (в составе различных соединений, главным образом силикатов), приходится около 47,4% массы твердой земной коры. Морские и пресные воды содержат огромное количество связанного кислорода - 88,8% (по массе), в атмосфере содержание свободного кислорода составляет 20,95 % (по объему). Элемент кислород входит в состав более 1500 соединений земной коры.

Получение:

В настоящее время кислород в промышленности получают за счет разделения воздуха при низких температурах. Сначала воздух сжимают компрессором, при этом воздух разогревается. Сжатому газу дают охладиться до комнатной температуры, а затем обеспечивают его свободное расширение. При расширении температура газа резко понижается. Охлажденный воздух, температура которого на несколько десятков градусов ниже температуры окружающей среды, вновь подвергают сжатию до 10-15 МПа. Затем снова отбирают выделившуюся теплоту. Через несколько циклов «сжатие-расширение» температура падает ниже температуры кипения и кислорода, и азота. Образуется жидкий воздух, который затем подвергают перегонке (дистилляции). Температура кипения кислорода (–182,9°C) более чем на 10 градусов выше, чем температура кипения азота (–195,8°C). Поэтому из жидкости азот испаряется первым, а в остатке накапливается кислород. За счет медленной (фракционной) дистилляции удается получить чистый кислород, в котором содержание примеси азота составляет менее 0,1 объемного процента.

С момента появления химии человечеству стало понятно, что все вокруг состоит из вещества, в состав которого входят химические элементы. Многообразие веществ обеспечивается различными соединениями простых элементов. На сегодня открыто и внесено в периодическую таблицу Д. Менделеева 118 химических элементов. Среди них стоит выделить ряд ведущих, наличие которых определило появление органической жизни на Земле. В этот перечень входят: азот, углерод, кислород, водород, сера и фосфор.

Кислород: история открытия

Все эти элементы, а также ряд других, способствовали развитию эволюции жизни на нашей планете в том виде, в котором мы сейчас наблюдаем. Среди всех компонентов именно кислорода в природе больше остальных элементов.

Кислород как отдельный элемент был открыт 1 августа 1774 года В ходе эксперимента по получению воздуха из окалины ртути путём нагревания при помощи обычной линзы он обнаружил, что свеча горит необычно ярким пламенем.

Долгое время Пристли пытался найти этому разумное объяснение. На тот момент этому явлению было дано название «второй воздух». Несколько ранее изобретатель подводной лодки К. Дреббель в начале XVII века выделил кислород и использовал его для дыхания в своём изобретении. Но его опыты не оказали влияния на понимание того, какую роль играет кислород в природе энергообмена живых организмов. Однако учёным, официально открывшим кислород, признан французский химик Антуан Лоран Лавуазье. Он повторил эксперимент Пристли и понял, что образующийся газ является отдельным элементом.

Кислород взаимодействует практически со всеми простыми и кроме инертных газов и благородных металлов.

Нахождение кислорода в природе

Среди всех элементов нашей планеты наибольшую долю занимает кислород. Распространение кислорода в природе весьма разнообразно. Он присутствует как в связанном виде, так и в свободном. Как правило, являясь сильным окислителем, он пребывает в связанном состоянии. Нахождение кислорода в природе как отдельного несвязанного элемента зафиксировано только в атмосфере планеты.

Содержится в виде газа и представляет собой соединение двух атомов кислорода. Составляет около 21 % от общего объёма атмосферы.

Кислород в воздухе, кроме обычной своей формы, имеет изотропную форму в виде озона. состоит из трёх атомов кислорода. Голубой цвет неба непосредственно связан с наличием этого соединения в верхних слоях атмосферы. Благодаря озону, жёсткое коротковолновое излучение от нашего Солнца поглощается и не попадает на поверхность.

В случае отсутствия озонового слоя органическая жизнь была бы уничтожена, подобно поджаренной еде в микроволновой печи.

В гидросфере нашей планеты этот элемент находится в связанном виде с двумя и образует воду. Доля содержания кислорода в океанах, морях, реках и подземных водах оценивается около 86- 89 %, с учётом растворенных солей.

В земной коре кислород находится в связанном виде и является наиболее распространённым элементом. Его доля составляет около 47 %. Нахождение кислорода в природе не ограничивается оболочками планеты, этот элемент входит в состав всех органических существ. Его доля в среднем достигает 67 % от общей массы всех элементов.

Кислород - основа жизни

Из-за высокой окислительной активности кислород достаточно легко соединяется с большинством элементов и веществ, образуя оксиды. Высокая окислительная способность элемента обеспечивает всем известный процесс горения. Кислород также участвует в процессах медленного окисления.

Роль кислорода в природе как сильного окислителя незаменима в процессе жизнедеятельности живых организмов. Благодаря этому химическому процессу происходит окисление веществ с выделением энергии. Её живые организмы используют для своей жизнедеятельности.

Растения - источник кислорода в атмосфере

На начальном этапе образования атмосферы на нашей планете существующий кислород находился в связанном состоянии, в виде двуокиси углерода (углекислый газ). Со временем появились растения, способные поглощать углекислый газ.

Данный процесс стал возможен благодаря возникновению фотосинтеза. Со временем, в ходе жизнедеятельности растений, за миллионы лет в атмосфере Земли накопилось большое количество свободного кислорода.

По мнению учёных, в прошлом его массовая доля достигала порядка 30 %, в полтора раза больше, чем сейчас. Растения, как в прошлом, так и сейчас, существенно повлияли на круговорот кислорода в природе, обеспечив тем самым разнообразную флору и фауну нашей планеты.

Значение кислорода в природе не просто огромно, а первостепенно. Система метаболизма животного мира чётко опирается на наличие кислорода в атмосфере. При его отсутствии жизнь становится невозможной в том виде, в котором мы знаем. Среди обитателей планеты останутся только анаэробные (способные жить без наличия кислорода) организмы.

Интенсивный в природе обеспечен тем, что он находится в трёх агрегатных состояниях в объединении с другими элементами. Будучи сильным окислителем, он очень легко переходит из свободной формы в связанную. И только благодаря растениям, которые путём фотосинтеза расщепляют углекислый газ, он имеется в свободной форме.

Процесс дыхания животных и насекомых основан на получении несвязанного кислорода для окислительно-восстановительных реакций с последующим получением энергии для обеспечения жизнедеятельности организма. Нахождение кислорода в природе, связанного и свободного, обеспечивает полноценную жизнедеятельность всего живого на планете.

Эволюция и «химия» планеты

Эволюция жизни на планете опиралась на особенности состава атмосферы Земли, состава минералов и наличия воды в жидком состоянии.

Химический состав коры, атмосферы и наличие воды стали основой зарождения жизни на планете и определили направление эволюции живых организмов.

Опираясь на имеющуюся «химию» планеты, эволюция пришла к углеродной органической жизни на основе воды как растворителя химических веществ, а также использовании кислорода как окислителя с целью получения энергии.

Иная эволюция

На данном этапе современная наука не опровергает возможность жизни в иных средах, отличных от земных условий, где за основу построения органической молекулы может быть взят кремний или мышьяк. А среда жидкости, как растворителя, может представлять собой смесь жидкого аммиака с гелием. Что касается атмосферы, то она может быть представлена в виде газообразного водорода с примесью гелия и других газов.

Какие метаболические процессы могут быть при таких условиях, современная наука пока не в состоянии смоделировать. Однако такое направление эволюции жизни вполне допустимо. Как доказывает время, человечество постоянно сталкивается с расширением границ нашего понимания окружающего мира и жизни в нем.

ОПРЕДЕЛЕНИЕ

Кислород - восьмой элемент Периодической таблицы. Обозначение - О от латинского «oxygenium». Расположен во втором периоде, VIА группе. Относится к неметаллам. Заряд ядра равен 8.

Кислород - самый распространенный элемент земной коры. В свободном состоянии он находится в атмосферном воздухе, в связанном виде входит в состав воды, минералов, горных пород и всех веществ, из которых построены организмы растений и животных. Массовая доля кислорода в земной коре составляет около 47%.

В виде простого вещества кислород представляет собой бесцветный газ, не имеющий запаха. Он немного тяжелее воздуха: масса 1 л кислорода при нормальных условиях равна 1,43 г, а 1 л воздуха 1,293г. Кислород растворяется в воде, хотя и в небольших количествах: 100 объемов воды при 0 o С растворяют 4,9, а при 20 o С - 3,1 объема кислорода.

Атомная и молекулярная масса кислорода

ОПРЕДЕЛЕНИЕ

Относительная атомная масса A r - это молярная масса атома вещества, отнесенная к 1/12 молярной массы атома углерода-12 (12 С).

Относительная атомная масса атомарного кислорода равна 15,999 а.е.м.

ОПРЕДЕЛЕНИЕ

Относительная молекулярная масса M r - это молярная масса молекулы, отнесенная к 1/12 молярной массы атома углерода-12 (12 С).

Это безразмерная величина.Известно, что молекула кислорода двухатомна - О 2 . Относительная молекулярная масса молекулы кислорода будет равна:

M r (О 2) = 15,999 × 2 ≈32.

Аллотропия и аллотропные модификации кислорода

Кислород может существовать в виде двух аллотропных модификаций - кислорода О 2 и озона О 3 (физические свойства кислорода описаны выше).

При обычных условиях озон - газ. От кислорода его можно отделить сильным охлаждением; озон конденсируется в синюю жидкость, кипящую при (-111,9 o С).

Растворимость озона в воде значительно больше, чем кислорода: 100 объемов воды при 0 o С растворяют 49 объемов озона.

Образование озона из кислорода можно выразить уравнением:

3O 2 = 2O 3 - 285 кДж.

Изотопы кислорода

Известно, что в природе кислород может находиться в виде трех изотопов 16 O (99,76%), 17 O (0,04%) и 18 O (0,2%). Их массовые числа равны 16, 17 и 18 соответственно. Ядро атома изотопа кислорода 16 O содержит восемь протонов и восемь нейтронов, а изотопов 17 O и 18 O- такое же количество протонов,девять и десять нейтронов соответственно.

Существует двенадцать радиоактивных изотопов кислорода с массовыми числами от 12-ти до 24-х, из которых наиболее стабильным является изотоп 15 О с периодом полураспада равным 120 с.

Ионы кислорода

На внешнем энергетическом уровне атома кислорода имеется шесть электронов, которые являются валентными:

1s 2 2s 2 2p 4 .

Схема строения атома кислорода представлена ниже:

В результате химического взаимодействия кислород может терять свои валентные электроны, т.е. являться их донором, и превращаться в положительно заряженные ионы или принимать электроны другого атома, т.е. являться их акцептором, и превращаться в отрицательно заряженные ионы:

О 0 +2e → О 2- ;

О 0 -1e → О 1+ .

Молекула и атом кислорода

Молекула кислорода состоит из двух атомов - О 2 . Приведем некоторые свойства, характеризующие атом и молекулу кислорода:

Примеры решения задач

ПРИМЕР 1

Кислород О имеет атомный номер 8, расположен в главной подгруппе (подгруппе а) VI группе, во втором периоде. В атомах кислорода валентные электроны размещаются на 2-м энергетическом уровне, имеющем только s — и p -орбитали. Это исключает возможность перехода атомов О в возбуждённое состояние, поэтому кислород во всех соединениях проявляет постоянную валентность, равную II. Имея высокую электроотрицательность, атомы кислорода всегда в соединениях заряжены отрицательно (с.о. = -2 или -1). Исключение – фториды OF 2 и O 2 F 2 .

Для кислорода известны степени окисления -2, -1, +1, +2

Общая характеристика элемента

Кислород – самый распространенный элемент на Земле, на его долю приходится чуть меньше половины, 49 % от общей массы земной коры. Природный кислород состоит из 3 стабильных изотопов 16 О, 17 О и 18 О (преобладает 16 О). Кислород входит в состав атмосферы (20,9 % по объему, 23,2 по массе), в состав воды и более 1400 минералов: кремнезема, силикатов и алюмосиликатов, мраморов, базальтов, гематита и других минералов и горных пород. Кислород составляет 50-85% массы тканей растений и животных, т.к содержится в белках, жирах и углеводах, из которых состоят живые организмы. Общеизвестна роль кислорода для дыхания, для процессов окисления.

Кислород сравнительно мало растворим в воде – 5 объемов в 100 объемах воды. Однако, если бы весь растворенный в воде кислород перешел в атмосферу, то он занял бы огромный объем – 10 млн км 3 (н.у). Это равно примерно 1% всего кислорода в атмосфере. Образование на земле кислородной атмосферы обусловлено процессами фотосинтеза.

Открыт шведом К. Шееле (1771 – 1772 г.г) и англичанином Дж. Пристли (1774г.). Первый использовал нагревание селитры, второй – оксида ртути (+2). Название дал А.Лавуазье («оксигениум» - «рождающий кислоты»).

В свободном виде существует в двух аллотропных модификациях – «обыкновенного» кислорода О 2 и озона О 3 .

Строение молекулы озона

3О 2 = 2О 3 – 285 кДж
Озон в стратосфере образует тонкий слой, который поглощает большую часть биологически вредного ультрафиолетового излучения.
При хранении озон самопроизвольно превращается в кислород. Химически кислород О 2 менее активен, чем озон. Электроотрицательность кислорода 3,5.

Физические свойства кислорода

O 2 – газ без цвета, запаха и вкуса, т.пл. –218,7 °С, т.кип. –182,96 °С, парамагнитен.

Жидкий O 2 голубого, твердый – синего цвета. O 2 растворим в воде (лучше, чем азот и водород).

Получение кислорода

1. Промышленный способ — перегонка жидкого воздуха и электролиз воды:

2Н 2 О → 2Н 2 + О 2

2. В лаборатории кислород получают:
1.Электролизом щелочных водных растворов или водных растворов кислородосодержащих солей (Na 2 SO 4 и др.)

2. Термическим разложением перманганата калия KMnO 4:
2KMnO 4 = K 2 MnO4 + MnO 2 + O 2 ,

Бертолетовой соли KClO 3:
2KClO 3 = 2KCl + 3O 2 (катализатор MnO 2)

Оксида марганца (+4) MnO 2:
4MnO 2 = 2Mn 2 O 3 + O 2 (700 o C),

3MnO 2 = 2Mn 3 O 4 + O 2 (1000 o C),

Пероксид бария BaO 2:
2BaO 2 = 2BaO + O 2

3. Разложением пероксида водорода:
2H 2 O 2 = H 2 O + O 2 (катализатор MnO 2)

4. Разложение нитратов:
2KNO 3 → 2KNO 2 + O 2

На космических кораблях и подводных лодках кислород получают из смеси K 2 O 2 и K 2 O 4:
2K 2 O 4 + 2H 2 O = 4KOH +3O 2
4KOH + 2CO 2 = 2K 2 CO 3 + 2H 2 O

Суммарно:
2K 2 O 4 + 2CO 2 = 2K 2 CO 3 + 3О 2

Когда используют K 2 O 2 , то суммарная реакция выглядит так:
2K 2 O 2 + 2CO 2 = 2K 2 CO 3 + O 2

Если смешать K 2 O 2 и K 2 O 4 в равномолярных (т.е. эквимолярных) количествах, то на 1 моль поглощенного СО 2 выделится один моль О 2.

Химические свойства кислорода

Кислород поддерживает горение. Горение — б ыстрый процесс окисления вещества, сопровождающийся выделением большого количества теплоты и света. Чтобы доказать, что в склянке находится кислород, а не какой-то другой газ, надо в склянку опустить тлеющую лучинку. В кислороде тлеющая лучинка ярко вспыхивает. Горение различных веществ на воздухе – это окислительно-восстановительный процесс, в котором окислителем является кислород. Окислители – это вещества, «отбирающие» электроны у веществ-восстановителей. Хорошие окислительные свойства кислорода можно легко объяснить строением его внешней электронной оболочки.

Валентная оболочка кислорода расположена на 2-м уровне – относительно близко к ядру. Поэтому ядро сильно притягивает к себе электроны. На валентной оболочке кислорода 2s 2 2p 4 находится 6 электронов. Следовательно, до октета недостает двух электронов, которые кислород стремится принять с электронных оболочек других элементов, вступая с ними в реакции в качестве окислителя.

Кислород имеет вторую (после фтора) электроотрицательность в шкале Полинга. Поэтому в подавляющем большинстве своих соединений с другими элементами кислород имеет отрицательную степень окисления. Более сильным окислителем, чем кислород, является только его сосед по периоду – фтор. Поэтому соединения кислорода с фтором – единственные, где кислород имеет положительную степень окисления.

Итак, кислород – второй по силе окислитель среди всех элементов Периодической системы. С этим связано большинство его важнейших химических свойств.
С кислородом реагируют все элементы, кроме Au, Pt, He, Ne и Ar, во всех реакциях (кроме взаимодействия со фтором) кислород — окислитель.

Кислород легко реагирует с щелочными и щелочноземельными металлами:

4Li + O 2 → 2Li 2 O,

2K + O 2 → K 2 O 2 ,

2Ca + O 2 → 2CaO,

2Na + O 2 → Na 2 O 2 ,

2K + 2O 2 → K 2 O 4

Мелкий порошок железа (так называемого пирофорного железа) самовоспламеняется на воздухе, образуя Fe 2 O 3 , а стальная проволока горит в кислороде, если ее заранее раскалить:

3 Fe + 2O 2 → Fe 3 O 4

2Mg + O 2 → 2MgO

2Cu + O 2 → 2CuO

С неметаллами (серой, графитом, водородом, фосфором и др.) кислород реагирует при нагревании:

S + O 2 → SO 2 ,

C + O 2 → CO 2 ,

2H 2 + O 2 → H 2 O,

4P + 5O 2 → 2P 2 O 5 ,

Si + O 2 → SiO 2 , и т.д

Почти все реакции с участием кислорода O 2 экзотермичны, за редким исключением, например:

N 2 + O 2 2NO – Q

Эта реакция протекает при температуре выше 1200 o C или в электрическом разряде.

Кислород способен окислить сложные вещества, например:

2H 2 S + 3O 2 → 2SO 2 + 2H 2 O (избыток кислорода),

2H 2 S + O 2 → 2S + 2H 2 O (недостаток кислорода),

4NH 3 + 3O 2 → 2N 2 + 6H 2 O (без катализатора),

4NH 3 + 5O 2 → 4NO + 6H 2 O (в присутствии катализатора Pt),

CH 4 (метан) + 2O 2 → CO 2 + 2H 2 O,

4FeS 2 (пирит) + 11O 2 → 2Fe 2 O 3 + 8SO 2 .

Известны соединения, содержащие катион диоксигенила O 2 + , например, O 2 + — (успешный синтез этого соединения побудил Н. Бартлетта попытаться получить соединения инертных газов).

Озон

Озон химически более активен, чем кислород O 2 . Так, озон окисляет иодид - ионы I — в растворе Kl:

O 3 + 2Kl + H 2 O = I 2 + O 2 + 2KOH

Озон сильно ядовит, его ядовитые свойства сильнее, чем, например, у сероводорода. Однако в природе озон, содержащийся в высоких слоях атмосферы, выполняет роль защитника всего живого на Земле от губительного ультрафиолетового излучения солнца. Тонкий озоновый слой поглощает это излучение, и оно не достигает поверхности Земли. Наблюдаются значительные колебания в толщине и протяженности этого слоя с течением времени (так называемые озоновые дыры) причины таких колебаний пока не выяснены.

Применение кислорода O 2: для интенсификации процессов получения чугуна и стали, при выплавке цветных металлов, как окислитель в различных химических производствах, для жизнеобеспечения на подводных кораблях, как окислитель ракетного топлива (жидкий кислород), в медицине, при сварке и резке металлов.

Применение озона О 3: для обеззараживания питьевой воды, сточных вод, воздуха, для отбеливания тканей.