Примеры аксиоматических теорий. Аксиоматический метод: описание, этапы становления и примеры

Сущность аксиоматического метода

Евклид

П.Дирак

Если теорему так и не смогли доказать – она становится аксиомой.

Математика строится на основе понятий. Понятия бывают определяемые и неопределяемые. Под определением понимают точную формулировку того или иного понятия. Определить математическое понятие – это значит указать его характерные признаки или свойства, которые выделяют это понятие среди остальных. Обычный способ определения математического понятия заключается в указании: 1) ближнего рода, то есть более общего понятия, к которому относится определяемое понятие; 2) видового отличия, то есть тех характерных признаков или свойств, которые присущи именно этому понятию.

Пример 1. Определение: «Квадрат – это прямоугольник, у которого все стороны равны». Ближайшим родом, то есть более общим понятием является понятие прямоугольника, а видовым отличием будет указание, что у квадрата все стороны равны. В свою очередь для прямоугольника более общим понятием является понятие параллелограмма, для параллелограмма - понятие четырехугольника, для четырехугольника - понятие многоугольника и так далее. Но указанная цепочка не является бесконечной.

Существуют понятия, которые нельзя определить через другие, более общие понятия. Их в математике называют основными неопределяемыми понятиями . Примерами основных понятий являются точка, прямая, плоскость, расстояние, множество и так далее.

Связи и отношения между основными понятиями формулируются с помощью аксиом.

Аксиома - это математическое предложение, принимаемое в данной теории без доказательств.

К системе аксиом, на которой строится та или иная математическая теория, предъявляются требования непротиворечивости, независимости, полноты.

Система аксиом называется непротиворечивой , если из нее нельзя одновременно вывести два взаимоисключающих друг друга предложения: А , неА .

Система аксиом называется независимой , если ни одна из аксиом этой системы не является следствием других аксиом этой системы.

Система аксиом называется полной , если в ней доказуемо обязательно одно из двух: либо утверждение А , либо неА.

Предложение, которого нет в списке аксиом, должно быть доказано. Такое предложение называется теоремой .

Теорема - это математическое предложение, истинность которого устанавливается в процессе рассуждения, называемого доказательством.

Аксиома: «Какова бы ни была прямая, существуют точки, принадлежащие этой прямой и точки, не принадлежащие ей».

Теорема: «Если диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то этот четырехугольник – параллелограмм».


Одним из основных методов современной математики является аксиоматический метод . Сущность его состоит в следующем:

1) перечисляются основные неопределяемые понятия и отношения строящейся теории (примеры отношений: следовать за..., лежать между...);

2) формулируются аксиомы, принимаемые в данной теории без доказательства, которые выражают связь между основными понятиями и их отношениями;

3) предложения, которых нет среди основных понятий и основных отношений, должны быть определены;

4) предложения, которых нет в списке аксиом, должны быть доказаны на основе этих аксиом и ранее доказанных предложений.

1.2 Геометрия Евклида – первая естественно научная теория

Исторический обзор обоснования геометрии. Геометрия, прежде чем стать аксиоматической теорией, прошла долгий путь эмпирического развития.

Первые сведения о геометрии были получены цивилизациями Древнего Востока (Египет, Китай, Индия) в связи с развитием земледелия, ограниченностью плодородных земель и др. В этих странах геометрия носила эмпирический характер и представляла собой набор отдельных «рецептов-правил» для решения конкретных задач. Уже во II тысячелетии до н.э. египтяне умели точно вычислить площадь треугольника, объем усеченной пирамиды, площадь круга, а вавилоняне знали теорему Пифагора. Заметим, что доказательств не было, а указывались правила для вычислений.

Греческий период развития геометрии начался в VII-VI вв. до н.э. под влиянием египтян. Отцом греческой математики считается знаменитый философ Фалес (640-548 гг. до н.э.). Фалесу, точнее, его математической школе принадлежат доказательства свойств равнобедренного треугольника, вертикальных углов. В дальнейшем геометром Древней Греции были получены результаты, охватывающие почти все содержание современного школьного курса геометрии.

Философская школа Пифагора (570-471 гг. до н.э.) открыла теорему о сумме углов треугольника, доказала теорему Пифагора, установила существование пяти типов правильных многогранников и несоизмеримых отрезков. Демокрит (470-370 гг. до н.э.) открыл теоремы об объемах пирамиды и конуса. Евдокс (410-356 гг. до н.э.) создал геометрическую теорию пропорций (т.е. теорию пропорциональных чисел).

Менехм и Аполлоний изучили конические сечения. Архимед (289-212 гг. до н.э.) открыл правила вычисления площади поверхности и объема шара и других фигур. Он же нашел приближенное значение числа π.

Особая заслуга древнегреческих ученых состоит в том, что они первыми поставили задачу строгого построения геометрических знаний и решили ее в первом приближении. Проблему поставил Платон (428-348 гг. до н.э.). Аристотелю (384-322 гг. до н.э.) – крупнейшему философу, основателю формальной логики – принадлежит четкое оформление идеи построения геометрии в виде цепи предложений, которые вытекают одно из другого на основе лишь правил логики. Эту задачу пытались решить многие греческие ученые (Гиппократ, Федий).

Евклид (330-275 гг. до н. э.) – крупнейший геометр древности, воспитанник школы Платона, жил в Египте (в Александрии). Составленные им «Начала» дают систематическое изложение начал геометрии, выполненное на таком научном уровне, что многие века преподавание геометрии велось по его сочинению. «Начала» состоят из 13 книг (глав):

I-VI – планиметрия;

VII-IХ – арифметика в геометрическом изложении;

X – несоизмеримые отрезки;

ХI-ХII – стереометрия.

В «Начала» были включены не все сведения, известные в геометрии. Например, в эти книги не вошли: теория конических сечений, кривые высших порядков.

Каждая книга начинается с определения тех понятий, которые в ней встречаются. Например, в книге I даны 23 определения. Приведем определения первых четырех понятий:

1 Точка есть то, что не имеет частей.

2 Линия есть длина без ширины.

3 Границы линии суть точки.

Евклид приводит предложения, принимаемые без доказательства, разделяя их на постулаты и аксиомы. Постулатов у него пять, а аксиом – семь. Вот некоторые из них:

IV И чтобы все прямые углы были равны.

V И чтобы всякий раз, когда прямая при пересечении с двумя другими прямыми образует с ними внутренние односторонние углы, сумма которых меньше двух прямых, эти прямые пересекались с той стороны, с которой эта сумма меньше двух прямых.

Аксиомы

I Равные порознь третьему равны между собой.

II И если к равным прибавить равные, то получим равные.

VII И совмещающиеся равны.

Евклид не указал, в чем заключается различие между постулатами и аксиомами. До сих пор нет окончательного решения этого вопроса.

Евклид излагает теорию геометрии так, как требовали греческие ученые, особенно Аристотель, т.е. теоремы расположены так, что каждая следующая доказывается только на основе предыдущих. Иначе говоря, Евклид развивает геометрическую теорию строго логическим путем. В этом и заключается историческая заслуга Евклида перед наукой.

«Начала» Евклида сыграли огромную роль в истории математики и всей человеческой культуры. Эти книги переведены на все основные языки мира, после 1482 г. они выдержали около 500 изданий.

Недостатки системы Евклида. С точки зрения современной математики изложение «Начал» следует признать несовершенным. Назовем основные недостатки этой системы:

1) многие понятия включают такие, которые в свою очередь должны быть определены (например, в определениях 1-4 главы 1 используются понятия ширины, длины, границы, которые также должны быть определены);

2) список аксиом и постулатов недостаточен для построения геометрии строго логическим путем. Например, в этом списке нет аксиом порядка, без которых нельзя доказать многие теоремы геометрии; заметим, что на это обстоятельство обратил внимание Гаусс. В указанном списке отсутствуют также определения понятия движения (совмещения) и свойств движения, т.е. аксиом движения. В списке не хватает также аксиомы Архимеда (одной из двух аксиом непрерывности), которая играет важную роль в теории измерений длин отрезков, площадей фигур и объектов тел. Заметим, что на это обратил внимание современник Евклида Архимед;

3) постулат IV явно лишний, его можно доказать как теорему. Особо отметим пятый постулат. В книге I «Начал» первые 28 предложений доказаны без ссылок на пятый постулат. Попытка минимизировать список аксиом и постулатов, в частности доказать постулат V как теорему, проводилась со времен самого Евклида. Прокл (V в. н. э.), Омар Хайям (1048-1123 гг.), Валлис (XVII в.), Саккери и Ламберт (XVIII в.), Лежандр (1752-1833 гг.) также пытались доказать постулат V как теорему. Их доказательства были ошибочными, но они привели к положительным результатам – к рождению еще двух геометрий (Римана и Лобачевского).

Неевклидовы геометрические системы. Н.Лобачевский (1792-1856 гг.), который открыл новую геометрию – геометрию Лобачевского, также начал с попытки доказательства постулата V.

Николай Иванович развил свою систему до объема «Начал» в надежде получить противоречие. Не получил, но сделал в 1826 г. правильный вывод: существует геометрия, отличная от геометрии Евклида.

На первый взгляд этот вывод кажется недостаточно обоснованным: может быть, развивая его дальше, можно прийти к противоречию. Но этот же вопрос относится и к геометрии Евклида. Иначе говоря, обе геометрии равноправны перед вопросом о логической непротиворечивости. Дальнейшие исследования показали, что из непротиворечивости одной следует непротиворечивость другой геометрии, т.е. имеет место равноправие логических систем.

Лобачевский был первым, но не единственным, кто сделал вывод о существовании другой геометрии. Гаусс (1777-1855 гг.) высказал эту идею еще в 1816 г. в частных письмах, но в официальных публикациях заявление не сделал.

Три года спустя после публикации результатов Лобачевского (в 1829 г.), т.е. в 1832 г., вышла работа венгра Я. Бойяи (1802-1860 гг.), который в 1823 г. пришел к выводу о существовании другой геометрии, но опубликовал позже и в менее развитом, чем у Лобачевского, виде. Поэтому справедливо, что эта геометрия носит имя Лобачевского.

Общему признанию геометрии Лобачевского в значительной степени способствовали работы геометров после Лобачевского. В 1868 г. итальянский математик Э.Бельтрами (1825-1900 гг.) доказал, что на поверхности постоянной отрицательной кривизны (так называемая псевдосфера) имеет место геометрия Лобачевского. Уязвимым местом доказательства непротиворечивости геометрии Лобачевского, основанного на интерпретации Бельтрами, было то, что, как показал Д.Гильберт (1862-1943 гг.), в евклидовом пространстве не существует полной поверхности постоянной отрицательной кривизны без особенностей. Поэтому на поверхности постоянной отрицательной кривизны можно интерпретировать только часть плоской геометрии Лобачевского. Этот недостаток был устранен А.Пуанкаре (1854-1912 гг.) и Ф.Клейном (1849-1925 гг.).

Доказательство непротиворечивости геометрии Лобачевского было вместе с тем и доказательством независимости пятого постулата от остальных. Действительно, в случае зависимости геометрия Лобачевского была бы противоречивой, так как она содержала бы два взаимно исключающих утверждения.

Дальнейшие исследования евклидовой геометрии показали неполноту системы аксиом и постулатов Евклида. Исследование аксиоматики Евклида завершил в 1899 г. Гильберт.

Аксиоматика Гильберта состоит из пяти групп:

Аксиомы связи (принадлежности);

Аксиомы порядка;

Аксиомы конгруэнтности (равенства, совпадения);

Аксиомы непрерывности;

Аксиома параллельности.

Эти аксиомы (всего их 20) относятся к объектам трех родов: точек, прямых, плоскостей, а также к трем отношениям между ними: «принадлежит», «лежит между», «конгруэнтен». Конкретный смысл точек, прямых, плоскостей и отношений не указан. Они косвенно определены через аксиомы. Благодаря этому построенная на основе аксиом Гильберта геометрия допускает различные конкретные реализации.

Геометрическая система, построенная на перечисленных аксиомах, называется евклидовой геометрией, так как совпадает с геометрией, изложенной Евклидом в «Началах».

Геометрические системы, отличные от евклидовой, называются неевклидовыми геометриями. Согласно общей теории относительности, в пространстве ни та, ни другая не являются абсолютно точными, однако в малых масштабах (земные масштабы являются также достаточно «малыми») они вполне пригодны для описания пространства. Причиной того, что на практике применяются евклидовы формулы, является их простота.

Гильберт всесторонне исследовал свою систему аксиом, показал, что она непротиворечива, если не противоречива арифметика (т.е. на самом деле доказана содержательная или так называемая внешняя непротиворечивость). Он завершил многовековые исследования геометров по обоснованию геометрии. Эта работа была высоко оценена и в 1903 г. отмечена премией имени Лобачевского.

В современном аксиоматическом изложении геометрии Евклида не всегда пользуются аксиомами Гильберта: учебники по геометрии построены на различных модификациях этой системы аксиом.

В XX в. было обнаружено, что геометрия Лобачевского не только имеет важное значение для абстрактной математики как одна из возможных геометрий, но и непосредственно связана с приложениями математики. Оказалось, что взаимосвязь пространства и времени, открытая А.Эйнштейном и другими учеными в рамках специальной теории относительности, имеет непосредственное отношение к геометрии Лобачевского.

Аксиоматический метод – способ построения научной теории, при котором в основу теории кладутся некоторые исходные положения, которые называют аксиомами теории, а все остальные положения теории вытекают как логические следствия аксиом.

Большинство направлений современной математики, теоретическая механика, ряд разделов физики построены на основе аксиоматического метода. В математике аксиоматический метод дает возможность создания законченных, логичнозавершиних научных теорий. Не меньшее значение имеет и то, что математическая теория, построенная аксиоматически, часто находит применение в других науках.

В математике аксиоматический метод зародился в работах древнегреческих геометров. Блестящим образцом его применения вплоть до XIX в. была геометрическая система, известная под названием «Начала» Евклида (ок. 300 до н.э.). Хотя в то время не стоял еще вопрос об описании логических средств, применяемых для получения содержательных последствий из аксиом, в системе Евклида уже достаточно четко прослеживается идея получения всего основного содержания геометрической теории чисто дедуктивным путем, с определенного, относительно небольшого, числа утверждений – аксиом, истинность которых представлялась наглядно очевидной.

Открытие в начале XIX в. неевклидовой геометрии Н. И. Лобачевским и Я. Бойяи стало толчком к дальнейшему развитию аксиоматического метода. Они установили, что, заменив привычный и, казалось бы, единственно «объективно истинный» V постулат Евклида о параллельных прямых его отрицанием, можно развивать чисто логическим путем геометрическую теорию, столь же стройную и богатую содержанием, как и геометрия Евклида. Этот факт заставил математиков XIX в. обратить особое внимание на дедуктивный способ построения математических теорий, что привело к возникновению связанной с самим понятием аксиоматического метода и формальной (аксиоматической) математической теории новой проблематики, на основе которой выросла так называемая теория доказательств как основной раздел современной математической логики.

Понимание необходимости обоснования математики и конкретные задачи в этой области зародились в более или менее отчетливой форме уже в XIX в. Уточнение основных понятий анализа и сведения сложных понятий к простейшему на точной и логически все более прочной основе, а также открытие неевклидовых геометрий стимулировали развитие аксиоматического метода и возникновения проблем общего математического характера, таких, как непротиворечивость, полнота и независимость той или системы аксиом.

Первые результаты в этой области принес метод интерпретаций, который может быть описан следующим образом. Пусть каждому выходному понятию и соотношению данной аксиоматической теории Т поставлен в соответствие определенный конкретный математический объект. Совокупность таких объектов называется полем интерпретации. Всякому утверждению U теории Т естественным образом ставится в соответствие определенное высказывание U * об элементах поля интерпретации, которое может быть истинным или ложным. Тогда говорят, что утверждения U теории Т соответствии истинное или ложное в данной интерпретации. Поле интерпретации и его свойства обычно сами являются объектом рассмотрения определенной математической теории T 1, которая, в частности, может быть тоже аксиоматической.

Метод интерпретаций позволяет устанавливать факт относительной непротиворечивости, то есть доказать утверждения типа: «если теория T 1 непротиворечива, то непротиворечивая и теория Т». Пусть теория Т проинтерпретированы в теории T 1 таким образом, что все аксиомы А и теории Т интерпретируются истинными утверждениями А и * теории Т 1. Тогда всякая теорема теории Т, то есть всякое утверждение А, логически выведено из аксиом А и в Т, интерпретируется в T 1 определенным утверждением А *, которое можно вывести в Т из интерпретаций А * и аксиом А и, и следовательно истинным. Последнее утверждение опирается на еще одно предположение, что делается неявно нами, определенного сходства логических средств, применяемых в теориях Т и Т 1. Практически это условие обычно выполняется. Пусть теперь теория Т противоречива, то есть некое утверждение А этой теории выведено в ней вместе со своим отрицанием. Тогда из вышесказанного следует, что утверждение А * и «не А *» будут одновременно истинными утверждениями теории Т 1, т.е. теория Т 1 противоречива. Этим методом была, например, доказано (Ф. Клейн, А. Пуанкаре) непротиворечивость неевклидовой геометрии Лобачевского в предположении, что непротиворечивая геометрия Евклида, а вопрос о непротиворечивость гильбертово аксиоматизациы евклидовой геометрии был возведен (Д. Гильберт) к проблеме непротиворечивости арифметики.

Метод интерпретаций позволяет также решать вопрос о независимости систем аксиом: для доказательства того, что аксиома А теории Т не виводима из других аксиом этой теории и, следовательно, существенно необходима для получения всего объема данной теории, достаточно построить такую интерпретацию теории Т, в которой аксиома А была бы ошибочна, а все остальные аксиомы данной теории истинны. Вышеупомянутое возведения проблемы непротиворечивости геометрии Лобачевского к проблеме непротиворечивости евклидовой геометрии, а этой последней – к вопросу о непротиворечивость арифметики имеет своим следствием утверждение, что V постулат Евклида не виводимий из других аксиом геометрии, если только непротиворечивой является арифметика натуральных чисел.

Слабая сторона метода интерпретаций заключается в том, что в вопросах непротиворечивости и независимости систем аксиом он дает возможность получать только результаты, носят относительный характер. Важным достижением этого метода стал тот факт, что с его помощью была обнаружена особая роль арифметики как такой математической теории, к вопросу о непротиворечивости которой сводится аналогичный вопрос для целого ряда других теорий.

Дальнейшее развитие – в известном смысле это была вершина – аксиоматический метод получил в работах Д. Гильберта и его школы. В рамках этого направления было произведено дальнейшее уточнение понятия аксиоматической теории, а само понятие формальной системы. В результате этого уточнения оказалось возможным представлять сами математические теории как точные математические объекты и строить общую теорию, или метатеорию, таких теорий. При этом привлекательной представлялась перспектива (и Д. Гильберт был в свое время ею увлечен) решить на этом пути все главные вопросы обоснования математики. Всякая формальная система строится как точно очерченное класс выражений формул, в котором определенным точным образом выделяется подкласс формул, называют теоремами данной формальной системы. При этом формулы формальной системы сами не несут в себе никакой смысловой смысла, их можно строить по произвольным знаков или элементарных символов, руководствуясь только соображениями технической удобства. На самом деле способ построения формул и понятия теоремы той или формальной системы выбираются с таким расчетом, чтобы весь этот формальный аппарат можно было применять для как можно более адекватного и полного выражения той или конкретной математической (или не математической) теории, точнее, как ее фактического содержания, так и ее дедуктивной структуры. Всякую конкретную математическую теорию Т можно перевести на язык пригодной формальной системы S таким образом, что каждое осмысленное (ложное или истинное) выражения теории Т выражается известной формулой системы S.

Естественно ожидать, что метод формализации позволит строить весь положительный смысл математических теорий на такой точной и, казалось бы, надежной основе, как понятие выведенной формулы (теоремы формальной системы), а принципиальные вопросы типа проблемы непротиворечивости математических теорий решать форме доказательств соответствующих утверждений формальных систем, которые формализуют эти теории. Чтобы получить доказательства утверждений о непротиворечивость, не зависящих от тех мощных средств, которые в классических математических теориях раз и является причиной осложнений их обоснования, Д. Гильберт предлагал исследовать формальные системы т.н. финитными методами (см. метаматематики).

Однако результаты К. Геделя начале 30-х г. XX в. привели к краху основных надежд, что связывались с этой программой. К. Гедель показал следующее.

1) Всякая естественная, непротиворечивая формализация S арифметики или любой другой математической теории, содержащей арифметику (напр., теории множеств), неполная и непополняемые в том смысле, что: а) в S содержатся (содержательно истинные неразрешимые формулы, есть такие формулы А, ни А, ни отрицания А не виводими в S (неполнота формализованной арифметикы), б) какой бы конечным множеством дополнительных аксиом (напр., неразрешимыми в S формулам) расширять систему S, в новой, усиленной таким образом формальной системе неизбежно появятся свои неразрешимые формулы (непоповнюванисть; см. также Геделя теорема о неполноте).

2) Если формализованная арифметика действительности непротиворечива, то, хотя утверждение о ее непротиворечивость может быть выражено ее собственным языком, доведение этого утверждения невозможно провести средствами, формализуются в ней самой.

Это означает, что уже для арифметики принципиально невозможно исчерпать весь объем ее содержательно истинных суждений классом виводимих формул какой бы формальной системой и что нет никакой надежды получить какое-либо финитных доведение непротиворечивости арифметики, потому что, очевидно, всякое разумное уточнение понятия финитного доведение оказывается формализуемим в формальной арифметике.

Все это ставит определенные границы можливстям А. м. в том его виде, который он приобрел в рамках гильбертовського формализма. Однако и в этих границах он сыграл и продолжает играть важную роль в основании математики. Так, например, уже после описанных результатов К. Геделя им же в 1938-40 гг, а затем П. Коэном в 1963 г. на основе аксиоматического подхода с применением метода интерпретаций были получены фундаментальные результаты о совместимости (т.е. относительную непротиворечивость) и независимость аксиомы выбора и континуум-гипотезы в теории множеств. Что касается такого основного вопроса основ математики, как проблема непротиворечивости, и после результатов К. Геделя стало ясно, что для его решения, очевидно, не обойтись без других, отличных от финитистських, средств и идей. Здесь оказались возможными различные подходы, учитывая существование различных взглядов на допустимость тех или иных логических средств.

Из результатов о непротиворечивость формальных систем следует указать на доведение непротиворечивости формализованной арифметики, опирающегося на бесконечную индукцию к определенному счетно трансфинитной числа.

По П. С. Новиковым.

Аксиоматический метод дает возможность делать заключения и открывать законы без опоры на наблюдения и эксперименты, а посредствам логического вывода.

Пожалуй, одним из первых успешных применений аксиоматического метода стала геометрия древнегреческого математика Евклида (она появилась где-то в 330-320 гг. до н.э.). Евклидову аксиоматическую систему в общих словах можно охарактеризовать следующим образом. Изучение окружающего нас пространства дало возможность описать некоторые свойства объектов, которые получили название точка, прямая, плоскость, треугольник, круг и т.д. Несколько утверждений об этих объектах Евклид выбрал в качестве аксиом или постулатов. Их истинность, по его мнению, не нуждалось в доказательстве из-за их очевидности и легкого понимания. К числу аксиом он отнес суждения: «Через две точки можно провести только одну прямую», «Через прямую и точку вне ее может проходить лишь одна плоскость» и др. Из этих аксиом чисто логическим путем Евклиду удалось вывести все нужные геометрические утверждения и законы, которые обычно называются теоремами.

Справедливости ради нужно сказать, что доказательства Евклида (как и доказательства школьной геометрии, которую все мы изучили) сопровождаются многочисленными чертежами. И понадобилось немало времени, чтобы прийти к очевидной мысли, что чертежи не должны быть существенной частью самого процесса доказательства. Они должны либо облегчать процесс доказательства, либо помогать следить за ходом доказательства, либо, наконец, способствовать запоминанию доказательства. Этот недостаток геометрии Евклида исправил Д. Гильберт в своей книге «Основания геометрии» (1999).

То обстоятельство, что аксиоматически построенная геометрия давала чрезвычайно, простой, удобный и экономный способ установления истинности геометрических рассуждений, производило сильное впечатление. Аксиоматический метод стали пытаться применять не только в математических теориях, но даже в философии (Спиноза). Представители очень многих наук надеялись, что в конце концов многие теории с помощью аксиоматики можно довести до такого же изящества и совершенства как евклидовую геометрию. Аксиоматический метод подвергся тщательному изучению. Первые наиболее важные результаты были получены опять таки в геометрии.

Пятый постулат Евклида (его можно сформулировать так: две параллельные прямые не пересекаются, сколько бы мы их не продолжали) казался математикам менее очевидным, чем остальные. Было предпринято множество попыток доказать этот постулат, посредством вывода его из остальных постулатов евклидовой системы. Но все эти попытки потерпели неудачу. В 1923 году Н.Н. Лобачевский и в 1933 г. Бойаи построили геометрию, в которой в качестве постулата фигурировало отрицание пятого постулата Евклида, т.е. в качестве аксиомы было взято суждение о том, что через точку вне прямой можно провести бесконечно много прямых, параллельных данной прямой. Первоначально многие математики встретили неевклидовую геометрию в штыки из-за ее явного противоречия воспринимаемому физическому пространству. Однако, в 1950 г. Фр. Клейн нашел очень удачную интерпретацию (разъяснение) этой геометрии. Если под «плоскостью» понимать внутренность какого-то круга евклидовой плоскости, под «точкой» - точку этого круга, а под «прямой» - хорду его окружности, то внутри круга будут выполняться все аксиомы и теоремы геометрии Лобачевского-Бойаи. Из этих открытий были сделаны важные заключения о любой аксиоматической системе: аксиомы этой системы должны удовлетворять требованиям независимости, полноты, непротиворечивости и она не должна быть вырожденной.

Требование независимости означает, что не одна из аксиом не должна выводиться в качестве теоремы из остальных. Полнота аксиоматики какой-то теории означает, что из аксиом по правилам логики должны выводиться все утверждения этой теории. Система аксиом должна быть непротиворечивой. Из них не должно выводиться какое-то утверждение вместе со своим отрицанием. Если это случается, то по закону исключенного третьего одно из суждений обязательно ложно. Какое, установить нельзя, потому что и то и другое будет выводиться по законам логики. Наконец, система аксиом будет невырожденной, если удается найти какие-то объекты (физические или теоретические), которые описывает теория, выведенная из этих аксиом.

Но еще больше вопросов, связанных с аксиоматическим методом, возникло с открытием в XX1 веке парадоксов теории множеств. Они представляли собой рассуждения совершенно справедливые с интуитивной (содержательной) точки зрения, но тем не менее приводящие к противоречиям. Некоторые из них, например, парадокс «Лжец» были известны с древности. Напомним, что суть этого парадокса в следующем: некто говорит: «Я лгу». Если при этом он лжет, то сказанное им ложь, и, следовательно, он не лжет. Если же при этом он не лжет, то сказанное им истина, и, следовательно, он лжет. Так что в любом случае он лжет и не лжет одновременно. Однако связь парадокса «Лжец» с теорией множеств не была осознанной. Это случилось тогда, когда из аксиоматической теорией множеств, предложенной Г.Кантором и др. стали выводиться аналогичные парадоксы. Самый простой из них - парадокс Берри (2006). Суть его такова: множество всех натуральных чисел, которые могут быть названы по-русски посредством числа слогов (или букв), меньше некоторого конечного натурального числа, безусловно, конечно, следовательно, должно существовать наименьшее из чисел, которые не могут быть так названы. Но «наименьшее целое число, которое не может быть названо по-русски меньше, чем в пятьдесят слогов» (подсчитайте число слогов) есть выражение русского языка, содержащие менее пятидесяти слогов. Известны различные модификации этого парадокса. При исследовании систем аксиом арифметики, теории множеств и других аксиоматических теорий обнаружилось, что не существует полной системы аксиом, из которых можно было бы вывести такую простую теорию как арифметика (К.Гедель). Оказалось так же, что проблемы непротиворечивости систем аксиом теории множеств и других теорий чрезвычайно трудны. При попытках их решения математики и логики раскололись на враждующие между собой группировки. По мнению Гильберта и его формалистской школы, чтобы избавить математику от парадоксов нужно сформулировать ее в виде аксиоматической теории, после чего следует доказать непротиворечивость этой теории. По мнению интуиционистов, возглавляемых Бауэром, чтобы избавить математику от парадоксов, надо отказаться от признания универсального характера некоторых законов логики, в частности закона исключенного третьего.

Итак, суть аксиоматического метода в следующем. В теорию вводятся без определения некие объекты, природа которых не определена. Затем посредством аксиом задают определенные отношения между объектами. Построить аксиоматическую теорию - это значит вывести логические следствия из аксиом, отказавшись от каких-либо других предложений относительно природы рассматриваемых объектов. Для построенной таким образом теории стремятся доказать полноту, непротиворечивость, независимость и невырожденность системы её аксиом.

Математика - это орудие, специально приспособленное для того, чтобы иметь дело с отвлеченными понятиями любого вида, и в этой области нет предела ее могуществу.

П.Дирак

Если теорему так и не смогли доказать – она становится аксиомой.

Евклид

1.1 Сущность аксиоматического метода

Математика строится на основе понятий. Понятия бывают определяемые и неопределяемые. Под определением понимают точную формулировку того или иного понятия. Определить математическое понятие – это значит указать его характерные признаки или свойства, которые выделяют это понятие среди остальных. Обычный способ определения математического понятия заключается в указании: 1) ближнего рода, то есть более общего понятия, к которому относится определяемое понятие; 2) видового отличия, то есть тех характерных признаков или свойств, которые присущи именно этому понятию.

Пример 1. Определение: «Квадрат – это прямоугольник, у которого все стороны равны». Ближайшим родом, то есть более общим понятием является понятие прямоугольника, а видовым отличием будет указание, что у квадрата все стороны равны. В свою очередь для прямоугольника более общим понятием является понятие параллелограмма, для параллелограмма - понятие четырехугольника, для четырехугольника - понятие многоугольника и так далее. Но указанная цепочка не является бесконечной.

Существуют понятия, которые нельзя определить через другие, более общие понятия. Их в математике называют основными неопределяемыми понятиями . Примерами основных понятий являются точка, прямая, плоскость, расстояние, множество и так далее.

Связи и отношения между основными понятиями формулируются с помощью аксиом.

Аксиома - это математическое предложение, принимаемое в данной теории без доказательств.

К системе аксиом, на которой строится та или иная математическая теория, предъявляются требования непротиворечивости, независимости, полноты.

Система аксиом называется непротиворечивой , если из нее нельзя одновременно вывести два взаимоисключающих друг друга предложения: А , неА .

Система аксиом называется независимой , если ни одна из аксиом этой системы не является следствием других аксиом этой системы.

Система аксиом называется полной , если в ней доказуемо обязательно одно из двух: либо утверждение А , либо неА.

Предложение, которого нет в списке аксиом, должно быть доказано. Такое предложение называется теоремой .

Теорема - это математическое предложение, истинность которого устанавливается в процессе рассуждения, называемого доказательством.

Пример 2.

Аксиома: «Какова бы ни была прямая, существуют точки, принадлежащие этой прямой и точки, не принадлежащие ей».

Теорема: «Если диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то этот четырехугольник – параллелограмм».

Одним из основных методов современной математики является аксиоматический метод . Сущность его состоит в следующем:

      перечисляются основные неопределяемые понятия и отношения строящейся теории (примеры отношений: следовать за..., лежать между...);

      формулируются аксиомы, принимаемые в данной теории без доказательства, которые выражают связь между основными понятиями и их отношениями;

      предложения, которых нет среди основных понятий и основных отношений, должны быть определены;

      предложения, которых нет в списке аксиом, должны быть доказаны на основе этих аксиом и ранее доказанных предложений.

Аксиоматический метод является способом построения научных теорий, которые уже установлены. В основе лежат аргументы, факты, утверждения, не требующие доказательств или опровержения. По сути, это вариант знания представлен в виде дедуктивной структуры, в которую изначально входит логическое обоснование содержания из основоположений - аксиом.

Этот метод не может быть открытием, а является только классифицирующим понятием. Он больше подойдет для преподавания. В основе присутствуют исходные положения, а остальные сведения вытекают как логическое следствие. Где находится аксиоматический метод построения теории? Он лежит в структуре большинства современных и устоявшихся наук.

Становление и развитие понятия аксиоматического метода, определение слова

Прежде всего, это понятие возникло в Древней Греции благодаря Евклиду. Он стал основоположником аксиоматического метода в геометрии. Сегодня он распространен во всех науках, но более всего в математике. Этот способ формируется на основе устоявшихся утверждений, а последующие теории выводятся путем логического построения.

Это объясняется следующим образом: существуют слова и понятия, которые определяются другими понятиями. В результате исследователи пришли к выводу, что существуют элементарные выводы, обоснованные и являющиеся постоянными - основными, то есть аксиомами. К примеру, доказывая теорему, обычно опираются на факты, которые уже устоявшиеся и не требуют опровержения.

Однако до этого их требовалось обосновать. В процессе получается, что неаргументированное утверждение принимается за аксиому. Опираясь на набор постоянных понятий, доказывают другие теоремы. Они составляют основу планиметрии и являются логическим строением геометрии. Устоявшиеся аксиомы в этой науке определяются как объекты любой природы. Они, в свою очередь, обладают свойствами, которые указаны в постоянных понятиях.

Дальнейшие исследования аксиом

Способ рассматривался как идеальный вплоть до девятнадцатого столетия. Логические средства поиска основных понятий еще в те времена не изучались, но в системе Евклида можно наблюдать структуру получения содержательных последствий из аксиоматического метода. Исследования ученого показали идею о том, как получить полную систему геометрических знаний на основе чисто дедуктивного пути. Им предлагалось сравнительно небольшое количество утвержденных аксиом, которые истинны наглядно.

Заслуги древнегреческих умов

Евклид доказал множество понятий, причем некоторые из них были обоснованы. Однако большинство приписывает эти заслуги Пифагору, Демокриту и Гиппократу. Последний составил полный курс геометрии. Правда, позже в Александрии вышел сборник "Начало", автором которого являлся Евклид. Затем, он был переименован в "Элементарную геометрию". Спустя некоторое время его начали критиковать на основе некоторых причин:

  • все величины строились только с помощью линейки и циркуля;
  • геометрия и арифметика были разъединены и доказывались с учетом обоснованных чисел и понятий;
  • аксиомы, некоторые из них, в частности, пятый постулат, предлагали вычеркнуть из общего списка.

В результате в XIX веке возникает неевклидовая геометрия, в которой отсутствует объективно истинный постулат. Это действие дало толчок для дальнейшего развития геометрической системы. Таким образом, к дедуктивным способам построения пришли математические исследователи.

Развитие математического знания на основе аксиом

Когда начала развиваться новая система геометрии, изменился и аксиоматический метод. В математике стали чаще обращаться к чисто дедуктивному построению теории. В результате в современной числовой логике возникла целая система доказательств, которая является главным разделом всей науки. В математической структуре стали понимать необходимость обоснования.

Так, уже к концу столетия сформировались четкие задачи и построение сложных понятий, которые из сложной теоремы сводились к простейшему логическому утверждению. Таким образом, неевклидовая геометрия стимулировала прочную основу для дальнейшего существования аксиоматического метода, а также для решения проблем общего характера математических конструкций:

  • непротиворечивости;
  • полноты;
  • независимости.

В процессе появился и успешно получил развитие способ интерпретации. Этот метод описывается так: для каждого выходного понятия в теории поставлен математический объект, совокупность которых называется полем. Высказывание об указанных элементах может быть ложным или истинным. В результате утверждения получают названия в зависимости от выводов.

Особенности теории интерпретации

Как правило, поле и свойства также подвергаются рассмотрению в математической системе, и она, в свою очередь, может стать аксиоматической. Интерпретация доказывает утверждения, в которых имеется относительная непротиворечивость. Дополнительным вариантом выступает ряд фактов, при которых теория становится противоречивой.

По сути, условие в ряде случаев выполняется. В результате получается, что, если в высказываниях одного из утверждений присутствуют два ложных или истинных понятия, то оно считается отрицательным или положительным. Таким методом была доказана непротиворечивость геометрии Евклида. При интерпретационном методе можно решить вопрос о независимости систем аксиом. Если нужно опровергнуть какую-либо теорию, то достаточно доказать, что одно из понятий не выводится из другого и ошибочно.

Однако наряду с успешными утверждениями, способ имеет и слабые стороны. Непротиворечивость и независимость систем аксиом решаются как вопросы, которые получают результаты, носящие относительный характер. Единственное важное достижение интерпретации - обнаружение роли арифметики как структуры, в которой вопрос о непротиворечивости сводится к ряду иных наук.

Современное развитие аксиоматической математики

Аксиоматический метод стал развиваться в работе Гилберта. В его школе было уточнено само понятие теории и формальной системы. В результате возникла общая система, а математические объекты стали точными. Кроме того, появилась возможность решить вопросы обоснования. Таким образом, формальная система строится точным классом, в котором находятся подсистемы формул и теорем.

Чтобы построить эту структуру, нужно только руководствоваться техническими удобствами, потому что они не имеют никакой смысловой нагрузки. Они могут быть вписаны знаками, символами. То есть, по сути, сама система строится таким образом, чтобы формальную теорию можно было применять адекватно и в полной мере.

В результате выливается конкретная математическая цель или задача в теорию на основе фактического содержания или дедуктивного умозаключения. Язык числовой науки переводят на формальную систему, в процессе любое конкретное и осмысленное выражение определяется формулой.

Метод формализации

При естественном положении вещей подобный способ сможет решать такие глобальные вопросы, как непротиворечивость, а также строить положительную суть математических теорий по выведенным формулам. Причем в основном все это будет решать формальная система на основе доказанных утверждений. Математические теории постоянно осложнялись обоснованиями, и Гилберт предложил исследовать эту структуру при помощи финитных методов. Но это программа провалилась. Результаты Геделя уже в двадцатом столетии привели к следующим выводам:

  • естественная непротиворечивость невозможна за счет того, что формализованная арифметика или другая подобная наука из этой системы будет неполной;
  • появились неразрешимые формулы;
  • утверждения недоказуемы.

Истинные суждения и разумное финитное доведение считаются формализуемыми. С учетом этого аксиоматический метод имеет определенные и четкие границы и возможности в рамках этой теории.

Результаты развития аксиом в трудах математиков

Несмотря на то что некоторые суждения были опровергнуты и не получили должного развития, способ постоянных понятий играет значительную роль в формировании основ математики. Кроме этого, интерпретация и аксиоматический метод в науке выявили фундаментальные результаты непротиворечивости, независимости утверждений выбора и гипотез во множественной теории.

В решении вопроса непротиворечивости главное применить не только устоявшиеся понятия. Их нужно также дополнить идеями, концепциями и средствами финитного доведения. В данном случае рассматриваются различные взгляды, способы, теории, которые должны учитывать логический смысл и обоснование.

Непротиворечивость формальной системы указывает на подобное доведение арифметики, которая опирается на индукцию, счет, трансфинитное число. В научной области аксиоматизация является важнейшим инструментом, имеющим неопровержимые концепции и утверждения, берущиеся за основу.

Сущность исходных утверждений и их роль в теориях

Оценка аксиоматического метода указывает на то, что в его сущности лежит некая структура. Эту систему строят с выявления основополагающей концепции и фундаментальных утверждений, которые являются неопределяемыми. То же происходит и с теоремами, считающимися исходными и принимающимися без доказательств. В естественных науках за подобные утверждения выступают правила, допущения, законы.

Затем происходит процесс фиксации установленных баз для рассуждений. Как правило, сразу указывается, что из одного положения выводится другое, а в процессе выходят остальные, которые, в сущности, совпадают с дедуктивным методом.

Особенности системы в современности

В составе аксиоматической системы находятся:

  • логические выводы;
  • термины и определения;
  • частично неправильные утверждения и понятия.

В современной науке этот метод утратил абстрактность. В Евклидовой геометрической аксиоматизации в основе лежали интуитивные и истинные положения. И интерпретировалась теория единственным, естественным способом. Сегодня аксиома - это положение, которое само по себе очевидно, а соглашение, причем любое, может выступать как начальное, не требующее обоснования понятие. В результате исходные значения могут быть далекими от наглядности. Этот метод требует творческого подхода, знания взаимосвязей и исходной теории.

Основные принципы выведения заключений

Дедуктивно аксиоматический метод - это научное познание, строящееся по определенной схеме, в основе которой лежат правильно осознанные гипотезы, выводящие утверждения об Подобное умозаключение строится на основе логических структур, путем жесткого выведения. Аксиомы - изначально неопровержимые утверждения, не требующие доказательств.

При дедукции к исходным понятиям применяются определенные требования: непротиворечивости, полноты, независимости. Как показывает практика, первое условие основано на формально-логическом знании. То есть в теории не должны присутствовать значения истинности и ложности, ибо она уже не будет иметь значения и ценности.

Если такое условие не соблюдается, то она считается несовместной и в ней теряется какой-либо смысл, ибо теряется смысловая нагрузка между истиной и ложью. Дедуктивно аксиоматический метод является способом построения и обоснования научного знания.

Практическое применение метода

Аксиоматический метод построения научного знания имеет практическое применение. По сути, этот способ влияет и оказывает глобальное значение на математику, хотя это знание уже достигло своей вершины. Примеры аксиоматического метода следующие:

  • аффинные плоскости имеют три утверждения и определение;
  • теория эквивалентности обладает тремя доказательствами;
  • бинарные отношения подразделяются на систему определений, понятий и дополнительных упражнений.

Если нужно сформулировать исходное значение, то необходимо знать природу множеств и элементов. В сущности, аксиоматический метод лег в основу различных областей науки.