Строение ионных кристаллов. Kvant

В сложных кристаллах, состоящих из элементов различной валентности, возможно образование ионного типа связи. Такие кристаллы называют ионными.

При сближении атомов и перекрытии валентных энергетических зон между элементами происходит перераспределение электронов. Электроположительный элемент теряет валентные электроны, превращаясь в положительный ион, а электроотрицательный - приобретает его, достраивая тем самым свою валентную зону до устойчивой конфигурации, как у инертных газов. Таким образом, в узлах ионного кристалла располагаются ионы.

Представитель этой группы - кристалл оксида решетка которого состоит из отрицательно заряженных ионов кислорода и положительно заряженных ионов железа.

Перераспределение валентных электронов при ионной связи происходит между атомами одной молекулы (одним атомом железа и одним атомом кислорода).

Для ковалентных кристаллов координационное число К, а слелователыю, и возможный тип решетки определяются валентностью элемента. Для ионных кристаллов координационное число определяется соотношением радиусов металлического и неметаллического ионов, так как каждый ион стремится притянуть к себе как можно больше ионов противоположного знака. Ионы в решетке укладываются как шары разных диаметров.

Радиус неметаллического иона больше радиуса металлического, и поэтому металлические ионы заполняют поры в кристаллической решетке, образованной ионами неметалла. В ионных кристаллах координационное число

определяет число ионов противоположного знака, которые окружают данный ион.

Приведенные ниже значения отношений радиуса металла к радиусу неметалла и соответствующие им координационные числа вытекают из геометрии упаковки шаров разных диаметров.

Для координационное число будет равно 6, так как указанное соотношение равно 0,54. На рис. 1.14 приведена кристаллическая решетка Ионы кислорода образуют ГЦК решетку, ионы железа занимают в ней поры. Каждый ион железа окружен шестью ионами кислорода, и, наоборот, каждый ион кислорода окружен шестью ионами железа, В связи с этим в ионных кристаллах нельзя выделить пару ионов, которые можно было бы считать молекулой. При испарении такой кристалл распадается на молекулы.

При нагреве соотношение ионных радиусов может изменяться, так как ионный радиус неметалла растет интенсивнее, чем радиус металлического иона. Это приводит к изменению типа кристаллической структуры, т. е. к полиморфизму. Например, у оксида при нагреве шпинельная кристаллическая решетка изменяется на ромбоэдрическую решетку (см. п. 14.2),

Рис. 1.14. Кристаллическая решетка а - схема; б - пространственное изображение

Энергия связи ионного кристалла по своей величине близка к энергии связи ковалентных кристаллов и превышает энергию связи металлических и тем более молекулярных кристаллов. В связи с этим ионные кристаллы имеют высокую температуру плавления и испарения, высокий модуль упругости и низкие коэффициенты сжимаемости и линейного расширения.

Заполнение энергетических зон вследствие перераспределения электронов делает ионные кристаллы полупроводниками или диэлектриками.

С ионным (электростатическим) хар-ром связи между атомами. И. к. могут состоять как из одноатомных, так и многоатомных ионов. Примеры И. к. первого типа - кристаллы галогенидов щелочных и щёлочноземельных металлов, образованные положительно заряж. ионами металла и отрицательно заряж. ионами галогена (NaCl, CsCl, CaF2). Примеры И. к. второго типа - нитраты, сульфаты, фосфаты и др. соли металлов, где отрицат. ионы кислотных остатков состоят из неск. атомов. К И. к. относят также силикаты, в к-рых кремнекислородные радикалы SiO4 образуют цепи, слои или трёхмерный каркас, внутри радикалов атомы связаны ковалентной связью (см. МЕЖАТОМНОЕ ВЗАИМОДЕЙСТВИЕ .

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ИОННЫЕ КРИСТАЛЛЫ

Кристаллы с ионным (электростатич.) характером связи между атомами. И. к. могут состоять как из одноатомных, так и многоатомных ионов. Примеры И. к. первого типа - кристаллы галогенидов щелочных и щёлочноземельных металлов, образованные положительно заряженными ионами металла и отрицательно заряженными попами галогена (NaCl, CsCl, CaF 2). Примеры И. к. второго типа - карбонаты, сульфаты, фосфаты и др. соли металлов, где отрицат. ионы кислотных остатков, напр. СО 3 2- , SO 4 2- , состоят из неск. атомов. Формальный ионов, напр. Na + , Mg 2+ , O 2- , даже в наиболее типичных И. к., в действительности оказывается больше реального эфф. заряда, к-рый определяют рентгенография., спектральными и др. методами. Так, напр., в NaCl эфф. заряд составляет для Na ок. +0,9 е (е - элементарный электрич. заряд), а для Сl соответственно -0,9 е. Для MgF 2 , СаС1 2 оценка эфф. зарядов анионов приводит к значениям ок. -0,7 е, а для катионов - от +1,2 е до +1,4 е. В силикатах и окислах "двухвалентный" О 2- в действительности имеет заряд от -0,9 до -1,1 е. Т. о., фактически во мн. И. к. связь имеет ионно-ковалентный характер. прозрачность И. к. тем выше, чем выше доля ковалентной составляющей связи. Для описания структуры И. к. разработаны детальные системы кристаллохим. радиусов (см. Атомный радиус). Лит.: Современная , т. 2, М., 1979; Уэллс А., Структурная неорганическая химия, пер. с англ., т. 1, М., 1987. Б. К. Вайнштейн.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "ИОННЫЕ КРИСТАЛЛЫ" в других словарях:

    ИОННЫЕ КРИСТАЛЛЫ, кристаллы с ионной (электростатической) связью (см. ИОННАЯ СВЯЗЬ) между атомами. В узлах кристаллической решетки ионных кристаллов поочередно располагаются ионы противоположного знака, в них нельзя выделить отдельные молекулы,… … Энциклопедический словарь

    Кристаллическая структура хлорида натрия (каменной соли). Каждый атом имеет шесть ближайших соседей, как в геометрии октаэдра. Этот механизм известен как кубическая плотная упаковка (КПУ). Светлоголубой = Na+ Тёмнозелёный = Cl Ионные кристаллы… … Википедия

    Кристаллы, в которых сцепление частиц обусловлено преимущественно ионными химическими связями (см. Ионная связь). И. к. могут состоять как из одноатомных, так и из многоатомных ионов. Примеры И. к. первого типа кристаллы галогенидов… … Большая советская энциклопедия

    ИОННЫЕ КРИСТАЛЛЫ - кристаллы с преимущественно ионным (электростатическим) характером связи между атомами … Палеомагнитология, петромагнитология и геология. Словарь-справочник.

    Кристаллич. в ва, в к рых сцепление между частицами обусловлено преим. ионными связями. Поскольку между ионными и полярными ковалентными связями существует непрерывный переход, нет резкой границы между И. к. и ковалентными кристаллами. К ионным… … Химическая энциклопедия

    - (твёрдые электролиты) вещества, обладающие в твёрдом состоянии высокой ионной проводимостью s, сравнимой с проводимостью жидких электролитов и расплавов солей (10 1 10 3 Ом 1 см 1). И. с. можно разделить на 2 типа. 1) Ионные кристаллы, способные… … Физическая энциклопедия

    - (от греч. krystallos, первоначальное значение лёд), твёрдые тела, обладающие трёхмерной периодич. ат. структурой и, при равновесных условиях образования, имеющие естеств. форму правильных симметричных многогранников (рис. 1). К. равновесное… … Физическая энциклопедия

    - (от греч. krystallos кристалл; первоначально лед), твердые тела, обладающие трехмерной периодич. атомной (или молекулярной) структурой и, при определенных условиях образования, имеющие естеств. форму правильных симметричных многогранников (рис.… … Химическая энциклопедия

    - (от греч. krystallos, букв. лёд; горный хрусталь) твёрдые тела, имеющие упорядоченное взаимное расположение образующих их частиц атомов, ионов, молекул. В идеальном К. частицы располагаются строго периодически в трёх измерениях, образуя т. н.… … Большой энциклопедический политехнический словарь

    Раздел физики, изучающий структуру и свойства твердых тел. Научные данные о микроструктуре твердых веществ и о физических и химических свойствах составляющих их атомов необходимы для разработки новых материалов и технических устройств. Физика… … Энциклопедия Кольера

Книги

  • Механика электромагнитных сплошных сред , Можен Ж.. Книга известного французского специалиста, объединяющая в себе достоинства учебного пособия и введения в актуальную область современной механики. В ней описываются свойства электромагнитных…

Что такое ионная поляризация

Ионная поляризация заключается в смещении ионов во внешнем электрическом поле и деформацией электронных оболочек при этом. Рассмотрим кристалл типа $M^+X^-$. Кристаллическую решётку такого кристалла можно рассмотреть как две кубические решетки, одна из которых построены из ионов $M^+$, другая из - $X^-$ и они вставлены одна в другую. Направим внешнее однородное электрическое поле ($\overrightarrow{E}$) вдоль оси Z. Ионные решетки сместятся в противоположные стороны на отрезки $\pm z$. Если мы примем, что $m_{\pm }{\omega }^2_0$ -- квазиупругой силы, которая возвращает ион с массой $m_{\pm }$ в положение равновесия, то на $N$ ионов решетки будет действовать сила ($F_{upr}$), которая равна:

При этом электрическая сила ($F_e$), которая действует на ионы той же решетки, равна:

Условия равновесия

В таком случае условия равновесия примут вид:

Для положительных ионов:

Для отрицательных ионов:

В таком случае полно относительное смещение ионов равно:

Ионная поляризация равна:

где $V_0$ -- объем одной молекулы.

Если взять, например, структуру $NaCl$, в которой каждый ион окружен шестью ионами противоположного знака, которые расположены от него на расстоянии a, то получим:

и, следовательно, используя (5) и (6), получим, что:

Ионная поляризация устанавливается за очень короткое время приблизительно ${10}^{-13}сек.$ Она не приводит к рассеиванию энергии, не вызывает диэлектрических потерь. При снятии внешнего поля, электронные оболочки возвращаются в прежнее состояние.

Ионная решеточная поляризации описывается формулой (9). В большинстве случаев такая поляризация является анизотропной.

где $\left\langle \overrightarrow{p}\right\rangle $ -- среднее значение дипольных моментов ионов, которые равны по модулю, но разнонаправлены, $\overrightarrow{p_i}$ -- дипольные моменты отдельных ионов. В изотропных диэлектриках средние дипольные моменты совпадают по направлению с напряженностью внешнего электрического поля.

Напряженность локального поля для кристаллов

Напряженность локального поля ($\overrightarrow{E"}\ или\ иногда\ \overrightarrow{E_{lok}}\ $) для кристаллов кубической сингонии можно выразить формулами:

где $\overrightarrow{E}$- среднее макроскопическое поле в диэлектрике. Или:

Если для кристаллов кубической сингонии применимо уравнение (10) для вычисления локального поля, то к таким кристаллам можно применить формулу Клаузиуса -- Моссотти:

где $\beta $ - поляризуемости молекулы, $n$ -- концентрация молекул.

Связь поляризуемости ($\beta $) молекулы и диэлектрической восприимчивости ($\varkappa$) для кристаллов кубической сингонии можно задать выражением:

Пример 1

Задание: Диэлектрическая проницаемость кристалла равна $\varepsilon =2,8$. Во сколько раз локальная напряженность ($\overrightarrow{E"}$) поля кубической сингонии больше напряженности среднего макроскопического поля в диэлектрике ($E$)?

За основу примем формулу для расчета локальной напряженности поля, а именно:

\[\overrightarrow{E"}=\frac{\varepsilon +2}{3}\overrightarrow{E}\left(1.1\right).\]

Следовательно, для искомого отношения напряженностей можно записать, что:

\[\frac{E"}{E}=\frac{\frac{\varepsilon +2}{3}E}{E}=\frac{\varepsilon +2}{3}\left(1.2\right).\]

Проведем вычисления:

\[\frac{E"}{E}=\frac{2,8+2}{3}=1,6.\]

Ответ: в 1,6 раз.

Пример 2

Задание: Определите поляризуемость атомов углерода в алмазе ($\beta $), если диэлектрическая проницаемость алмаза равна $\varepsilon =5,6$, а его плотность ${\rho }_m=3,5\cdot {10}^3\frac{кг}{м^3.}$

В качестве основы для решения задачи примем уравнение Клаузиуса -- Моссотти:

\[\frac{\varepsilon -1}{\varepsilon +2}=\frac{n\beta }{3}\left(2.1\right).\]

где концентрация частиц $n$ может быть выражена как:

где ${\rho }_m$ плотность массы вещества, $\mu =14\cdot {10}^{-3}\frac{кг}{моль}$ -- молярная масса углерода, $N_A=6,02\cdot {10}^{23}моль^{-1}$ -- постоянная Авогадро.

Тогда выражение (2.1) примет вид:

\[\frac{\varepsilon -1}{\varepsilon +2}=\frac{\beta }{3}\frac{{\rho }_mN_A}{\mu }\ \left(2.3\right).\]

Из выражение (2.3) выразим поляризуемость $\beta $, получим:

\[\ \beta =\frac{3\mu (\varepsilon -1)}{{\rho }_mN_A(\varepsilon +2)}\left(2.4\right).\]

Подставим имеющиеся численные значения, проведем вычисления:

\[\beta =\frac{3\cdot 14\cdot {10}^{-3}(5,6-1)}{3,5\cdot {10}^3\cdot 6,02\cdot {10}^{23}(5,6+2)}=\frac{193,2\cdot {10}^{-3}}{160,132\cdot {10}^{26}}=1,2\cdot {10}^{-29}м^3\]

Ответ: $\beta =1,2\cdot {10}^{-29}м^3$.

Идеальный ионный кристалл состоит из положительно и отрицательно заряженных сферических ионов. Этому представлению более всего соответствуют если не все, то по крайней мере некоторые щелочно-галоидные соединения, т.е. соли, образуемые одним из щелочных металлов (литий, натрий, калий, рубидий, цезий) и одним из галогенов (фтор, хлор, бром, иод). Имеются доказательства того, что кристаллы этих солей действительно образованы положительными ионами металлов и отрицательно заряженными ионами галогенов. Самое прямое из них – данные рентгеноструктурного анализа, на основе которых рассчитывается распределение электронного заряда (см. рис. 9 для случая NaCl). (22.74 Кб)

То, что подобные твердые тела состоят из ионов, а не атомов, можно объяснить следующим образом. Прежде всего все атомы щелочных металлов имеют один внешний валентный электрон, тогда как внешняя оболочка атомов галогенов содержит семь валентных электронов. При переходе валентного электрона от атома щелочного металла к атому галогена образуются два иона, каждый из которых обладает устойчивой электронной конфигурацией, характерной для атомов инертных газов. Еще более важен выигрыш в энергии, обусловленный кулоновским притяжением между положительными и отрицательными ионами. Рассмотрим в качестве примера хлорид натрия (NaCl). Чтобы оторвать внешний (валентный) электрон от атома Na, нужно затратить 5,14 эВ (энергию ионизации). Когда этот электрон присоединяется к атому Cl, получается выигрыш в энергии, равный 3,61 эВ (энергия сродства к электрону). Таким образом, энергия, необходимая для перехода валентного электрона от Na к Cl, равна (

5,14 - 3,61) эВ = 1,53 эВ. Кулоновская же энергия притяжения между двумя возникшими ионами Na + и Cl - при расстоянии между ними (в кристалле), равном 2,18 , составляет 5,1 эВ. Эта величина с избытком компенсирует полную энергию перехода электрона и приводит к понижению полной энергии системы ионов по сравнению с аналогичной системой свободных атомов. В этом основная причина того, что щелочно-галоидные соединения состоят именно из ионов, а не атомов.

Вычисления энергии ионных кристаллов на самом деле сложнее, чем это может показаться из проведенных выше рассуждений. Но по крайней мере для щелочно-галоидных кристаллов наблюдается хорошее согласие между теоретическим и экспериментальным значениями энергии связи. Ионные связи достаточно сильны, на что указывает, например, высокая температура плавления, равная 1074 K для NaCl.

Благодаря высокой степени устойчивости электронной структуры ионные кристаллы попадают в разряд диэлектриков. Поскольку положительные и отрицательные ионы взаимодействуют с электромагнитными волнами, ионные кристаллы обнаруживают сильное оптическое поглощение в инфракрасной области спектра. (Частота осциллирующего внешнего электрического поля в этой области спектра близка к собственной частоте поперечных решеточных волн, в которых положительные и отрицательные ионы кристалла движутся во встречных направлениях.) В видимой области спектра частоты колебаний слишком велики, для того чтобы массивные ионы успевали реагировать на воздействие таких волн. Поэтому световые волны проходят через кристалл без взаимодействия, т.е. такие кристаллы прозрачны. При еще более высоких частотах – в ультрафиолетовой области спектра – кванты поля могут иметь достаточную энергию для возбуждения валентных электронов, обеспечивающего переход валентных электронов отрицательных ионов в незанятые состояния положительных ионов. Это приводит к сильному оптическому поглощению.

Ковалентные кристаллы . Наиболее известные ковалентные кристаллы – это алмаз, кремний и германий. Каждый атом в таких кристаллах окружен четырьмя соседними атомами, расположенными в вершинах правильного тетраэдра. Свободные атомы каждого из указанных элементов имеют по четыре валентных электрона, а этого достаточно для образования четырех парных электронных связей (между данным атомом и четырьмя его ближайшими соседями). Таким образом, два электрона коллективизируются двумя атомами, образующими связь, и располагаются в пространстве вдоль линии, соединяющей атомы. Это почти такая же связь, как и между двумя атомами водорода в молекуле водорода H 2 . В алмазе эти связи очень сильны, и, поскольку они имеют строго определенное направление относительно друг друга, алмаз является чрезвычайно твердым материалом. Силу ковалентной связи электрона с кристаллом характеризует так называемая энергетическая щель – минимальная энергия, которую необходимо передать электрону, чтобы он мог свободно двигаться в кристалле и создавать электрический ток. Для алмаза, кремния и германия ширина этой щели составляет 5,4, 1,17 и 0,744 эВ соответственно. Поэтому алмаз является хорошим диэлектриком; энергия тепловых колебаний в нем при комнатной температуре слишком мала, чтобы освободить валентные электроны. В кремнии же и особенно в германии благодаря сравнительно малой ширине энергетической щели возможно тепловое возбуждение некоторого числа валентных электронов при комнатной температуре. Таким образом, они проводят ток, но поскольку их проводимость значительно меньше, чем у металлов, кремний и германий относятся к полупроводникам.

Ионные кристаллы представляют собой соединения с преобладающим ионным характером химической связи, в основе которой лежит электростатическое взаимодействие между заряженными ионами. Типичными представителями ионных кристаллов являются галогениды щелочных металлов, например, со структурой типа NaCl и СaСl.

При образовании кристаллов типа каменной соли (NaCl) атомы галогенов (F, Сl, Вг, I), обладающие большим сродством к электрону захватывают валентные электроны щелочных металлов (Li, Nа, К, Rb, I), имеющих низкие ионизационные потенциалы, при этом образуются положительные и отрицательные ионы, электронные оболочки которых подобны сферически симметричным заполненным s 2 p 6 -оболочкам ближайших инертных газов (например, оболочка N + подобна оболочке Ne, а оболочка Сl - оболочке Аr). В результате кулоновского притяжения анионов и катионов происходит перекрытие шести внешних р-орбиталей и образуется решетка типа NаСl, симметрия которой и координационное число, равное 6, отвечают шести валентным связям каждого атома со своими соседями (Рис.3.4). Существенным является то, что приперекрытии р-орбиталей имеет место понижение номинальных зарядов (+1 для Nа и -1 для Сl) на ионах до небольших реальных значений вследствие сдвига электронной плотности в шести связях от аниона к катиону, так что реальный заряд атомов в соединении оказывается, например, для Nа равным +0,92е, а для Сl- отрицательный заряд становится также меньше -1 е.

Понижение номинальных зарядов атомов до реальных значений в соединениях свидетельствует о том, что даже при взаимодействии наиболее электроотрицательными электроположительных элементов образуются соединения, в которых связь не является чисто ионной.

Рис. 3.4. Ионный механизм образования межатомных связей в структурах типа NaCl . Стрелками показаны направления сдвига электронной плотности

По описанному механизму образуются не только галогениды щелочных металлов, но также нитриды, карбиды переходных металлов, большинство которых имеют структуру типа NаCl.

В силу того что ионная связь ненаправленна, ненасыщенна, для ионных кристаллов характерны большие координационные числа. Основные особенности строения ионных кристаллов хорошо описываются на основе принципа плотнейших упаковок из шаров определенных радиусов. Так, в структуре NаСl крупные анионы Сl образуют кубическую плотнейшую упаковку, в которой заселены все октаэдрические пустоты более мелкими по размеру катионами Na. Таковы структуры KCl, RbCl и многих других соединений.

К ионным кристаллам относятся большинство диэлектриков с высокими значениями удельного электрического сопротивления. Электропроводность ионных кристаллов при комнатной температуре более чем на двадцать порядков меньше электропроводности металлов. Электропроводность в ионных кристаллах осуществляется, в основном, ионами. Большинство ионных кристаллов прозрачны в видимой области электромагнитного спектра.

В ионных кристаллах притяжение обусловлено, главным образом, кулоновским взаимодействием между заряженными ионами. - Кроме притяжения между разноименно заряженными ионами существует также отталкивание, обусловленное, с одной стороны, отталкиванием одноименных зарядов, с другой - действием принципа запрета Паули, поскольку каждый ион обладает устойчивыми электронными конфигурациями инертных газов с заполненными оболочками. С точки зрения сказанного в простой модели ионного кристалла можно принять, что ионы представляют собой жесткие непроницаемые заряженные сферы, хотя реально под действием электрических полей соседних ионов сферически-симметричная форма ионов в результате поляризации несколько нарушается.

В условиях, когда существуют одновременно и силы притяжения и силы отталкивания, устойчивость ионных кристаллов объясняется тем, что расстояние между разноименными зарядами меньше, чем между одноименными. Поэтому силы притяжения преобладают над силами отталкивания.

Снова, как и в случае молекулярных кристаллов, при расчете энергии сцепления ионных кристаллов можно исходить из обычных классических представлений, считая, что ионы находятся в узлах кристаллической решетки (положениях равновесий), их кинетическая энергия пренебрежимо мала и силы, действующие между ионами, являются центральными.