Гравитационные волны как влияют на человека. Состоит ли пространство-время из космических струн? Что такое гравитационные волны простым языком

Спустя сто лет после теоретического предсказания, которое в рамках общей теории относительности сделал Альберт Эйнштейн, ученым удалось подтвердить существование гравитационных волн. Начинается эра принципиально нового метода изучения далекого космоса — гравитационно-волновой астрономии.

Открытия бывают разные. Бывают случайные, в астрономии они встречаются часто. Бывают не совсем случайные, сделанные в результате тщательного «прочесывания местности», как, например, открытие Урана Вильямом Гершелем. Бывают серендипические — когда искали одно, а нашли другое: так, например, открыли Америку. Но особое место в науке занимают запланированные открытия. Они основаны на четком теоретическом предсказании. Предсказанное ищут в первую очередь для того, чтобы подтвердить теорию. Именно к таким открытиям относятся обнаружение бозона Хиггса на Большом адронном коллайдере и регистрация гравитационных волн с помощью лазерно-интерферометрической гравитационно-волновой обсерватории LIGO. Но для того чтобы зарегистрировать какое-то предсказанное теорией явление, нужно довольно неплохо понимать, что именно и где искать, а также какие инструменты необходимы для этого.

Гравитационные волны традиционно называют предсказанием общей теории относительности (ОТО), и это в самом деле так (хотя сейчас такие волны есть во всех моделях, альтернативных ОТО или же дополняющих ее). К появлению волн приводит конечность скорости распространения гравитационного взаимодействия (в ОТО эта скорость в точности равна скорости света). Такие волны — возмущения пространства-времени, распространяющиеся от источника. Для возникновения гравитационных волн необходимо, чтобы источник пульсировал или ускоренно двигался, но определенным образом. Скажем, движения с идеальной сферической или цилиндрической симметрией не подходят. Таких источников достаточно много, но часто у них маленькая масса, недостаточная для того, чтобы породить мощный сигнал. Ведь гравитация — самое слабое из четырех фундаментальных взаимодействий, поэтому зарегистрировать гравитационный сигнал очень трудно. Кроме того, для регистрации нужно, чтобы сигнал быстро менялся во времени, то есть имел достаточно высокую частоту. Иначе нам не удастся его зарегистрировать, так как изменения будут слишком медленными. Значит, объекты должны быть еще и компактными.

Первоначально большой энтузиазм вызывали вспышки сверхновых, происходящие в галактиках вроде нашей раз в несколько десятков лет. Значит, если удастся достичь чувствительности, позволяющей видеть сигнал с расстояния в несколько миллионов световых лет, можно рассчитывать на несколько сигналов в год. Но позднее оказалось, что первоначальные оценки мощности выделения энергии в виде гравитационных волн во время взрыва сверхновой были слишком оптимистичными, и зарегистрировать подобный слабый сигнал можно было бы только в случае, если б сверхновая вспыхнула в нашей Галактике.

Еще один вариант массивных компактных объектов, совершающих быстрые движения, — нейтронные звезды или черные дыры. Мы можем увидеть или процесс их образования, или процесс взаимодействия друг с другом. Последние стадии коллапса звездных ядер, приводящие к образованию компактных объектов, а также последние стадии слияния нейтронных звезд и черных дыр имеют длительность порядка нескольких миллисекунд (что соответствует частоте в сотни герц) — как раз то что надо. При этом выделяется много энергии, в том числе (а иногда и в основном) в виде гравитационных волн, так как массивные компактные тела совершают те или иные быстрые движения. Вот они — наши идеальные источники.

Правда, сверхновые вспыхивают в Галактике раз в несколько десятков лет, слияния нейтронных звезд происходят раз в пару десятков тысяч лет, а черные дыры сливаются друг с другом еще реже. Зато сигнал гораздо мощнее, и его характеристики можно достаточно точно рассчитать. Но теперь нам надо научиться видеть сигнал с расстояния в несколько сотен миллионов световых лет, чтобы охватить несколько десятков тысяч галактик и обнаружить несколько сигналов за год.

Определившись с источниками, начнем проектировать детектор. Для этого надо понять, что же делает гравитационная волна. Не вдаваясь в детали, можно сказать, что прохождение гравитационной волны вызывает приливную силу (обычные лунные или солнечные приливы — это отдельное явление, и гравитационные волны тут ни при чем). Так что можно взять, например, металлический цилиндр, снабдить датчиками и изучать его колебания. Это несложно, поэтому такие установки начали делать еще полвека назад (есть они и в России, сейчас в Баксанской подземной лаборатории монтируется усовершенствованный детектор, разработанный командой Валентина Руденко из ГАИШ МГУ). Проблема в том, что такой прибор будет видеть сигнал без всяких гравитационных волн. Есть масса шумов, с которыми трудно бороться. Можно (и это было сделано!) установить детектор под землей, попытаться изолировать его, охладить до низких температур, но все равно для того, чтобы превысить уровень шума, понадобится очень мощный гравитационно-волновой сигнал. А мощные сигналы приходят редко.

Поэтому был сделан выбор в пользу другой схемы, которую в 1962 году выдвинули Владислав Пусто-войт и Михаил Герценштейн. В статье, опубликованной в ЖЭТФ (Журнал экспериментальной и теоретической физики), они предложили использовать для регистрации гравитационных волн интерферометр Майкельсона. Луч лазера бегает между зеркалами в двух плечах интерферометра, а затем лучи из разных плеч складываются. Анализируя результат интерференции лучей, можно измерить относительное изменение длин плеч. Это очень точные измерения, поэтому, если победить шумы, можно достичь фантастической чувствительности.

В начале 1990-х было принято решение о строительстве нескольких детекторов по такой схеме. Первыми в строй должны были войти относительно небольшие установки, GEO600 в Европе и ТАМА300 в Японии (числа соответствуют длине плеч в метрах) для обкатки технологии. Но основными игроками должны были стать установки LIGO в США и VIRGO в Европе. Размер этих приборов измеряется уже километрами, а окончательная плановая чувствительность должна была бы позволить видеть десятки, если не сотни событий в год.

Почему нужны несколько приборов? В первую очередь для перекрестной проверки, поскольку существуют локальные шумы (например, сейсмические). Одновременная регистрация сигнала на северо-западе США и в Италии была бы прекрасным свидетельством его внешнего происхождения. Но есть и вторая причина: гравитационно-волновые детекторы очень плохо определяют направление на источник. А вот если разнесенных детекторов будет несколько, указать направление можно будет довольно точно.

Лазерные исполины

В своем первоначальном виде детекторы LIGO были построены в 2002 году, a VIRGO — в 2003-м. По плану это был лишь первый этап. Все установки поработали по несколько лет, а в 2010-2011 годах были остановлены для доработки, чтобы затем выйти на плановую высокую чувствительность. Первыми заработали детекторы LIGO в сентябре 2015 года, VIRGO должна присоединиться во второй половине 2016-го, и начиная с этого этапа чувствительность позволяет надеяться на регистрацию как минимум нескольких событий в год.

После начала работы LIGO ожидаемый темп всплесков составлял примерно одно событие в месяц. Астрофизики заранее оценили, что первыми ожидаемыми событиями должны стать слияния черных дыр. Связано это с тем, что черные дыры обычно раз в десять тяжелее нейтронных звезд, сигнал получается мощнее, и его «видно» с больших расстояний, что с лихвой компенсирует меньший темп событий в расчете на одну галактику. К счастью, долго ждать не пришлось. 14 сентября 201 5 года обе установки зарегистрировали практически идентичный сигнал, получивший наименование GW150914.

С помощью довольно простого анализа можно получить такие данные, как массы черных дыр, мощность сигнала и расстояние до источника. Масса и размер черных дыр связаны очень простым и хорошо известным образом, а по частоте сигнала сразу можно оценить размер области выделения энергии. В данном случае размер указывал на то, что из двух дыр массой 25-30 и 35-40 солнечных масс образовалась черная дыра с массой более 60 солнечных масс. Зная эти данные, можно получить и полную энергию всплеска. В гравитационное излучение перешло почти три массы Солнца. Это соответствует светимости 1023 светимостей Солнца — примерно столько же, сколько за это время (сотые доли секунды) излучают все звезды в видимой части Вселенной. А из известной энергии и величины измеренного сигнала получается расстояние. Большая масса слившихся тел позволила зарегистрировать событие, произошедшее в далекой галактике: сигнал шел к нам примерно 1,3 млрд лет.

Более детальный анализ позволяет уточнить отношение масс черных дыр и понять, как они вращались вокруг своей оси, а также определить и некоторые другие параметры. Кроме того, сигнал с двух установок позволяет примерно определить направление всплеска. К сожалению, пока тут точность не очень велика, но с вводом в строй обновленной VIRGO она возрастет. А еще через несколько лет начнет принимать сигналы японский детектор KAGRA. Затем один из детекторов LIGO (изначально их было три, одна из установок была сдвоенной) будет собран в Индии, и ожидается, что тогда будут регистрироваться многие десятки событий в год.

Эра новой астрономии

На данный момент самый важный результат работы LIGO — это подтверждение существования гравитационных волн. Кроме того, уже первый всплеск позволил улучшить ограничения на массу гравитона (в ОТО он имеет нулевую массу), а также сильнее ограничить отличие скорости распространения гравитации от скорости света. Но ученые надеются, что уже в 2016 году они смогут получать с помощью LIGO и VIRGO много новых астрофизических данных.

Во-первых, данные гравитационно-волновых обсерваторий — это новый канал изучения черных дыр. Если ранее можно было только наблюдать потоки вещества в окрестностях этих объектов, то теперь можно прямо «увидеть» процесс слияния и «успокоения» образующейся черной дыры, как колеблется ее горизонт, принимая свою окончательную форму (определяемую вращением). Наверное, вплоть до обнаружения хокинговского испарения черных дыр (пока что этот процесс остается гипотезой) изучение слияний будет давать лучшую непосредственную информацию о них.

Во-вторых, наблюдения слияний нейтронных звезд дадут много новой, крайне нужной информации об этих объектах. Впервые мы сможем изучать нейтронные звезды так, как физики изучают частицы: наблюдать за их столкновениями, чтобы понять, как они устроены внутри. Загадка строения недр нейтронных звезд волнует и астрофизиков, и физиков. Наше понимание ядерной физики и поведения вещества при сверхвысокой плотности неполно без разрешения этого вопроса. Вполне вероятно, что именно гравитационноволновые наблюдения сыграют здесь ключевую роль.

Считается, что именно слияния нейтронных звезд ответственны за короткие космологические гамма-всплески. В редких случаях удастся одновременно наблюдать событие сразу и в гамма-диапазоне, и на гравитационно-волновых детекторах (редкость связана с тем, что, во-первых, гамма-сигнал сконцентрирован в очень узкий луч, и он не всегда направлен на нас, а во-вторых, от очень далеких событий мы не зарегистрируем гравитационных волн). Видимо, понадобится несколько лет наблюдений, чтобы удалось это увидеть (хотя, как обычно, может повезти, и это произойдет прямо сегодня). Тогда, кроме всего прочего, мы сможем очень точно сравнить скорость гравитации со скоростью света.

Таким образом, лазерные интерферометры вместе будут работать как единый гравитационно-волновой телескоп, приносящий новые знания и астрофизикам, и физикам. Ну а за открытие первых всплесков и их анализ рано или поздно будет вручена заслуженная Нобелевская премия.

2236

«Не так давно сильный интерес научной общественности вызвала серия долгосрочных экспериментов по непосредственному наблюдению гравитационных волн, — писал специалист в области теоретической физики Митио Каку в книге «Космос Эйнштейна» в 2004 году. — Проект LIGO («Лазерный интерферометр для наблюдения гравитационных волн»), возможно, окажется первым, в ходе которого удастся «увидеть» гравитационные волны, скорее всего, от столкновения двух черных дыр в дальнем космосе. LIGO — сбывшаяся мечта физика, первая установка достаточной мощности для измерения гравитационных волн».

Предсказание Каку сбылось: в четверг группа международных ученых из обсерватории LIGO объявила об открытии гравитационных волн.

Гравитационные волны — это колебания пространства-времени, которые «убегают» от массивных объектов (например, черных дыр), движущихся с ускорением. Иными словами, гравитационные волны — это распространяющееся возмущение пространства-времени, бегущая деформация абсолютной пустоты.

Черная дыра — это область в пространстве-времени, гравитационное притяжение которой настолько велико, что покинуть ее не могут даже объекты, движущиеся со скоростью света (и сам свет в том числе). Граница, отделяющая черную дыру от всего остального мира, называется горизонтом событий: все, что происходит внутри горизонта событий, скрыто от глаз внешнего наблюдателя.

Erin Ryan Снимок торта, выложенный в сеть Эрин Райан.

Ловить гравитационные волны ученые начали еще полвека назад: именно тогда американский физик Джозеф Вебер увлекся общей теорией относительности Эйнштейна (ОТО), взял творческий отпуск и стал изучать гравитационные волны. Вебер изобрел первое приспособление, детектирующее гравитационные волны, и вскоре заявил, что зафиксировал «звучание гравитационных волн». Впрочем, научное сообщество опровергло его сообщение.

Однако именно благодаря Джозефу Веберу множество ученых превратилось в «охотников за волнами». Сегодня Вебер считается отцом научного направления гравитационно-волновой астрономии.

«Это — начало новой эры гравитационной астрономии»

Обсерватория LIGO, в которой ученые зафиксировали гравитационные волны, состоит из трех лазерных установок в США: две находятся в штате Вашингтон и одна — в штате Луизиана. Вот как описывает работу лазерных детекторов Митио Каку: «Лазерный луч расщепляется на два отдельных луча, которые далее идут перпендикулярно друг другу. Затем, отразившись от зеркала, они вновь соединяются. Если через интерферометр (измерительный прибор) пройдет гравитационная волна, длины путей двух лазерных лучей претерпят возмущение и это отразится в их интерференционной картине. Чтобы убедиться в том, что сигнал, зарегистрированный лазерной установкой, не случаен, детекторы следует разместить в разных точках Земли.

Только под действием гигантской гравитационной волны, намного превышающей по размеру нашу планету, все детекторы сработают одновременно».

Сейчас коллаборация LIGO зафиксировала гравитационное излучение, вызванное слиянием двойной системы черных дыр с массами 36 и 29 солнечных масс в объект массой 62 массы Солнца. «Это первое прямое (очень важно, что это прямое!) измерение действия гравитационных волн, — дал комментарий корреспонденту отдела науки «Газеты.Ru» профессор физического факультета МГУ Сергей Вятчанин. — То есть принят сигнал от астрофизической катастрофы слияния двух черных дыр. И этот сигнал идентифицирован — это тоже очень важно! Понятно, что это от двух черных дыр. И это есть начало новой эры гравитационной астрономии, которая позволит получать информацию о Вселенной не только через оптические, рентгеновские, электромагнитные и нейтринные источники — но еще и через гравитационные волны.

Можно сказать, что процентов на 90 черные дыры перестали быть гипотетическими объектами. Некоторая доля сомнения остается, но все-таки сигнал, который пойман, уж больно хорошо ложится на то, что предсказывают бесчисленные моделирования слияния двух черных дыр в соответствии с общей теорией относительности.

Это является сильным доводом того, что черные дыры существуют. Другого объяснения такому сигналу пока нет. Поэтому принимается, что черные дыры существуют».

«Эйнштейн был бы очень счастлив»

Гравитационные волны в рамках своей общей теории относительности предсказал Альберт Эйнштейн (который, кстати, скептически относился к существованию черных дыр). В ОТО к трем пространственным измерениям добавляется время, и мир становится четырехмерным. Согласно теории, перевернувшей с ног на голову всю физику, гравитация — это следствие искривления пространства-времени под воздействием массы.

Эйнштейн доказал, что любая материя, движущаяся с ускорением, создает возмущение пространства-времени — гравитационную волну. Это возмущение тем больше, чем выше ускорение и масса объекта.

Из-за слабости гравитационных сил по сравнению с другими фундаментальными взаимодействиями эти волны должны иметь весьма малую величину, с трудом поддающуюся регистрации.

Объясняя ОТО гуманитариям, физики часто просят их представить натянутый лист резины, на который опускают массивные шарики. Шарики продавливают резину, и натянутый лист (который олицетворяет пространство-время) деформируется. Согласно ОТО, вся Вселенная — это резина, на которой каждая планета, каждая звезда и каждая галактика оставляют вмятины. Наша Земля вращается вокруг Солнца словно маленький шарик, пущенный кататься вокруг конуса воронки, образованной в результате «продавливания» пространства-времени тяжелым шаром.

HANDOUT/Reuters

Тяжелый шар — это и есть Солнце

Вполне вероятно, что открытие гравитационных волн, являющееся главным подтверждением теории Эйнштейна, претендует на Нобелевскую премию по физике. «Эйнштейн был бы очень счастлив», — сказала Габриэлла Гонсалез, представитель коллаборации LIGO.

По словам ученых, пока рано говорить о практической применимости открытия. «Хотя разве Генрих Герц (немецкий физик, доказавший существование электромагнитных волн. — «Газета.Ru») мог подумать, что будет мобильный телефон? Нет! Мы сейчас ничего не можем представить, — рассказал Валерий Митрофанов, профессор физического факультета МГУ им. М.В. Ломоносова. — Я ориентируюсь на фильм «Интерстеллар». Его критикуют, да, но вообразить ковер-самолет мог даже дикий человек. И ковер-самолет реализовался в самолет, и все. А здесь уже нужно представить что-то очень сложное. В «Интерстелларе» один из моментов связан с тем, что человек может путешествовать из одного мира в другой. Если так представить, то верите ли вы, что человек может путешествовать из одного мира в другой, что может быть много вселенных — все, что угодно? Я не могу ответить «нет». Потому что физик не может ответить на такой вопрос «нет»! Только если это противоречит каким-то законам сохранения! Есть варианты, которые не противоречат известным физическим законам. Значит, путешествия по мирам могут быть!»

Вчера мир потрясла сенсация: ученые наконец-то обнаружили гравитационные волны, существование которых предсказывал Эйнштейн еще сто лет назад. Это прорыв. Искажение пространства-времени (это и есть гравитационные волны - сейчас объясним, что к чему) обнаружили в обсерватории ЛИГО, а одним из ее основателей является - кто бы вы думали? - Кип Торн, автор книги .

Рассказываем, почему открытие гравитационных волн так важно, что сказал Марк Цукерберг и, конечно, делимся историей от первого лица. Кип Торн как никто другой знает, как устроен проект, в чем его необычность и какое значение ЛИГО имеет для человечества. Да-да, все так серьезно.

Открытие гравитационных волн

Научный мир навсегда запомнит дату 11 февраля 2016. В этот день участники проекта ЛИГО (LIGO) объявили: после стольких тщетных попыток гравитационные волны найдены. Это реальность. На самом деле их обнаружили немного раньше: в сентябре 2015 года, но вчера открытие было признано официально. В The Guardian считают, что ученые непременно получат Нобелевскую премию по физике.

Причина гравитационных волн - столкновение двух черных дыр, которое произошло аж… в миллиарде световых лет от Земли. Представляете, насколько огромна наша Вселенная! Так как черные дыры - очень массивные тела, они пускают «рябь» по пространству-времени, немного его искажая. Вот и появляются волны, похожие на те, которые распространяются от камня, брошенного в воду.

Вот так можно представить гравитационные волны, идущие к Земле, например, от червоточины. Рисунок из книги «Интерстеллар. Наука за кадром»

Полученные колебания преобразовали в звук. Интересно, что сигнал от гравитационных волн приходит примерно на той же частоте, что и наша речь. Так что мы можем своими ушами услышать, как сталкиваются черные дыры. Послушайте, как звучат гравитационные волны .

И знаете что? Совсем недавно , что черные дыры устроены не так, как считалось раньше. Но ведь доказательств того, что они в принципе существуют, не было вовсе. А теперь есть. Черные дыры действительно «живут» во Вселенной.

Так, по мнению ученых, выглядит катастрофа – слияние черных дыр, — .

11 февраля состоялась грандиозная конференция, куда съехались больше тысячи ученых из 15 стран. Российские ученые тоже присутствовали. И, конечно, не обошлось без Кипа Торна. «Это открытие - начало изумительного, великолепного квеста для людей: поиска и исследования искривленной стороны Вселенной - объектов и явлений, созданных из искаженного пространства-времени. Столкновение черных дыр и гравитационные волны - наши первые замечательные образцы», - сказал Кип Торн.

Поиск гравитационных волн был одной из главных проблем физики. Теперь они найдены. И гений Эйнштейна подтвержден вновь.

В октябре мы взяли интервью у Сергея Попова, отечественного астрофизика и известного популяризатора науки. Он как в воду глядел! Осенью : «Мне кажется, что сейчас мы стоим на пороге новых открытий, что в первую очередь связано с работой детекторов гравитационных волн LIGO и VIRGO (Кип Торн как раз внес большой вклад в создание проекта LIGO)». Удивительно, правда?

Гравитационные волны, детекторы волн и LIGO

Что ж, а теперь немного физики. Для тех, кто действительно хочется разобраться в том, что такое гравитационные волны. Вот художественное изображение тендекс-линий двух черных дыр, которые вращаются по орбитам друг вокруг друга, против часовой стрелки, и затем сталкиваются. Тендекс-линии порождают приливную гравитацию. Идем дальше. Линии, которые исходят из двух наиболее удаленных друг от друга точек на поверхностях пары черных дыр, растягивают все на своем пути, включая попавшую на рисунок подругу художницы. Линии же, исходящие из области столкновения, все сжимают.

Когда дыры вращаются одна вокруг другой, они увлекают следом свои тендекс-линии, которые походят на струи воды из крутящейся поливалки на газоне. На рисунке из книги «Интерстеллар. Наука за кадром» - пара черных дыр, которые сталкиваются, вращаясь одна вокруг другой против часовой стрелки, и их тендекс-линии.

Черные дыры объединяются в одну большую дыру; она деформирована и вращается против часовой стрелки, увлекая за собой тендекс-линии. Неподвижный наблюдатель, находящийся вдали от дыры, почувствует колебания, когда через него будут проходить тендекс-линии: растяжение, затем сжатие, затем растяжение - тендекс-линии стали гравитационной волной. По мере распространения волн деформация черной дыры постепенно уменьшается, и волны также ослабевают.

Когда эти волны достигают Земли, они имеют вид, показанный в верхней части рисунка ниже. Они растягивают в одном направлении и сжимают в другом. Растяжения и сжатия колеблются (от красного вправо-влево, к синему вправо-влево, к красному вправо-влево и т. д.) по мере того, как волны проходят через детектор в нижней части рисунка.

Гравитационные волны, проходящие через детектор ЛИГО.

Детектор представляет собой четыре больших зеркала (40 килограммов, 34 сантиметра в диаметре), которые закреплены на концах двух перпендикулярных труб, называемых плечами детектора. Тендекс-линии гравитационных волн растягивают одно плечо, сжимая при этом второе, а затем, наоборот, сжимают первое и растягивают второе. И так снова и снова. При периодическом изменении длины плеч зеркала смещаются друг относительно друга, и эти смещения отслеживаются с помощью лазерных лучей способом, который называется интерферометрией. Отсюда и название ЛИГО: Лазерно-интерферометрическая гравитационноволновая обсерватория.

Центр управления ЛИГО, откуда отправляют команды детектору и следят за полученными сигналами. Гравитационные детекторы ЛИГО расположены в Хэнфорде, штат Вашингтон, и Ливингстоне, штат Луизиана. Фото из книги «Интерстеллар. Наука за кадром»

Сейчас ЛИГО - интернациональный проект, в котором участвует 900 ученых из разных стран, со штабом, расположенным в Калифорнийском технологическом институте.

Искривленная сторона Вселенной

Черные дыры, червоточины, сингулярности, гравитационные аномалии и измерения высшего порядка связаны с искривлениями пространства и времени. Поэтому Кип Торн называет их «искривленной стороной Вселенной». У человечества до сих пор очень мало экспериментальных и наблюдательных данных с искривленной стороны Вселенной. Вот почему мы столько внимания отдаем гравитационным волнам: они состоят из искривленного пространства и предоставляют наиболее доступный для нас способ исследовать искривленную сторону.

Представьте, что вам приходилось видеть океан, только когда он спокоен. Вы бы знать не знали о течениях, водоворотах и штормовых волнах. Это напоминает наши сегодняшние знания об искривлении пространства и времени.

Мы почти ничего не знаем о том, как искривленное пространство и искривленное время ведут себя «в шторм» - когда форма пространства бурно колеблется и когда колеблется скорость течения времени. Это необыкновенно манящий рубеж знаний. Ученый Джон Уилер придумал для этих изменений термин «геометродинамика»

Особый интерес в области геометродинамики представляет столкновение двух черных дыр.

Столкновение двух невращающихся черных дыр. Модель из книги «Интерстеллар. Наука за кадром»

На рисунке выше изображен момент столкновения двух черных дыр. Как раз такое событие позволило ученым зафиксировать гравитационные волны. Эта модель построена для невращающихся черных дыр. Сверху: орбиты и тени дыр, вид из нашей Вселенной. Посередине: искривленное пространство и время, вид из балка (многомерного гиперпространства); стрелками показано, как пространство вовлекается в движение, а изменяющимися цветами - как искривляется время. Снизу: форма испускаемых гравитационных волн.

Гравитационные волны от Большого взрыва

Слово Кипу Торну. «В 1975 году Леонид Грищук, мой добрый приятель из России, сделал сенсационное заявление. Он сказал, что в момент Большого взрыва возникло множество гравитационных волн, причем механизм их возникновения (прежде неизвестный) был таков: квантовые флуктуации (случайные колебания - прим. ред) гравитационного поля при Большом взрыве были многократно усилены первоначальным расширением Вселенной и так стали изначальными гравитационными волнами. Эти волны, если их удастся обнаружить, могут рассказать нам, что происходило в момент зарождения нашей Вселенной».

Если ученые найдут первоначальные гравитационные волны, мы узнаем, как зародилась Вселенная.

Люди разгадали далеко на все загадки Вселенной. Все еще впереди.

В последующие годы, по мере того как совершенствовались наши представления о Большом взрыве, стало очевидно: эти изначальные волны должны быть сильными на длинах волн, соизмеримых с величиной видимой Вселенной, то есть на длинах в миллиарды световых лет. Представляете, сколько это?.. А на длинах волн, которые охватывают детекторы ЛИГО (сотни и тысячи километров), волны, скорее всего, окажутся слишком слабыми, чтобы их распознать.

Команда Джейми Бока построила аппарат BICEP2 , с помощью которого был обнаружен след изначальных гравитационных волн. Аппарат, находящийся на Северном полюсе, показан здесь во время сумерек, которые бывают там лишь дважды в год.

Аппарат BICEP2 . Изображение из книги «Интерстеллар. Наука за кадром»

Он окружен щитами, экранирующими аппарат от излучения окружающего ледяного покрова. В правом верхнем углу показан обнаруженный в реликтовом излучении след - поляризационный узор. Линии электрического поля направлены вдоль коротких светлых штрихов.

След начала Вселенной

В начале девяностых космологи поняли, что эти гравитационные волны длиной в миллиарды световых лет должны были оставить уникальный след в электромагнитных волнах, наполняющих Вселенную, - в так называемом космическом микроволновом фоне, или реликтовом излучении. Это положило начало поискам святого Грааля. Ведь если обнаружить этот след и вывести из него свойства изначальных гравитационных волн, можно узнать, как зарождалась Вселенная.

В марте 2014 года, когда Кип Торн писал эту книгу, команда Джеми Бока, космолога из Калтеха, кабинет которого находится рядом с кабинетом Торна, наконец обнаружила этот след в реликтовом излучении.

Это совершенно потрясающее открытие, но есть один спорный момент: след, найденный командой Джеми, мог быть вызван не гравитационными волнами, а чем-то еще.

Если действительно найден след гравитационных волн, возникших при Большом взрыве, значит, произошло космологическое открытие такого уровня, какие случаются, быть может, раз в полвека. Оно дает шанс прикоснуться к событиям, которые происходили спустя триллионную от триллионной от триллионной доли секунды после рождения Вселенной.

Это открытие подтверждает теории, гласящие, что расширение Вселенной в тот миг было чрезвычайно быстрым, на сленге космологов - инфляционно быстрым. И возвещает наступление новой эры в космологии.

Гравитационные волны и «Интерстеллар»

Вчера на конференции по поводу открытия гравитационных волн Валерий Митрофанов, руководитель московской коллаборации ученых LIGO, в которую входят 8 ученых из МГУ, отметил, что сюжет фильма «Интерстеллар» хоть и фантастичен, но не так далек от действительности. А все потому, что научным консультантом был Кип Торн. Сам же Торн выразил надежду, что верит в будущие пилотируемые полеты человека к черной дыре. Пусть они случатся не так скоро, как хотелось бы, и все же сегодня это намного реальнее, чем было раньше.

Не так уж и далек день, когда люди покинут пределы нашей галактики.

Событие всколыхнуло умы миллионов людей. Небезызвестный Марк Цукерберг написал: «Обнаружение гравитационных волн - самое большое открытие в современной науке. Альберт Эйнштейн - один из моих героев, поэтому я воспринял открытие так близко. Столетие назад в рамках Общей Теории Относительности (ОТО) он предсказал существование гравитационных волн. А ведь они так малы, чтобы их обнаружить, что пришло искать их в истоках таких событий, как Большой взрыв, взрывы звезд и столкновения черных дыр. Когда ученые проанализируют полученные данные, перед нами откроется совершенной новый взгляд на космос. И, возможно, это прольет свет на происхождение Вселенной, рождение и процесс развития черных дыр. Это очень вдохновляет - думать о том, сколько жизней и усилий было положено на то, чтобы сорвать покров с этой тайны Вселенной. Этот прорыв стал возможным благодаря таланту блистательных ученых и инженеров, людей разных национальностей, а также новейшим компьютерным технологиям, которые появились только недавно. Поздравляю всех причастных. Эйнштейн бы вами гордился».

Такая вот речь. И это человек, который просто интересуется наукой. Можно себе представить, какая буря эмоций захлестнула ученых, которые внесли свою лепту в открытие. Кажется, мы стали свидетелями новой эры, друзья. Это поразительно.

P.S.: Понравилось? Подписывайтесь на нашу рассылку по кругозору . Раз в неделю присылаем познавательные письма и дарим скидки на книги МИФа.

11 февраля 2016-го года международная группа ученых, в том числе из России, на пресс-конференции в Вашингтоне объявила об открытии, которое рано или поздно изменит развитие цивилизации. Удалось на практике доказать гравитационные волны или волны пространства-времени. Их существование предсказал еще 100 лет назад Альберт Эйнштейн в своей .

Никто не сомневается, что это открытие будет удостоено Нобелевской премии. Учёные не торопятся говорить о его практическом применении. Но напоминают, что еще совсем недавно человечество точно также не знало, что делать с электромагнитными волнами, которые в итоге привели к настоящей научно-технической революции.

Что такое гравитационные волны простым языком

Гравитация и всемирное тяготение – это одно и то же. Гравитационные волны являются одним из решений ОТС. Распространяться они должны со скоростью света. Излучает его любое тело, движущееся с переменным ускорением.

Например, вращается по своей орбите с переменным ускорением, направленным к звезде. И это ускорение постоянно изменяется. Солнечная система излучает энергию порядка нескольких киловатт в гравитационных волнах. Это ничтожная величина, сравнимая с 3 старыми цветными телевизорами.

Другое дело – два вращающихся вокруг друг друга пульсара (нейтронных звезды). Они вращаются по очень тесным орбитам. Такая «парочка» была обнаружена астрофизиками и наблюдалась долгое время. Объекты готовы были друг на друга упасть, что косвенно свидетельствовало, что пульсары излучают волны пространства-времени, то есть энергию в их поле.

Гравитация – сила тяготения. Нас тянет к земле. А суть гравитационной волны – изменение этого поля, чрезвычайно слабое, когда до нас доходит. К примеру, возьмем уровень воды в водоёме. Напряженность гравитационного поля — ускорение свободного падения в конкретной точке. По нашему водоёму бежит волна, и вдруг меняется ускорение свободного падения, совсем чуть-чуть.

Такие опыты начались в 60-е годы прошлого столетия. В ту пору придумывали так: подвешивали огромный алюминиевый цилиндр, охлажденный во избежание внутренних тепловых колебаний. И ждали, когда до нас внезапно дойдет волна от столкновения, например, двух массивных черных дыр. Исследователи были полны энтузиазма и говорили, что весь земной шар может испытать воздействие гравитационной волны, прилетевшей из космического пространства. Планета начнет колебаться, и можно будет изучить эти сейсмические волны (сжатия, сдвига и поверхностные).

Важная статья об устройстве простым языком, и как американцы и LIGO украли идею советских учёных и построили интроферометры, позволившие сделать открытие. Никто не говорит об этом, все молчат!

Между прочим, гравитационное излучение больше интересно с позиции реликтового излучения, найти которое пытаются по изменению спектра электромагнитного излучения. Реликтовое и электромагнитное излучение появились 700 тыс. лет после Большого взрыва, затем в процессе расширения вселенной, заполненной горячим газом с бегающими ударными волнами, превратившимися позже в галактики. При этом, естественно, должны были излучаться гигантское, умопомрачительное количество волн пространства-времени, влияющих на длину волны реликтового излучения, которое в то время еще было оптическим. Отечественный астрофизик Сажин пишет и регулярно публикует статьи на эту тему.

Неверная интерпретация открытия гравитационных волн

«Висит зеркало, на него действует гравитационная волна, и оно начинает колебаться. И даже самые незначительные колебания амплитудой меньше размера атомного ядра замечаются приборами» — такая неверная интерпретация, например, используется в статье Википедии. Не поленитесь, найдите статью советских учёных 1962 года.

Во-первых, зеркало должно быть массивным, чтобы почувствовать «рябь». Во-вторых, его нужно охлаждать практически до абсолютного нуля (по Кельвину), чтобы избежать собственных тепловых колебаний. Скорее всего не то что в 21 веке, а вообще никогда не удастся обнаружить элементарную частицу — носителя гравитационных волн:

Астрофизики подтвердили существование гравитационных волн, существование которых предсказывал еще Альберт Эйнштейн около 100 лет назад. Их удалось зафиксировать с помощью детекторов гравитационно-волновой обсерватории LIGO, которая находится в США.

Впервые в истории человечество зафиксировало гравитационные волны — колебания пространства-времени, пришедшие на Землю от столкновения двух черных дыр, произошедшего далеко во Вселенной. Вклад в это открытие есть и у российских ученых. В четверг исследователи рассказывают о своем открытии по всему миру — в Вашингтоне, Лондоне, Париже, Берлине и других городах, в том числе и в Москве.

На фото имитация столкновения черных дыр

На пресс-конференции в офисе компании Rambler&Co Валерий Митрофанов, руководителю российской части коллаборации LIGO объявил об открытии гравитационных волн:

«Нам выпала честь участвовать в этом проекте и представить результаты вам. Расскажу теперь смысл открытия по-русски. Мы видели прекрасные картинки с изображением детекторов LIGO в США. Расстояние между ними – 3000 км. Под действием гравитационной волны произошел сдвиг одного из детекторов, после чего мы их и обнаружили. Сначала на компьютере мы увидели просто шум, а потом началась раскачка массы детекторов Хэмфорда. После расчетов полученных данных мы смогли определить, что именно черные дыры столкнулись на расстоянии 1,3 млдр. световых лет отсюда. Сигнал был очень четкий, он вылез из шума очень явно. Многие нам сказали, что нам повезло, но природа сделала нам такой подарок. Гравитационные волны открыты – это несомненно.»

Астрофизики подтвердили слухи о том, что с помощью детекторов гравитационно-волновой обсерватории LIGO им удалось зафиксировать гравитационные волны. Это открытие позволит человечеству значительно продвинуться в понимании того, как устроена Вселенная.

Открытие произошло еще 14 сентября 2015 года одновременно двумя детекторами в Вашингтоне и Луизиане. Сигнал поступил на детекторы в результате столкновения двух черных дыр. Столько времени понадобилось ученым для того, чтобы убедиться, что именно гравитационные волны были продуктом столкновения.

Столкновение дыр произошло со скоростью около половины скорости света, а это примерно 150 792 458 м/с.

«Ньютоновская гравитация описывалась в плоском пространстве, а Эйнштейн перевел его в плоскость времени и предположил, что оно его искривляет. Гравитационное взаимодействие очень слабое. На Земле опыт по созданию гравитационных волн невозможен. Обнаружить их смогли только после слияния черных дыр. Смещение детектора произошло, только представьте, на 10 в -19 метра. Руками это не пощупать. Только при помощи очень точных приборов. Как это сделать? Лазерный луч, с помощью которого был зафиксирован сдвиг, уникальный по своей природе. Лазерная гравитационная антенна второго поколения LIGO вступила в строй в 2015 году. Чувствительность позволяет регистрировать гравитационные возмущения примерно раз в месяц. Это передовая мировой и американской науки, ничего точнее в мире нет. Мы надеемся, что он сможет преодолеть Стандартный квантовый предел чувствительности», – пояснил открытие Сергей Вятчанин, сотрудник физфака МГУ и коллаборации LIGO.

Стандартный квантовый предел (СКП) в квантовой механике — ограничение, накладываемое на точность непрерывного или многократно повторяющегося измерения какой-либо величины, описываемой оператором, который не коммутирует сам с собой в разные моменты времени. Предсказан в 1967 году В. Б. Брагинским, а сам термин Стандартный квантовый предел (англ. Standard Quantum Limit, SQL) был предложен позднее Торном. СКП тесно связан с соотношением неопределенностей Гейзенберга.

Подводя итоги Валерий Митрофанов рассказал о планах дальнейших исследований:

«Это открытие – начало новой гравитационно-волновой астрономии. По каналу гравитационных волн мы рассчитываем узнать больше о Вселенной. Нам известен состав только 5% материи, остальное – загадка. Гравитационные детекторы позволят увидеть небо в «гравитационных волнах». В будущем мы надеемся увидеть начало всего, то есть реликтовое излучение Большого взрыва и понять, что именно было тогда».

Впервые гравитационные волны были предложены Альбертом Эйнштейном в 1916 году, то есть почти ровно 100 лет назад. Уравнение для волн является следствием уравнений теории относительности и выводятся не самым простым образом.

Канадский физик-теоретик Клиффорд Берджесс ранее опубликовал письмо, в котором говорится, что обсерватория зафиксировала гравитационное излучение, вызванное слиянием двойной системы черных дыр с массами 36 и 29 солнечных масс в объект массой 62 массы Солнца. Столкновение и несимметричный гравитационный коллапс длятся доли секунды, и за это время в гравитационное излучение — рябь пространства-времени — уходит энергия, составляющая, до 50 процентов от массы системы.

Гравитационная волна — волна гравитации, порождаемая в большинстве теорий тяготения движением гравитирующих тел с переменным ускорением. Ввиду относительной слабости гравитационных сил (по сравнению с прочими) эти волны должны иметь весьма малую величину, с трудом поддающуюся регистрации. Их существование было предсказано около века назад Альбертом Эйнштейном.