Ионные уравнения гидролиза k2s. Гидролиз сульфида калия

Химическое взаимодействие ионов соли с ионами воды, приводящее к образованию слабого электролита и сопровождающееся изменением рН раствора, называется гидролизом солей.

Любую соль можно представить как продукт взаимодействия кислоты и основания. Тип гидролиза соли зависит от природы основания и кислоты, образующих соль. Возможны 3 типа гидролиза солей.

Гидролиз по аниону идет, если соль образована катионом сильного основания и анионом слабой кислоты.

Например, соль СН 3 СООNa образована сильным основанием NaOH и слабой одноосновной кислотой СН 3 СООН. Гидролизу подвергается ион слабого электролита СН 3 СОО – .

Ионно-молекулярное уравнение гидролиза соли:

СН 3 СОО – + НОН « СН 3 СООН + ОН –

Ионы Н + воды связываются с анионами СН 3 СОО – в слабый электролит СН 3 СООН, ионы ОН – накапливаются в растворе, создавая щелочную среду (рН>7).

Молекулярное уравнение гидролиза соли:

CH 3 COONa + H 2 O « CH 3 COOH + NaOH

Гидролиз солей многоосновных кислот протекает по стадиям, образуя в качестве промежуточных продуктов кислые соли.

Например, соль K 2 S образована сильным основанием КОН и слабой двухосновной кислотой H 2 S. Гидролиз этой соли протекает в две стадии.

1 стадия: S 2– + HOH « HS – + OH –

K 2 S + H 2 O « KHS + KOH

2 стадия: HS -– + HOH « H 2 S + OH –

KHS + H 2 O « H 2 S + KOH

Реакция среды щелочная (pH>7), т.к. в растворе накапливаются ОН – -ионы. Гидролиз соли идет тем сильнее, чем меньше константа диссоциации образующейся при гидролизе слабой кислоты (табл.3). Таким образом, водные растворы солей, образованных сильным основанием и слабой кислотой, характеризуются щелочной реакцией среды.

Гидролиз по катиону идет, если соль образована катионом слабого основания и анионом сильной кислоты. Например, соль CuSO 4 образована слабым двухкислотным основанием Cu(OH) 2 и сильной кислотой H 2 SO 4 . Гидролиз идет по катиону Cu 2+ и протекает в две стадии с образованием в качестве промежуточного продукта основной соли.

1 стадия: Cu 2+ + HOH « CuOH + + H +

2CuSO 4 + 2H 2 O « (CuOH) 2 SO 4 + H 2 SO 4

2 стадия: CuOH + + HOH « Cu(OH) 2 + H +

(CuOH) 2 SO 4 + 2H 2 O « 2Cu(OH) 2 + H 2 SO 4

Ионы водорода Н + накапливаются в растворе, создавая кислую среду (рН<7). Чем меньше константа диссоциации образующегося при гидролизе основания, тем сильнее идет гидролиз.

Таким образом, водные растворы солей, образованных слабым основанием и сильной кислотой, характеризуются кислой реакцией среды.

Гидролиз по катиону и аниону идет, если соль образована катионом слабого основания и анионом слабой кислоты. Например, соль CH 3 COONH 4 образована слабым основанием NH 4 OH и слабой кислотой СН 3 СООН. Гидролиз идет по катиону NH 4 + и аниону СН 3 СОО – :

NH 4 + + CH 3 COO – + HOH « NH 4 OH + CH 3 COOH

Водные растворы такого типа солей, в зависимости от степени диссоциации образующихся слабых электролитов имеют нейтральную, слабокислую или слабощелочную среду.

При смешивании растворов солей, например CrCl 3 и Na 2 S каждая из солей гидролизуется необратимо до конца с образованием слабого основания и слабой кислоты.

Гидролиз соли CrCl 3 идет по катиону:

Cr 3+ + HOH « CrOH 2+ + H +

Гидролиз соли Na 2 S идет по аниону:

S 2– + HOH « HS – + OH –

При смешивании растворов солей CrCl 3 и Na 2 S происходит взаимное усиление гидролиза каждой из солей, так как ионы Н + и ОН – образуют слабый электролит Н 2 О и ионное равновесие каждой соли смещается в сторону образования конечных продуктов: гидроксида хрома Cr(OH) 3 и сероводородной кислоты H 2 S.

Ионно-молекулярное уравнение совместного гидролиза солей:

2Cr 3+ + 3S 2– + 6H 2 O = 2Cr(OH) 3 ¯ + 3H 2 S­

Молекулярное уравнение:

2CrCl 3 + 3Na 2 S + 6H 2 O = 2Cr(OH) 3 + 3H 2 S + 6NaCl

Соли, образованные катионами сильных оснований и анионами сильных кислот, гидролизу не подвергаются, так как ни один из ионов соли не образует с ионами Н + и ОН – воды слабых электролитов. Водные растворы таких солей имеют нейтральную среду.

1.4. Гидролиз солей

Гидролиз – процесс обменного взаимодействия ионов соли с водой, приводящий к образованию малодиссоциированных веществ и сопровождающийся изменением реакции ( pH ) среды.

Суть гидролиза солей заключается в том, что происходит смещение равновесия диссоциации воды вследствие связывания одного из ее ионов с образованием малодиссоциированного или труднорастворимого вещества. В результате гидролиза могут образовываться молекулы слабых кислот и оснований, анионы кислых солей или катионы основных солей. В большинстве случаев гидролиз является обратимым процессом. При повышении температуры и разбавлении гидролиз усиливается. Гидролиз идет по-разному в зависимости от силы кислоты и основания, образовавших соль. Рассмотрим различные случаи гидролиза солей.

а) Соль образована слабой кислотой и сильным основанием ( K 2 S ).

При растворении в воде K 2 S диссоциирует

K 2 S2K + + S 2- .

При составлении уравнений гидролиза в первую очередь необходимо определить ионы соли, связывающие ионы воды в малодиссоциирующие соединения, т.е. ионы, обусловливающие гидролиз.

В данном случае ионы S 2- связывают катион H + , образуя ион HS –

S 2– +H 2 OHS – + OH –

Уравнение гидролиза в молекулярной форме

K 2 S + H 2 OKHS + KOH.

Практически гидролиз соли преимущественно ограничивается первой ступенью с образованием кислой соли (в данном случае KHS). Таким образом, гидролиз соли, образованной сильным основанием и слабой кислотой (такой, как K 2 S) протекает по аниону соли. Избыток ионов OH – в растворе обусловливает щелочную реакцию среды в растворе (pН>7).

б) C оль образована слабым основанием и сильной кислотой (CuCl 2 , Al 2 ( SO 4 ) 3).

При растворении в воде CuCl 2 диссоциирует

СuCl 2 Cu 2+ + 2Cl –

Ионы Cu 2+ соединяются с ионами OH – , образуя гидроксоионы CuOH + . Гидролиз соли ограничивается первой ступенью, и образование молекулы Cu(OH) 2 не происходит. Ионно-молекулярное уравнение имеет вид

Cu 2+ + HOHCuOH + + H + .

В данном случае продуктами гидролиза являются основная соль и кислота. Уравнение гидролиза в молекулярной форме записывается следующим образом

CuCl 2 + H 2 OCuOHCl + HСl.

Таким образом, гидролиз соли, образованной слабым основанием и сильной кислотой (в данном случае CuCl 2) протекает по катиону соли. Избыток ионов H + в растворе обусловливает кислую реакцию среды в растворе (рН<7).

При растворении в воде Al 2 (SO 4 ) 3 диссоциирует

Al 2 (SO 4 ) 3 2 Al 3+ + 3 SO 4 2- .

В данном случае ионы Al 3+ соединяются с ионами ОН - , образуя гидроксоионы AlOH 2+ . Гидролиз соли ограничивается первой ступенью, и образование молекулы Al (OH ) 3 не происходит. Ионно-молекулярное уравнение имеет вид

Al 3+ + Н 2 О AlOH 2+ + Н + .

Продуктами электролиза является основная соль и кислота.

Уравнение гидролиза в молекулярной форме записывается следующим образом

Al 2 (SO 4) 3 +2 Н 2 О 2AlOHSO 4 + H 2 SO 4 .

в) Соль образована слабой кислотой и слабым основанием (CH 3 COONH 4).

CH 3 COO – + NH 4 + + H 2 O CH 3 COOH + NH 4 OH.

В этом случае образуются два малодиссоциированных соединения, и pH раствора зависит от относительной силы кислоты и основания. Если продукты гидролиза могут удаляться из раствора, то гидролиз протекает до конца. Например

Al 2 S 3 + 6 H 2 O = 2Al(OH) 3 ↓ + 3H 2 S ­ .

Возможны и другие случаи необратимого гидролиза, их нетрудно предсказать, ведь для необратимости процесса небходимо, чтобы хотя бы один из продуктов гидролиза уходил из сферы реакции.

г) Соли, образованные сильной кислотой и сильным основанием ( NaCl , K 2 SO 4 , RbBr и др.) гидролизу не подвергаются, т.к. единственным малодиссоциирующим соединением является H 2 O (рН=7). Растворы этих солей имеют нейтральную среду. Например

NaCl + H 2 O NaOH + HCl

Na + + Cl – + H 2 O Na + + OH – + H + + Cl –

H 2 O H + + OH – .

Реакции обратимого гидролиза полностью подчиняются принципу Ле–Шателье . Поэтому гидролиз соли можно усилить (и даже сделать необратимым) следующими способами:

1) добавить воды;

2) нагреть раствор, при этом усиливается эндотермическая диссоциация воды, а значит, увеличивается количество ионов Н + и ОН – , которые необходимы для осуществления гидролиза соли;

3) связать один из продуктов гидролиза в труднорастворимое соединение или удалить один из продуктов в газовую фазу; например, гидролиз цианида аммония NH 4 CN будет значительно усиливаться за счет разложения гидрата аммиака с образованием аммиака NH 3 и воды:

NH 4 + + CN – + H 2 O NH 3 ­ + H 2 O +HCN.

Гидролиз можно подавить , действуя следующим образом:

1) увеличить концентрацию растворенного вещества;

2) охладить раствор (для ослабления гидролиза растворы солей следует хранить концентрированными и при низких температурах);

3) ввести в раствор один из продуктов гидролиза; например, подкислять раствор, если его среда в результате гидролиза кислая, или подщелачивать, если щелочная.

Взаимное усиление гидролиза Допустим, что в разных сосудах установились равновесия

CO 3 2– + H 2 O HCO 3 – + OH –

Al 3+ + H 2 O AlOH 2+ + H +

Обе соли гидролизованы незначительно, но если растворы смешать, то происходит связывание ионов H + и OH – . В соответствии с принципом Ле-Шателье оба равновесия смещаются вправо, гидролиз усиливается и протекает полностью

2 AlCl 3 + 3 Na 2 CO 3 + 3 H 2 O = 2 Al(OH) 3 ↓ + 3 CO 2 ­ + 6 NaCl.

Это называется взаимным усилением гидролиза . Таким образом, если смешивать растворы солей, из которых одна гидролизуется по катиону, а другая – по аниону, гидролиз усиливается и протекает полностью.

О.А. Нaпилкoва, Н.С. Дoзорцевa


Обязательным условием протекания реакций между электролитами является удаление из раствора тех или иных ионов, вследствие образования слабо диссоциирующих веществ, или веществ, выделяющихся из раствора в виде осадка или газа. Для правильного отражения сущности и механизма реакций ионного обмена уравнения реакций необходимо записывать в ионно-молекулярной форме. При этом сильные электролиты записывают в виде ионов, слабые и малорастворимые – в молекулярной форме.

ПРИМЕР 5. Реакция нейтрализации. Реакция с участием сильных электролитов.

HNO 3 + NaOH = NaNO 3 + H 2 O

Полное ионно-молекулярное уравнение: H + + NO 3 - + Na + + OH - = Na + + NO 3 - + H 2 O

Краткое ионно-молекулярное уравнение: H + + OH - = H 2 O (выражает химическую сущность реакции).

Вывод: в растворах сильных электролитов реакция протекает в результате связывания ионов с образованием слабого электролита (в данном случае – воды).

ПРИМЕР 6 . Реакция с участием слабых электролитов. HCN + NH 4 OH = NH 4 CN + H 2 O

: HCN + NH 4 OH = NH 4 + + CN - + H 2 O

Реакция с участием слабых электролитов (пример 6) включает две стадии: диссоциацию слабых (или труднорастворимых) электролитов на ионы и связывание ионов с образованием более слабого электролита. Так как процессы разложения на ионы и связывания ионов обратимы, то реакции ионного обмена обратимы.

Направление реакций ионного обмена определяют по изменению энергии Гиббса. Самопроизвольное протекание реакции возможно только в направлении, для которогоD G < 0 до достижения состояния равновесия, когда D G = 0. Количественной мерой степени протекания реакции слева направо является константа равновесия К С. Для реакции, приведенной в примере 6: К С = [ NH 4 +][ CN - ]/[ HCN ][ NH 4 OH ].

Константа равновесия связана с изменением энергии Гиббса уравнением:

D G 0 T = - 2,3 RTlgK C (15)

ЕслиК С > 1 , D G < 0 самопроизвольно протекает прямая реакция, еслиК С < 1, D G > 0 реакция протекает в обратном направлении.

Константу равновесия К С рассчитывают через константы диссоциации слабодиссоциирующих электролитов:

К С исх. в-в прод. (16)

Для реакции, приведенной в примере 6, константа равновесия рассчитывается по уравнению:

К С = K HCN . K NH 4 OH / K H 2 O = 4,9.10-9.!,76.10-5/1014=8,67.K C >1, след. реакция протекает в прямом направлении .

Общим правилом, вытекающим из выражения для К С , является то, что реакции ионного обмена протекают в направлении более прочного связывания ионов, т.е. в направлении образования электролитов с меньшими значениями констант диссоциации.

7. Гидролиз солей.

Гидролиз соли – реакция ионного обмена между солью и водой. Гидролиз является реакцией обратной реакции нейтрализации: KatAn + H 2 O Û KatOH + HAn (17)

соль основание кислота

В зависимости от силы образующихся кислоты и основания раствор соли в результате гидролиза становится щелочным (pH > 7) или кислым (pH < 7).

Различают четыре случая гидролиза :

1.Соли сильных кислот и сильных оснований гидролизу не подвергаются, так как при взаимодействии с водой не образуется слабого электролита. Поэтому в растворах таких солейpH =7, т.е. среда нейтральная.

2.Соли сильных оснований и слабых кислот гидролиз идет по аниону. Для растворов солей сильных оснований и многоосновных кислот гидролиз протекает практически по первой ступени с образованием кислых солей.

ПРИМЕР 7 . Определить pH сантимолярного раствора сульфида калия K 2 S =0,01моль/л).

K 2 Sсоль слабой двухосновной кислоты H 2 S.

Гидролиз соли выражается уравнением:

K 2 S + H 2 O Û KHS + KOH (образуется кислая соль - KHS).

Ионно-молекулярное уравнение реакции :

S 2- + H 2 O Û HS - + OH - (18)

Константа равновесия реакции (константа гидролиза) равна: К Г H 2 O / K HS - = 10 -14 /1,2 . 10 - 14 = 0,83, т.е. К г <1, след. равновесие смещено влево. Возникающий избыток ионов OH - приводит к изменению характера среды. Зная К Г можно рассчитать концентрацию ионов OH - , а затем и pH раствора.К Г = . [ HS - ]/[ S 2- ].Из уравнения (18) видно, что = [ HS - ]. Так как соли гидролизуются слабо (К Г < 1), то можно принять, что = 0,01моль/л, тогда = Ö К Г. = Ö 0,83 . 10 -2 = 9 . 10 - 2 . Из уравнения (6) =10-14/[ OH-]=10 -14 /9 . 10 - 2 = 1,1 . 10 - 11 .

Из уравнения (7) pH = -lg1,1 . 10 - 11 = 11.

Вывод. Так как pH > 7, то среда щелочная.

3.Соли слабых оснований и сильных кислот гидролиз идет по катиону.

Для солей, образованных сильными кислотами и многокислотными основаниями, гидролиз протекает преимущественно по первой ступени с образованием основной соли.

ПРИМЕР 8. Гидролиз соли хлорида марганца(С соли = 0,01моль/л).

MnCI 2 + H 2 O Û MnOHCI + HCI (образуется основная соль MnOHCI).

Ионно-молекулярное уравнение:Mn 2+ + H 2 O Û MnOH + + H + (первая ступень гидролиза)

Константа гидролиза: К Г = К H 2 O / K MnOH + = 10 -14 /4 . 10 - 4 = 2,5 . 10 - 11 .

Избыток ионов H + ведет к изменению характера среды. Расчет pH раствора проводим аналогично примеру 7.

Константа гидролиза равна: К Г =[ H + ] . [ MnOH + /[ Mn 2+ ]. Так как эта соль хорошо растворима в воде и полностью диссоциирована на ионы, то С соли =[ Mn 2+ ] = 0,01моль/л.

Поэтому [ H + ] = Ö К Г . [ Mn 2+ ] =Ö 2,5 . 10 - 11. 10 - 2 =5 . 10 - 7 , pH = 6,3.

Вывод. Так как pH < 7 , то среда кислая .

4. Соли слабых оснований и слабых кислот – гидролиз идет и по катиону и по аниону.

В большинстве случаев эти соли гидролизуются полностью образуя основание и кислоту.

ПРИМЕР 9. Гидролиз соли ацетата аммония. CH 3 COONH 4 + H 2 O Û CH 3 COOH + NH 4 OH

Ионно-молекулярное уравнение:CH 3 COO - + NH 4 + + H 2 O Û CH 3 COOH + NH 4 OH .

Константа гидролиза равна: К Г = К H 2 O к-ты . К осн. .

Характер среды олределяется относительной силой кислоты и основания.

Задание 201.
Составьте ионно-молекулярное и молекулярное уравнения гидролиза, происходящего при смешивании растворов К 2 S и СгС1 3 . Каждая из взятых солей гидролизуется необратимо до конца с образованием соответствующих основания и кислоты.
Решение:
K 2 S – соль сильного основания и слабой кислоты гидролизуется по аниону, а CrCl 3 – соль слабого основания и сильной кислоты гидролизуется по катиону:

K 2 S ⇔ 2K + + S 2- ; CrCl3 ⇔ Cr 3+ + 3Cl - ;
а) S 2- + H 2 O ⇔ HS - + OH - ;
б) Cr 3+ + H 2 O ⇔ CrOH 2+ + H + .

Если растворы этих солей находятся в одном сосуде, то идёт взаимное усиление гидролиза каждой из них, ибо ионы Н+ и ОН-, связываясь друг с другом, образуют молекулы слабого электролита Н 2 О (Н + + ОН - ⇔ Н 2 О). При образовании дополнительного количества воды гидролитическое равновесие обеих солей сдвигается вправо, и гидролиз каждой соли идёт до конца с образованием осадка и газа:

3S 2- + 2Cr 3+ + 6H 2 O ⇔ 2Cr(OH) 3 ↓ + 3H 2 S (ионно-молекулярная форма);
3K 2 S + 2CrCl 3 + 6Н 2 О ⇔ 2Cr(OH) 3 ↓ + 3H 2 S + 6KCl (молекулярная форма).

Задание 202.
К раствору FeCl 3 добавили следующие вещества: a) HCl; б) КОН; в) ZnCl 2 ; г) Na 2 СО 3 . В каких случаях гидролиз хлорида железа (III) усилится? Почему? Составьте ионно-молекулярные уравнения гидролиза соответствующих солей.
Решение:
а) Соль FeCl 3 гидролизуется по катиону, а HCl диссоциирует в водном растворе:

FeCl 3 ⇔ Fe 3+ + 3Cl - ;

HCl ⇔ H + + Cl -

Если растворы этих веществ находятся в одном сосуде, то идёт угнетение гидролиза соли FeCl 3 , ибо образуется избыток ионов водорода Н + и равновесие гидролиза сдвигается влево:
б) Соль FeCl 3 гидролизуется по катиону, а KOH диссоциирует в водном растворе с образованием ОН - :

FeCl 3 ⇔ Fe 3+ + 3Cl - ;
Fe 3+ + H 2 O ⇔ FeOH 2+ + H + ;
KOH ⇔ K + + OH -

Если растворы этих веществ находятся в одном сосуде, то идёт гидролиза соли FeCl3 и диссоциации КОН, ибо ионы Н+ и ОН-, связываясь друг с другом, образуют молекулы слабого электролита Н 2 О (Н + + ОН - ⇔ Н 2 О). При этом гидролитическое равновесие соли FeCl 3 и диссоциация КОН сдвигаются вправо и гидролиз соли и диссоциация основания идут до конца с образованием осадка Fe(OH) 3 . По сути, при смешивании FeCl3 и КОН протекает реакция обмена. Ионно-

Fe 3+ + 3OH - ⇔ Fe(OH) 3 ↓;

Молекулярное уравнение процесса:

FeCl 3 + 3KOH ⇔ Fr(OH) 3 ↓ + 3KCl.

в) Соль FeCl 3 и соль ZnCl 2 гидролизуется по катиону:

Fe 3+ + H 2 O ⇔ FeOH 2+ + H + ;
Zn 2+ + H 2 O ⇔ ZnOH + + H +

Если растворы этих солей находятся в одном сосуде, то идёт взаимное угнетение гидролиза каждой из них, ибо избыточное количество ионов Н + вызывает смещение гидролитического равновесие влево, в сторону уменьшения концентрации ионов водорода Н + .
г) Соль FeCl 3 гидролизуется по катиону, а соль Na 2 СO 3 – по аниону:

Fe 3+ + H 2 O ⇔ FeOH 2+ + H + ;
СO 3 2- + H 2 O ⇔ HСO 3 - + ОH -

Если растворы этих солей находятся в одном сосуде, то идёт взаимное усиление гидролиза каждой из них, ибо ионы Н + и ОН - , связываясь друг с другом, образуют молекулы слабого электролита Н 2 О (Н + + ОН - ⇔ Н 2 О). При образовании дополнительного количества воды гидролитическое равновесие обеих солей сдвигается вправо, и гидролиз каждой соли идёт до конца с образованием осадка Fe(OH)3↓, слабого электролита H 2 CО 3:

2Fe 3+ + 3СO 3 2- + 3H 2 O ⇔ 2Fe(OH) 3 ↓ + 3CO 2 (ионно-молекулярная форма);
2FeCl 3 + 3Na 2 CO 3 + 3H 2 O ⇔ 2Fe(OH) 3 ↓ + 3CO 2 + 6NaCl (молекулярная форма).

Задание 203.
Какие из солей Al 2 (SO4) 3 , K 2 S, Pb(NO 3) 2 , КСl подвергаются гидролизу? Составьте ионно-молекулярные и молекулярные уравнения гидролиза соответствующих солей. Какое значение рН (> 7 <) имеют растворы этих солей?
Решение:

а) Al 2 (SO 4) 3 - соль слабого основания и сильной кислоты. В этом случае катионы Al 3+ связывают ионы ОН - воды, образуя катионы основной соли AlOH 2+ . Образование Al(OH) 2+ и Al(OH) 3 не происходит, потому что ионы AlOH 2+ диссоциируют гораздо труднее, чем ионы Al(OH) 2+ и молекулы Al(OH) 3 . В обычных условиях гидролиз идёт по первой ступени. Соль гидролизуется по катиону. Ионно-молекулярное уравнение гидролиза:

Al2(SO 4) 3 ⇔ Al 3+ + 3SO 4 2- ;

или в молекулярной форме:

Al 2 (SO 4) 3 + 2Н 2 О ⇔ 2AlOHSO 4 + H 2 SO 4

В растворе появляется избыток ионов водорода, которые придают раствору Al2(SO4)3 кислую среду, рН < 7 .

б) K 2 S – соль сильного однокислотного основания KOH и слабой многоосновной кислоты H 2 S. В этом случае анионы S2- связывают ионы водорода Н+ воды, образуя анионы кислой соли НS-. Образование H2S не происходит, так как ионы НS- диссоциируют гораздо труднее, чем молекулы H2S. В обычных условиях гидролиз идёт по первой ступени. Соль гидролизуется по аниону. Ионно-молекулярное уравнение гидролиза:

K 2 S ⇔ 2К + + S 2- ;
S 2- + H 2 O ⇔ Н S- + ОH -

или в молекулярной форме:

K 2 S + 2Н 2 О ⇔ КНS + КОН

В растворе появляется избыток гидроксид-ионов, которые придают раствору K 2 S щелочную среду, рН > 7.

в) Pb(NO 3) 2 - соль слабого основания и сильной кислоты. В этом случае катионы Pb 2+ связывают ионы ОН- воды, образуя катионы основной соли PbOH + . Образование Pb(OH) 2 не происходит, потому что ионы PbOH + диссоциируют гораздо труднее, чем молекулы Pb(OH) 2 . В обычных условиях гидролиз идёт по первой ступени. Соль гидролизуется по катиону. Ионно-молекулярное уравнение гидролиза:


Pb 2+ + H 2 O ⇔ PbOH + + H +

или в молекулярной форме:

< 7.

г) КCl – соль сильного основания и сильной кислоты гидролизу не подвергается, так как ионы К + , Cl - не связываются ионами воды H + и OH - . Ионы К + , Cl - , H + и OH - останутся в растворе. Так как в растворе соли присутствуют равные количества ионов H + и OH - , то раствор имеет нейтральную среду, рН = 0.

Задание 204.
При смешивании растворов FeCl 3 и Na 2 СО 3 каждая из взятых солей гидролизуется необратимо до конца с образованием соответствующих основания и кислоты. Выразите этот совместный гидролиз ионно-молекулярным и молекулярным уравнениями.
Решение:
FeCl 3 - соль слабого основания и сильной кислоты. В этом случае катионы Fe 3+ связывают ионы ОН - воды, образуя катионы основной соли FeOH 2+ . Образование Fe(OH)2+ и Fe(OH)3 не происходит, потому что ионы FeOH 2+ диссоциируют гораздо труднее, чем ионы Fe(OH) 2+ и молекулы Fe(OH) 3 . В обычных условиях гидролиз идёт по первой ступени. Соль гидролизуется по катиону. Ионно-молекулярное уравнение гидролиза:

FeC l3 ⇔ Fe 3+ + 3Cl -
Fe 3+ + H 2 O ⇔ FeOH 2+ + H +

Na 2 CO 3 - соль сильного основания и слабой кислоты. В этом случае анионы CO 3 2- связывают ионы водорода Н + воды, образуя анионы кислой соли HCO 3 - . Образование H 2 CO 3 не происходит, так как ионы HCO 3 - диссоциируют гораздо труднее, чем молекулы H 2 CO 3 . В обычных условиях гидролиз идёт по первой ступени. Соль гидролизуется по аниону. Ионно-молекулярное уравнение гидролиза:

2Fe 3+ + 3CO 3 2- + 3H 2 O  2Fe(OH) 3 ⇔ + 3CO 2 (ионно-молекулярная форма);
2FeCl 3 + 3Na 2 CO 3 +3H 2 O ⇔ 2Fe(OH) 3  + + 3CO 2 + 6NaCl.

Задание 205.
К раствору Nа 2 СО 3 добавили следующие вещества: a)HCl; б)NaOH; в) Cu(NО 3) 2 ; г)K 2 S. В каких случаях гидролиз карбоната натрия усилится? Почему? Составьте ионно-молекулярные уравнения гидролиза соответствующих солей.
Решение:

а) Соль Na 2 CO 3 гидролизуется по аниону, а HCl диссоциирует в водном растворе:

Na 2 CO 3 ⇔ 2Na + + CO 3 2- ;
CO 3 2- + H 2 O ⇔ HCO 3 - + ОH - ;
HCl ⇔ H + + Cl -

Если растворы этих веществ находятся в одном сосуде, то идёт взаимное усиление гидролиза каждой из них, ибо ионы Н + и ОН - , связываясь друг с другом, образуют молекулы слабого электролита Н 2 О (Н + + ОН - ⇔ Н 2 О). При этом гидролитическое равновесие соли Na 2 CO 3 и диссоциация HCl сдвигаются вправо и гидролиз соли и диссоциация кислоты идут до конца с образованием газообразного углекислого газа. Ионно-молекулярное уравнение процесса:

CO 3 2- + 2Н + ⇔ СО 2 + Н 2 О

Молекулярное уравнение процесса:

Na 2 CO 3 + 2HCl ⇔ 2NaCl + СО 2 + Н 2 О

б) Соль Na 2 CO 3 гидролизуется по аниону, а NaOH диссоциирует в водном растворе:


NaOH ⇔ Na + + OH - .

Если растворы этих веществ смешать, то образуется избыток ионов ОН - , что сдвигает равновесие гидролиза Na 2 CO 3 влево и гидролиз соли будет угнетаться.

в) Соль Na 2 CO 3 гидролизуется по аниону, а соль Cu(NO 3) 2 – по катиону:

CO 3 2- + H 2 O ⇔ HCO 3 - + ОH - ;
Сu 2+ + H 2 O ⇔ CuOH + + H + .

Если растворы этих солей находятся в одном сосуде, то идёт взаимное усиление гидролиза каждой из них, ибо ионы Н + и ОН - , связываясь друг с другом, образуют молекулы слабого электролита Н 2 О (Н + + ОН - ⇔ Н 2 О). При образовании дополнительного количества воды гидролитическое равновесие обеих солей сдвигается вправо, и гидролиз каждой соли идёт до конца с образованием осадка и газа:

Cu 2+ + CO 3 2- + H 2 O ⇔ Cu(OH) 2 ↓ + CO 2 (ионно-молекулярная форма);
Cu(NO 3) 2 + Na 2 CO 3 + Н 2 О ⇔ Cu(OH) 2 ↓ + CO 2 + 2NaNO 3 (молекулярная форма).

г) Na 2 CO 3 и К 2 S - соли сильного основания и слабой кислоты, поэтому обе гидролизуются по аниону:

CO 3 2- + H 2 O ⇔ HCO 3 - + ОH - ;
S 2- + H 2 O ⇔ HS - + OH - .

Если растворы этих солей находятся в одном сосуде, то идёт взаимное угнетение гидролиза каждой из них, ибо избыток ионов ОН - , согласно принципу Ле Шателье, смещает равновесие гидролиза обеих солей влево, в сторону уменьшения концентрации ионов ОН - , т. е. гидролиз обеих солей будет угнетаться.

Задание 206.
Какое значение рН (> 7 <) имеют растворы солей Na 2 S, АlСl 3 , NiSO 4 ? Составьте ионно-молекулярные и молекулярные уравнения гидролиза этих солей.
Решение:
а) Na 2 S – соль сильного однокислотного основания NaOH и слабой многоосновной кислоты H 2 S. В этом случае анионы S 2- связывают ионы водорода Н+ воды, образуя анионы кислой соли НS-. Образование H 2 S не происходит, так как ионы НS - диссоциируют гораздо труднее, чем молекулы H 2 S. В обычных условиях гидролиз идёт по первой ступени. Соль гидролизуется по аниону. Ионно-молекулярное уравнение гидролиза:

Na 2 S ⇔ 2Na + + S 2- ;
S 2- + H 2 O ⇔ НS - + ОH -

или в молекулярной форме:

Na 2 S + 2Н 2 О ⇔ NaНS + КОН

В растворе появляется избыток гидроксид-ионов, которые придают раствору Na2S щелочную среду, рН > 7.

б) AlCl 3 - соль слабого основания и сильной кислоты. В этом случае катионы Al3+ связывают ионы ОН- воды, образуя катионы основной соли AlOH2+. Образование Al(OH) 2+ и Al(OH) 3 не происходит, потому что ионы AlOH 2+ диссоциируют гораздо труднее, чем ионы Al(OH) 2+ и молекулы Al(OH) 3 . В обычных условиях гидролиз идёт по первой ступени. Соль гидролизуется по катиону. Ионно-молекулярное уравнение гидролиза:

AlCl 3 ⇔ Al 3+ + 3Cl - ;
Al 3+ + H 2 O ⇔ AlOH 2+ + H +

или в молекулярной форме:

AlCl 3 + Н 2 О ⇔ 2AlOHCl 2 + HCl

В растворе появляется избыток ионов водорода, которые придают раствору Al2(SO4)3 кислую среду, рН < 7.

в) NiSO4 - соль слабого многокислотного основания Ni(OH)2 и сильной двуходноосновной кислоты H2SO4. В этом случае катионы Ni2+ связывают ионы ОН- воды, образуя катионы основной соли NiOH+. Образование Ni(OH)2 не происходит, потому что ионы NiOH+ диссоциируют гораздо труднее, чем молекулы Ni(OH)2. В обычных условиях гидролиз идёт по первой ступени. Соль гидролизуется по катиону. Ионно-молекулярное уравнение гидролиза:

Ni(NO 3) 2 ⇔ Ni 2+ + 2NO 3 - ;
Ni 2+ + H 2 O ⇔ NiOH + + H +

или в молекулярной форме:

2NiSO 4 + 2Н 2 О  (NiOH) 2 SO 4 + H 2 SO 4

В растворе появляется избыток ионов водорода, которые придают раствору NiSO 4 кислую среду, рН < 7.

Задание 207.
Составьте ионно-молекулярные и молекулярные уравнения гидролиза солей Pb(NO 3) 2 , Na 2 CO 3 , Fe 2 (SO 4) 3 . Какое значение рН (> 7 <) имеют растворы этих солей?
Решение:
а) Pb(NO 3) 2 - соль слабого основания и сильной кислоты. В этом случае катионы Pb 2+ связывают ионы ОН - воды, образуя катионы основной соли PbOH + . Образование Pb(OH) 2 не происходит, потому что ионы PbOH + диссоциируют гораздо труднее, чем молекулы Pb(OH) 2 . В обычных условиях гидролиз идёт по первой ступени. Соль гидролизуется по катиону. Ионно-молекулярное уравнение гидролиза:

Pb(NO 3) 2 ⇔ Pb 2+ + 2NO 3 - ;
Pb 2+ + H 2 O ⇔ PbOH + + H +

или в молекулярной форме:

Pb(NO 3) 2 + Н 2 О ⇔ PbOHNO 3 + HNO 3

В растворе появляется избыток ионов водорода, которые придают раствору Pb(NO 3) 2 кислую среду, рН < 7.

б) Na 2 CO 3 - соль сильного основания и слабой кислоты. В этом случае анионы CO 3 2- связывают ионы водорода Н + воды, образуя анионы кислой соли HCO 3 - . Образование H 2 CO 3 не происходит, так как ионы HCO 3 - диссоциируют гораздо труднее, чем молекулы H 2 CO 3 . В обычных условиях гидролиз идёт по первой ступени. Соль гидролизуется по аниону. Ионно-молекулярное уравнение гидролиза:

Na 2 CO 3 ⇔ 2Na + + CO 3 2- ;
CO 3 2- + H 2 O ⇔ HCO 3 - + ОH -

или в молекулярной форме:

Na 2 CO 3 + Н 2 О ⇔ СО 2 + 2NaOH

В растворе появляется избыток гидроксид-ионов, которые придают раствору Na2CO3 щелочную среду, рН > 7.

в) Fe 2 (SO 4) 3 - соль слабого основания и сильной кислоты. В этом случае катионы Fe 3+ связывают ионы ОН - воды, образуя катионы основной соли FeOH 2+ . Образование Fe(OH) 2+ и Fe(OH) 3 не происходит, потому что ионы FeOH 2+ диссоциируют гораздо труднее, чем ионы Fe(OH) 2+ и молекулы Fe(OH) 3 . В обычных условиях гидролиз идёт по первой ступени. Соль гидролизуется по катиону. Ионно-молекулярное уравнение гидролиза:

Fe 2 (SO 4) 3 ⇔ 2Fe 3+ + 3SO 4 2 -
Fe 3+ + H 2 O ⇔ FeOH 2+ + H +

Молекулярная форма процесса:

Fe 2 (SO 4) 3 + 2H 2 O ⇔ 2FeOHSO 4 + H 2 SO 4 .

В растворе появляется избыток ионов водорода, которые придают раствору Fe2(SO4)3 кислую среду, рН < 7.

Задание 208.
Составьте ионно-молекулярные и молекулярные уравнения гидролиза солей НСООК, ZnSО 4 , Аl(NO 3) 3 . Какое значение рН (> 7 <) имеют растворы этих солей?
Решение:
а) НСООК – соль сильного однокислотного основания KOH и слабой одноосновной кислоты НСООН. В этом случае анионы НСОО - связывают ионы водорода Н + воды, образуя слабый электролит НСООН. Ионно-молекулярное уравнение гидролиза:

НСООК ⇔ К + + НСОО - ;
НСОО - + H 2 O ⇔ НСООН + ОH -

или в молекулярной форме:

НСООК + Н 2 О  НСООН + КОН

В растворе появляется избыток гидроксид-ионов, которые придают раствору НСООК щелочную среду, рН > 7.

б) ZnSО 4 - соль слабого многокислотного основания Zn(OH)2 и сильной многосновной кислоты. В этом случае катионы Zn 2+ связывают ионы ОН - воды, образуя катионы основной соли ZnOH + . Образование Zn(OH) 2 не происходит, потому что ионы СоOH + диссоциируют гораздо труднее, чем молекулы Zn(OH) 2 . В обычных условиях гидролиз идёт по первой ступени. Соль гидролизуется по катиону. Ионно-молекулярное уравнение гидролиза:

ZnSО 4  Zn 2+ + SO 4 2- ;
Zn 2+ + H 2 O  ZnOH + + H +

или в молекулярной форме:

2ZnSО4 + 2Н2О  (ZnOH)2SO4 + H2SO4

В растворе появляется избыток ионов водорода, которые придают раствору ZnSО 4 кислую среду, рН < 7.

в) Аl(NO 3) 3 - соль слабого многокислотного основания Al(OH) 3 и сильной одноосновной кислоты HNO 3 . В этом случае катионы Al 3+ связывают ионы ОН - воды, образуя катионы основной соли AlOH2+. Образование Al(OH) 2+ и Al(OH) 3 не происходит, потому что ионы AlOH 2+ диссоциируют гораздо труднее, чем ионы Al(OH) 2+ и молекулы Al(OH) 3 . В обычных условиях гидролиз идёт по первой ступени. Соль гидролизуется по катиону. Ионно-молекулярное уравнение гидролиза:

Al(NO3) 3 ⇔ Cr 3+ + 3NO 3 -
Al 3+ + H 2 O ⇔ AlOH 2+ + H +

Al(NO 3) 3 + Н 2 О ⇔ AlOH(NO 3) 2 + HNO 3

< 7.

Задание 209.
Какое значение рН (> 7 <) имеют растворы солей Na 3 PO 4 , K 2 S, CuSO 4 ? Составьте ионно-молекулярные и молекулярные уравнения гидролиза этих солей.
Решение:
а) Ортофосфат натрия Na 3 PO 4 – соль слабой многоосновной кислоты Н 3 РО 4 и сильного однокислотного основания. В этом случае анионы РО 4 3- связывают ионы водорода Н + воды, образуя анионы кислой соли HРО 4 2- . Образование H 2 РО 4 - и Н 3 РО 4 не происходит, так как ионы HРО 4 2 - диссоциируют гораздо труднее, чем ионы H 2 РО 4 - и молекулы Н 3 РО 4 . В обычных условиях гидролиз идёт по первой ступени. Соль гидролизуется по аниону. Ионно-молекулярное уравнение гидролиза:

Na 3 PO 4 ⇔ 3Na + + РО 4 3- ;
РО 4 3- + H 2 O ⇔ HРО 4 2- + ОH -

или в молекулярной форме:

Na 3 PO 4 + Н 2 О ⇔ Na 2 HPO 4 + NaOH

В растворе появляется избыток гидроксид-ионов, которые придают раствору Na 3 PO 4 щелочную среду, рН > 7.

б) K2S – соль сильного однокислотного основания KOH и слабой многоосновной кислоты H 2 S. В этом случае анионы S 2- связывают ионы водорода Н + воды, образуя анионы кислой соли НS - . Образование H 2 S не происходит, так как ионы НS - диссоциируют гораздо труднее, чем молекулы H 2 S. В обычных условиях гидролиз идёт по первой ступени. Соль гидролизуется по аниону. Ионно-молекулярное уравнение гидролиза:

K 2 S ⇔ 2К + + S 2- ;
S 2- + H 2 O ⇔ НS - + ОH -

или в молекулярной форме:

K2S + 2Н 2 О ⇔  КНS + КОН

В растворе появляется избыток гидроксид-ионов, которые придают раствору K2S щелочную среду, рН > 7.

в) CuSO 4 - соль слабого основания и сильной кислоты. В этом случае катионы Cu 2+ связывают ионы ОН - воды, образуя катионы основной соли CuOH + . Образование Cu(OH) 2 не происходит, потому что ионы CuOH + диссоциируют гораздо труднее, чем молекулы Cu(OH) 2 . В обычных условиях гидролиз идёт по первой ступени. Соль гидролизуется по катиону. Ионно-молекулярное уравнение гидролиза:

CuSO 4 ⇔ Cu 2+ + SO 4 2- ;
Cu 2+ + H 2 O ⇔ CuOH + + H +

или в молекулярной форме:

2CuSO 4 + 2Н 2 О ⇔ (CuOH) 2 SO 4 + H 2 SO 4

В растворе появляется избыток ионов водорода, которые придают раствору CuSO 4 кислую среду, рН < 7.

Задание 210.
Составьте ионно-молекулярные и молекулярные уравнения гидролиза солей CuCl 2 , Сs 2 СО 3 , Сr(NО 3) 3 . Какое значение рН (> 7 <) имеют растворы этих солей?
Решение:
а) CuCl 2 - соль слабого многокислотного основания Сu(OH) 2 и сильной одноосновной кислоты HCl. В этом случае катионы Cu 2+ связывают ионы ОН - воды, образуя катионы основной соли CuOH + . Образование Cu(OH) 2 не происходит, потому что ионы CuOH + диссоциируют гораздо труднее, чем молекулы Cu(OH) 2 . В обычных условиях гидролиз идёт по первой ступени. Соль гидролизуется по катиону. Ионно-молекулярное уравнение гидролиза:

CuCl 2 ⇔ Cu 2+ + 2Cl - ;
Cu 2+ + H 2 O ⇔ CuOH + + H +

или в молекулярной форме:

CuCl 2 + Н 2 О ⇔ CuOHCl + HCl

В растворе появляется избыток ионов водорода H+, которые придают раствору CuCl 2 кислую среду, рН < 7.

б) Сs 2 CO 3 - соль сильного однокислотного основания CsOH и слабой двухосновной кислоты Н 2 СО 3 . В этом случае анионы CO 3 2- связывают ионы водорода Н + воды, образуя анионы кислой соли HCO 3 - . Образование H 2 CO 3 не происходит, так как ионы HCO 3 - диссоциируют гораздо труднее, чем молекулы H 2 CO 3 . В обычных условиях гидролиз идёт по первой ступени. Соль гидролизуется по аниону. Ионно-молекулярное уравнение гидролиза:

Cs 2 CO 3 ⇔ 2Cs + + CO 3 2- ;
CO 3 2- + H 2 O ⇔ HCO 3 - + ОH -

или в молекулярной форме:

Cs2CO 3 + Н 2 О ⇔ СО 2 + 2CsOH

В растворе появляется избыток гидроксид-ионов, которые придают раствору Сs2CO3 щелочную среду, рН > 7.

в) Cr(NO 3) 3 - соль слабого многокислотного основания Cr(OH) 3 и сильной одноосновной кислоты HNO 3 . В этом случае катионы Cr 3+ связывают ионы ОН - воды, образуя катионы основной соли CrOH 2+ . Образование Cr(OH) 2 + и Cr(OH) 3 не происходит, потому что ионы CrOH 2+ диссоциируют гораздо труднее, чем ионы Cr(OH) 2 + и молекулы Cr(OH) 3 . В обычных условиях гидролиз идёт по первой ступени. Соль гидролизуется по катиону. Ионно-молекулярное уравнение гидролиза:

Cr(NO 3) 3 ⇔ Cr 3+ + 3NO 3 -
Cr 3+ + H 2 O ⇔ CrOH 2+ + H +

Молекулярное уравнение реакции:

Cr(NO 3) 3 + Н 2 О ⇔ CrOH(NO 3) 2 + HNO 3

В растворе появляется избыток ионов водорода, которые придают раствору Cr(NO 3) 3 кислую среду, рН < 7.

Достаточно часто школьникам и студентам приходится составлять т. н. ионные уравнения реакций. В частности, именно этой теме посвящена задача 31, предлагаемая на ЕГЭ по химии. В данной статье мы подробно обсудим алгоритм написания кратких и полных ионных уравнений, разберем много примеров разного уровня сложности.

Зачем нужны ионные уравнения

Напомню, что при растворении многих веществ в воде (и не только в воде!) происходит процесс диссоциации - вещества распадаются на ионы. Например, молекулы HCl в водной среде диссоциируют на катионы водорода (H + , точнее, H 3 O +) и анионы хлора (Cl -). Бромид натрия (NaBr) находится в водном растворе не в виде молекул, а в виде гидратированных ионов Na + и Br - (кстати, в твердом бромиде натрия тоже присутствуют ионы).

Записывая "обычные" (молекулярные) уравнения, мы не учитываем, что в реакцию вступают не молекулы, а ионы. Вот, например, как выглядит уравнение реакции между соляной кислотой и гидроксидом натрия:

HCl + NaOH = NaCl + H 2 O. (1)

Разумеется, эта схема не совсем верно описывает процесс. Как мы уже сказали, в водном растворе практически нет молекул HCl, а есть ионы H + и Cl - . Так же обстоят дела и с NaOH. Правильнее было бы записать следующее:

H + + Cl - + Na + + OH - = Na + + Cl - + H 2 O. (2)

Это и есть полное ионное уравнение . Вместо "виртуальных" молекул мы видим частицы, которые реально присутствуют в растворе (катионы и анионы). Не будем пока останавливаться на вопросе, почему H 2 O мы записали в молекулярной форме. Чуть позже это будет объяснено. Как видите, нет ничего сложного: мы заменили молекулы ионами, которые образуются при их диссоциации.

Впрочем, даже полное ионное уравнение не является безупречным. Действительно, присмотритесь повнимательнее: и в левой, и в правой частях уравнения (2) присутствуют одинаковые частицы - катионы Na + и анионы Cl - . В процессе реакции эти ионы не изменяются. Зачем тогда они вообще нужны? Уберем их и получим краткое ионное уравнение:

H + + OH - = H 2 O. (3)

Как видите, все сводится к взаимодействию ионов H + и OH - c образованием воды (реакция нейтрализации).

Все, полное и краткое ионные уравнения записаны. Если бы мы решали задачу 31 на ЕГЭ по химии, то получили бы за нее максимальную оценку - 2 балла.


Итак, еще раз о терминологии:

  • HCl + NaOH = NaCl + H 2 O - молекулярное уравнение ("обычное" уравнения, схематично отражающее суть реакции);
  • H + + Cl - + Na + + OH - = Na + + Cl - + H 2 O - полное ионное уравнение (видны реальные частицы, находящиеся в растворе);
  • H + + OH - = H 2 O - краткое ионное уравнение (мы убрали весь "мусор" - частицы, которые не участвуют в процессе).

Алгоритм написания ионных уравнений

  1. Составляем молекулярное уравнение реакции.
  2. Все частицы, диссоциирующие в растворе в ощутимой степени, записываем в виде ионов; вещества, не склонные к диссоциации, оставляем "в виде молекул".
  3. Убираем из двух частей уравнения т. н. ионы-наблюдатели, т. е. частицы, которые не участвуют в процессе.
  4. Проверяем коэффициенты и получаем окончательный ответ - краткое ионное уравнение.

Пример 1 . Составьте полное и краткое ионные уравнения, описывающие взаимодействие водных растворов хлорида бария и сульфата натрия.

Решение . Будем действовать в соответствии с предложенным алгоритмом. Составим сначала молекулярное уравнение. Хлорид бария и сульфат натрия - это две соли. Заглянем в раздел справочника "Свойства неорганических соединений" . Видим, что соли могут взаимодействовать друг с другом, если в ходе реакции образуется осадок. Проверим:

Упражнение 2 . Дополните уравнения следующих реакций:

  1. KOH + H 2 SO 4 =
  2. H 3 PO 4 + Na 2 O=
  3. Ba(OH) 2 + CO 2 =
  4. NaOH + CuBr 2 =
  5. K 2 S + Hg(NO 3) 2 =
  6. Zn + FeCl 2 =

Упражнение 3 . Напишите молекулярные уравнения реакций (в водном растворе) между: а) карбонатом натрия и азотной кислотой, б) хлоридом никеля (II) и гидроксидом натрия, в) ортофосфорной кислотой и гидроксидом кальция, г) нитратом серебра и хлоридом калия, д) оксидом фосфора (V) и гидроксидом калия.

Искренне надеюсь, что у вас не возникло проблем с выполнением этих трех заданий. Если это не так, необходимо вернуться к теме "Химические свойства основных классов неорганических соединений".

Как превратить молекулярное уравнение в полное ионное уравнение

Начинается самое интересное. Мы должны понять, какие вещества следует записывать в виде ионов, а какие - оставить в "молекулярной форме". Придется запомнить следующее.

В виде ионов записывают:

  • растворимые соли (подчеркиваю, только соли хорошо растворимые в воде);
  • щелочи (напомню, что щелочами называют растворимые в воде основания, но не NH 4 OH);
  • сильные кислоты (H 2 SO 4 , HNO 3 , HCl, HBr, HI, HClO 4 , HClO 3 , H 2 SeO 4 , ...).

Как видите, запомнить этот список совсем несложно: в него входят сильные кислоты и основания и все растворимые соли. Кстати, особо бдительным юным химикам, которых может возмутить тот факт, что сильные электролиты (нерастворимые соли) не вошли в этот перечень, могу сообщить следующее: НЕвключение нерастворимых солей в данный список вовсе не отвергает того, что они являются сильными электролитами.

Все остальные вещества должны присутствовать в ионных уравнениях в виде молекул. Тем требовательным читателям, которых не устраивает расплывчатый термин "все остальные вещества", и которые, следуя примеру героя известного фильма, требуют "огласить полный список" даю следующую информацию.

В виде молекул записывают:

  • все нерастворимые соли;
  • все слабые основания (включая нерастворимые гидроксиды, NH 4 OH и сходные с ним вещества);
  • все слабые кислоты (H 2 СO 3 , HNO 2 , H 2 S, H 2 SiO 3 , HCN, HClO, практически все органические кислоты...);
  • вообще, все слабые электролиты (включая воду!!!);
  • оксиды (всех типов);
  • все газообразные соединения (в частности, H 2 , CO 2 , SO 2 , H 2 S, CO);
  • простые вещества (металлы и неметаллы);
  • практически все органические соединения (исключение - растворимые в воде соли органических кислот).

Уф-ф, кажется, я ничего не забыл! Хотя проще, по-моему, все же запомнить список N 1. Из принципиально важного в списке N 2 еще раз отмечу воду.


Давайте тренироваться!

Пример 2 . Составьте полное ионное уравнение, описывающие взаимодействие гидроксида меди (II) и соляной кислоты.

Решение . Начнем, естественно, с молекулярного уравнения. Гидроксид меди (II) - нерастворимое основание. Все нерастворимые основания реагируют с сильными кислотами с образованием соли и воды:

Cu(OH) 2 + 2HCl = CuCl 2 + 2H 2 O.

А теперь выясняем, какие вещества записывать в виде ионов, а какие - в виде молекул. Нам помогут приведенные выше списки. Гидроксид меди (II) - нерастворимое основание (см. таблицу растворимости), слабый электролит. Нерастворимые основания записывают в молекулярной форме. HCl - сильная кислота, в растворе практически полностью диссоциирует на ионы. CuCl 2 - растворимая соль. Записываем в ионной форме. Вода - только в виде молекул! Получаем полное ионное уравнение:

Сu(OH) 2 + 2H + + 2Cl - = Cu 2+ + 2Cl - + 2H 2 O.

Пример 3 . Составьте полное ионное уравнение реакции диоксида углерода с водным раствором NaOH.

Решение . Диоксид углерода - типичный кислотный оксид, NaOH - щелочь. При взаимодействии кислотных оксидов с водными растворами щелочей образуются соль и вода. Составляем молекулярное уравнение реакции (не забывайте, кстати, о коэффициентах):

CO 2 + 2NaOH = Na 2 CO 3 + H 2 O.

CO 2 - оксид, газообразное соединение; сохраняем молекулярную форму. NaOH - сильное основание (щелочь); записываем в виде ионов. Na 2 CO 3 - растворимая соль; пишем в виде ионов. Вода - слабый электролит, практически не диссоциирует; оставляем в молекулярной форме. Получаем следующее:

СO 2 + 2Na + + 2OH - = Na 2+ + CO 3 2- + H 2 O.

Пример 4 . Сульфид натрия в водном растворе реагирует с хлоридом цинка с образованием осадка. Составьте полное ионное уравнение данной реакции.

Решение . Сульфид натрия и хлорид цинка - это соли. При взаимодействии этих солей выпадает осадок сульфида цинка:

Na 2 S + ZnCl 2 = ZnS↓ + 2NaCl.

Я сразу запишу полное ионное уравнение, а вы самостоятельно проанализируете его:

2Na + + S 2- + Zn 2+ + 2Cl - = ZnS↓ + 2Na + + 2Cl - .

Предлагаю вам несколько заданий для самостоятельной работы и небольшой тест.

Упражнение 4 . Составьте молекулярные и полные ионные уравнения следующих реакций:

  1. NaOH + HNO 3 =
  2. H 2 SO 4 + MgO =
  3. Ca(NO 3) 2 + Na 3 PO 4 =
  4. CoBr 2 + Ca(OH) 2 =

Упражнение 5 . Напишите полные ионные уравнения, описывающие взаимодействие: а) оксида азота (V) с водным раствором гидроксида бария, б) раствора гидроксида цезия с иодоводородной кислотой, в) водных растворов сульфата меди и сульфида калия, г) гидроксида кальция и водного раствора нитрата железа (III).