Кристалл отличается от аморфного тела. Кристаллические и аморфные вещества

Если кристаллические решетки стереометрически (пространственно) одинаковы или сходны (имеют одинаковую симметрию), то геометрическое различие между ними заключается, в частности, в разных расстояниях между частицами, занимающими узлы решетки. Сами расстояния между частицами называются параметрами решетки. Параметры решетки, а также углы геометрических многогранников определяются физическими методами структурного анализа, например методами рентгеновского структурного анализа.

Источники

Литература

  • Химия: Справ. изд./ В. Шретер, К.-Х. Лаутеншлегер, Х. Бибрак и др.: Пер. с нем. - М.: Химия, 1989.
  • Курс общей физики, книга 3, И. В. Савельев: Астрель, 2001, ISBN 5-17-004585-9
  • Кристаллы / М. П. Шаскольская , 208 с ил. 20 см, 2-е изд., испр. М. Наука 1985

См. также

Ссылки

  • Кристаллы минералов , Формы природного растворения кристаллов
  • Единственный с своём роде завод, производящий Кристаллы

Wikimedia Foundation . 2010 .

Смотреть что такое "Кристаллические тела" в других словарях:

    Все, что признается реально существующим и занимающим часть пространства, носит название физического Т. Всякое физическое Т. образовано из вещества (см. Вещество) и представляет собой, согласно наиболее распространенному учению, совокупность… …

    Химия органического твердого тела (англ. organic sold state chemistry) – раздел химии твердого тела, изучающий всевозможные химические и физико химические аспекты органических твердых тел (ОТТ), в частности, – их синтез, строение, свойства,… … Википедия

    Раздел физики, изучающий структуру и свойства твердых тел. Научные данные о микроструктуре твердых веществ и о физических и химических свойствах составляющих их атомов необходимы для разработки новых материалов и технических устройств. Физика… … Энциклопедия Кольера

    Физика твёрдого тела раздел физики конденсированного состояния, задачей которого является описание физических свойств твёрдых тел с точки зрения их атомарного строения. Интенсивно развивалась в XX веке после открытия квантовой механики.… … Википедия

    Основная механическая величина, определяющая величину ускорения, сообщаемого телу данной силой. М. тел прямо пропорциональны силам, сообщающим им равные ускорения и обратно пропорциональны ускорениям, сообщаемыми им равными силами. Поэтому связь… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Химия твёрдого тела раздел химии, изучающий разные аспекты твердофазных веществ, в частности, их синтез, структуру, свойства, применение и др.. Ее объектами исследования являются кристаллические и аморфные, неорганические и органические… … Википедия

    Под этим названием известны соединения, которые можно рассматривать, как дигидроароматические углеводороды, в которых обе метиленные группы (СН2) замещены группами СО, т. е., следовательно, с этой точки зрения X. являются… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Сопротивление, оказываемое телом движению отдельной его части без нарушения связи целого. Такое движение составляет характеристику жидкостей, как капельных, так и упругих, т. е. газов. Малейшая сила приводит в движение часть жидкого тела и… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Сопротивление, оказываемое телом движению отдельной егочасти без нарушения связи целого. Такое движение составляетхарактеристику жидкостей, как капельных, так и упругих, т.е. газов.Малейшая Сила приводит в движение часть жидкого тела и вызывает … Энциклопедия Брокгауза и Ефрона

    - (хим.). Буквально гетерогенные системы значит разнородные, а гомогенные однородные системы; при этом, однако, есть ряд подразумеваемых допущений, почему вопрос заслуживает более подробного рассмотрения. Материя (Le Chatelier, An. d. m. , 9, 131… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Книги

  • Комплект таблиц. Физика. 10 класс (16 таблиц) , . Учебный альбом из 16 листов. Артикул - 5-8591-016. Физические величины и фундаментальные константы. Строение атома. Кинематика вращательного движения. Кинематика колебательного движения.…
  • Пробужденная аура. Развитие вашей внутренней энергии , Кала Эмброуз. Человечество вступает в новую эру - мы эволюционируем в сверхмогущественных созданий света. Наши энергетические тела переходят в новые кристаллические структурывнутри и вокруг нашей ауры.…

Твердые тела бывают кристаллическими и аморфными.

Поставим опыт

Рассмотрите через увеличительное стекло кристаллики поваренной соли или сахара: у них ровные, будто срезанные грани. Можно вырастить и большой кристалл: на рис. 7.6, а изображен такой кристалл поваренной соли. Замечательно красивы и при этом всегда очень «правильны» снежинки: это выращенные на небесах кристаллики льда. В основе их узора всегда лежит правильный шестиугольник (рис. 7.6, б).

Рис. 7.6. Кристаллические тела: а - кристалл поваренной соли, б - снежинка; кристаллические решетки: в - поваренной соли, г - льда

Поваренная соль, сахар и лед являются примерами кристаллических твердых тел. Правильная форма кристаллов обусловлена тем, что атомы или молекулы в кристаллах расположены упорядоченно, образуя кристаллическую решетку.

Например, в кристалле поваренной соли строго чередуются атомы натрия и хлора, располагаясь в вершинах кубов, - поэтому кристаллы соли и имеют форму куба. А в кристалле льда молекулы воды располагаются в вершинах шестиугольников - вот почему узор любой снежинки имеет шестиугольный «каркас». На рис. 7.6, в схематически изображена кристаллическая решетка поваренной соли, а на рис. 7.6, г - кристаллическая решетка льда.

Аморфные тела. Примерами аморфных тел являются стеклянные предметы (рис. 7.7, а). Аморфные тела обладают текучестью, хотя и значительно меньшей, чем жидкости. При повышении температуры текучесть аморфных тел увеличивается. Благодаря этому из капли нагретого стекла (рис. 7.7, б) можно выдуть стеклянный сосуд (подобно тому, как из капли мыльной воды - мыльный пузырь).

Рис. 7.7. Примеры аморфных тел: а - стеклянный пузырек; б - капля полужидкого стекла; в - схематическое изображение молекулярного строения аморфного тела

На рис. 7.7, в схематически изображено молекулярное строение аморфного тела. Как вы видите, молекулярное строение аморфного тела напоминает молекулярное строение жидкости - этим и объясняется текучесть аморфных тел. Неслучайно слово «аморфный» происходит от греч. «амор-фос» - бесформенный.

Твердые тела отличаются постоянством формы и объема и делятся на кристаллические и аморфные.

Кристаллические тела

Кристаллические тела (кристаллы) - это твердые тела, атомы или молекулы которых занимают упорядоченные положения в пространстве.
Частицы кристаллических тел образуют в пространстве правильную кристаллическую пространственную решетку .

Каждому химическому веществу, находящемуся в кристаллическом состоянии, соответствует определенная кристаллическая решетка, которая задает физические свойства кристалла.

Знаете ли вы?
Много лет назад в Петербурге на одном из неотапливаемых складов лежали большие запасы белых оловянных блестящих пуговиц. И вдруг они начали темнеть, терять блеск и рассыпаться в порошок. За несколько дней горы пуговиц превратились в груду серого порошка. "Оловянная чума" - так к прозвали эту «болезнь» белого олова.
А это была всего лишь перестройка порядка атомов в кристаллах олова. Олово, переходя из белой разновидности в серую, рассыпается в порошок.
И белое и серое олово - это кристаллы олова, но при низкой температуре изменяется их кристаллическая структура, а в результате меняются физические свойства вещества.

Кристаллы могут иметь различную форму и ограничены плоскими гранями.

В природе существуют:
а) монокристаллы - это одиночные однородные кристаллы, имеющие форму правильных многоугольников и обладающие непрерывной кристаллической решеткой

Монокристаллы поваренной соли:

б) поликристаллы - это кристаллические тела, сросшиеся из мелких, хаотически расположенных кристаллов.
Большинство твердых тел имеет поликристаллическую структуру (металлы, камни, песок, сахар).

Поликристаллы висмута:

Анизотропия кристаллов

В кристаллах наблюдается анизотропия - зависимость физических свойств (механической прочности, электропроводности, теплопроводности, преломления и поглощения света, дифракции и др.) от направления внутри кристалла.

Анизотропия наблюдается в основном в монокристаллах.

В поликристаллах (например, в большом куске металла) анизотропия в обычном состоянии не проявляется.
Поликристаллы состоят из большого количества мелких кристаллических зерен. Хотя каждый из них обладает анизотропией, но за счет беспорядочности их расположения поликристаллическое тело в целом утрачивает анизотропию.

Любое кристаллическое вещество плавится и кристаллизуется при строго определенной температуре плавления : железо — при 1530°,олово - при 232°, кварц - при 1713°, ртуть - при минус 38°.

Нарушить порядок расположения в кристалле частицы могут, только если он начал плавиться.

Пока есть порядок частиц, есть кристаллическая решетка - существует кристалл. Нарушился строй частиц - значит, кристалл расплавился - превратился в жидкость, или испарился - перешел в пар.

Аморфные тела

Аморфные тела не имеют строгого порядка в расположении атомов и молекул (стекло, смола, янтарь, канифоль).

В амофных телах наблюдается изотропия - их физические свойства одинаковы по всем направлениям.

При внешних воздействиях аморфные тела обнаруживают одновременно упругие свойства (при ударах раскалываются на куски как твердые тела) и текучесть (при длительном воздействии текут как жидкости).

При низких температурах аморфные тела по своим свойствам напоминают твердые тела, а при высоких температурах - подобны очень вязким жидкостям.

Аморфные тела не имеют определенной температуры плавления , а значит,и температуры кристаллизации.
При нагревании они постепенно размягчаются.

Аморфные тела занимают промежуточное положение между кристаллическими твердыми телами и жидкостями.

Одно и то же вещество может встречаться и в кристаллическом и в некристаллическом виде.

В жидком расплаве вещества частицы движутся совершенно беспорядочно.
Если, например, расплавить сахар, то:

1. если расплав застывает медленно, спокойно, то частицы собираются в ровные ряды и образуются кристаллы. Так получается сахарный песок или кусковой сахар;

2. если остывание происходит очень быстро, то частицы не успевают построиться правильными рядами и расплав затвердевает некристаллическим. Так, если вылить расплавленный сахар в холодную воду или на очень холодное блюдце, образуется сахарный леденец, некристаллический сахар.

Удивительно!

С течением времени некристаллическое вещество может «переродиться», или, точнее, закристаллизоваться, частицы в них собираются в правильные ряды.

Только срок для разных веществ различен:для сахара это несколько месяцев, а для камня — миллионы лет.

Пусть леденец полежит спокойно месяца два-три.Он покроется рыхлой корочкой. Посмотрите на нее в лупу: это мелкие кристаллики сахара. В некристаллическом сахаре начался рост кристаллов. Подождите еще несколько месяцев — и уже не только корочка, но и весь леденец закристаллизуется.

Даже наше обыкновенное оконное стекло может закристаллизоваться. Очень старое стекло становится иногда совершенно мутным,потому что в нем образуется масса мелких непрозрачных кристаллов.

На стекольных заводах иногда в печи образуется «козел», то есть глыба кристаллического стекла. Это кристаллическое стекло очень прочное.Легче разрушить печь, чем выбить из нее упрямого «козла».
Исследовав его, ученые создали новый очень прочный материал из стекла - ситалл. Это стеклокристаллический материал, полученный в результате объёмной кристаллизации стекла.

Любопытно!

Могут существовать разные кристаллические формы одного и того же вещества .
Например, углерод.

Графит - это кристаллический углерод. Из графита сделаны стержни карандашей, которые оставляют след на бумаге при легком надавливании. Структура графита слоиста. Слои графита легко сдвигаются, поэтому чешуйки графита пристают к бумаге при письме.

Но существует и другая форма кристаллического углерода - алмаз .

Подробности Категория: Молекулярно-кинетическая теория Опубликовано 14.11.2014 17:19 Просмотров: 16390

В твёрдых телах частицы (молекулы, атомы и ионы) расположены настолько близко друг к другу, что силы взаимодействия между ними не позволяют им разлетаться. Эти частицы могут лишь совершать колебательные движения вокруг положения равновесия. Поэтому твёрдые тела сохраняют форму и объём.

По своей молекулярной структуре твёрдые тела разделяются на кристаллические и аморфные .

Строение кристаллических тел

Кристаллическая решётка

Кристаллическими называют такие твёрдые тела, молекулы, атомы или ионы в которых располагаются в строго определённом геометрическом порядке, образуя в пространстве структуру, которая называется кристаллической решёткой . Этот порядок периодически повторяется по всем направлениям в трёхмерном пространстве. Он сохраняется на больших расстояниях и не ограничен в пространстве. Его называют дальним порядком .

Типы кристаллических решёток

Кристаллическая решётка - это математическая модель, с помощью которой можно представить, как расположены частицы в кристалле. Мысленно соединив в пространстве прямыми линиями точки, в которых расположены эти частицы, мы получим кристаллическую решётку.

Расстояние между атомами, расположенными в узлах этой решётки, называется параметром решётки .

В зависимости от того, какие частицы расположены в узлах, кристаллические решётки бывают молекулярные, атомные, ионные и металлические .

От типа кристаллической решётки зависят такие свойства кристаллических тел, как температура плавления, упругость, прочность.

При повышении температуры до значения, при котором начинается плавление твёрдого вещества, происходит разрушение кристаллической решётки. Молекулы получают больше свободы, и твёрдое кристаллическое вещество переходит в жидкую стадию. Чем прочнее связи между молекулами, тем выше температура плавления.

Молекулярная решётка

В молекулярных решётках связи между молекулами не прочные. Поэтому при обычных условиях такие вещества находятся в жидком или газообразном состоянии. Твёрдое состояние для них возможно только при низких температурах. Температура их плавления (перехода из твёрдого состояния в жидкое) также низкая. А при обычных условиях они находится в газообразном состоянии. Примеры - иод (I 2), «сухой лёд» (двуокись углерода СО 2).

Атомная решётка

В веществах, имеющих атомную кристаллическую решётку, связи между атомами прочные. Поэтому сами вещества очень твёрдые. Плавятся они при высокой температуре. Кристаллическую атомную решётку имеют кремний, германий, бор, кварц, оксиды некоторых металлов и самое твёрдое в природе вещество - алмаз.

Ионная решётка

К веществам с ионной кристаллической решёткой относятся щёлочи, большинство солей, оксиды типичных металлов. Так как сила притяжения ионов очень велика, то эти вещества способны плавиться только при очень высокой температуре. Их называют тугоплавкими. Они обладают высокой прочностью и твёрдостью.

Металлическая решётка

В узлах металлической решётки, которую имеют все металлы и их сплавы, расположены и атомы, и ионы. Благодаря такому строению металлы обладают хорошей ковкостью и пластичностью, высокой тепло- и электропроводностью.

Чаще всего форма кристалла - правильный многогранник. Грани и рёбра таких многогранников всегда остаются постоянными для конкретного вещества.

Одиночный кристалл называют монокристаллом . Он имеет правильную геометрическую форму, непрерывную кристаллическую решётку.

Примеры природных монокристаллов - алмаз, рубин, горный хрусталь, каменная соль, исландский шпат, кварц. В искусственных условиях монокристаллы получают в процессе кристаллизации, когда охлаждая до определённой температуры растворы или расплавы, выделяют из них твёрдое вещество в форме кристаллов. При медленной скорости кристаллизации огранка таких кристаллов имеет естественную форму. Таким способом в специальных промышленных условиях получают, например, монокристаллы полупроводников или диэлектриков.

Мелкие кристаллики, беспорядочно сросшиеся друг с другом, называются поликристаллами . Ярчайший пример поликристалла - камень гранит. Все металлы также являются поликристаллами.

Анизотропия кристаллических тел

В кристаллах частицы расположены с различной плотностью по разным направлениям. Если мы соединим прямой линией атомы в одном из направлений кристаллической решётки, то расстояние между ними будет одинаковым на всём этом направлении. В любом другом направлении расстояние между атомами тоже постоянно, но его величина уже может отличаться от расстояния в предыдущем случае. Это означает, что на разных направлениях между атомами действуют разные по величине силы взаимодействия. Поэтому и физические свойства вещества по этим направлениям также будут отличаться. Это явление называется анизотропией - зависимостью свойств вещества от направления.

Электропроводность, теплопроводность, упругость, показатель преломления и другие свойства кристаллического вещества различаются в зависимости от направления в кристалле. По-разному в разных направлениях проводится электрический ток, по-разному нагревается вещество, по-разному преломляются световые лучи.

В поликристаллах явление анизотропии не наблюдается. Свойства вещества остаются одинаковыми по всем направлениям.

Существует несколько агрегатных состояний, в которых находятся все тела и вещества. Это:

  • жидкость;
  • плазма;
  • твердое.

Если рассматривать общую совокупность планеты и космоса, то большая часть веществ и тел все же находится в состоянии газа и плазмы. Однако на самой Земле существенно и содержание твердых частиц. Вот о них мы и поговорим, выяснив, чем являются кристаллические и аморфные твердые тела.

Кристаллические и аморфные тела: общее понятие

Все твердые вещества, тела, предметы условно подразделяются на:

  • кристаллические;
  • аморфные.

Разница между ними огромная, ведь в основе подразделения лежат признаки строения и проявляемых свойств. Если говорить кратко, то твердыми кристаллическими именуются те вещества и тела, которые имеют определенный тип пространственной кристаллической решетки, то есть обладают способностью изменяться в определенном направлении, но не во всех (анизотропия).

Если же характеризовать аморфные соединения, то первый их признак - способность менять физические характеристики по всем направлениям одновременно. Это называется изотропией.

Строение, свойства кристаллических и аморфных тел совершенно различны. Если первые имеют четко ограниченную структуру, состоящую из упорядоченно расположенных частиц в пространстве, то у вторых всякий порядок отсутствует.

Свойства твердых тел

Кристаллические и аморфные тела тем не менее относятся к единой группе твердых, а значит, обладают всеми характеристиками данного агрегатного состояния. То есть общими свойствами для них будут следующие:

  1. Механические - упругость, твердость, способность к деформации.
  2. Тепловые - температуры кипения и плавления, коэффициент теплового расширения.
  3. Электрические и магнитные - проводимость тепловая и электрическая.

Таким образом, рассматриваемые нами состояния обладают всеми данными характеристиками. Только проявляться у аморфных тел они будут несколько иначе, нежели у кристаллических.

Важными свойствами для промышленных целей являются механические и электрические. Способность восстанавливаться после деформации или, напротив, крошиться и измельчаться - важная особенность. Также большую роль играет тот факт, может вещество проводить электрический ток либо не способно к этому.

Строение кристаллов

Если описывать строение кристаллических и аморфных тел, то в первую очередь следует указать тип частиц, которые их слагают. В случае кристаллов это могут быть ионы, атомы, атом-ионы (в металлах), молекулы (редко).

Вообще данные структуры характеризуются наличием строго упорядоченной пространственной решетки, которая формируется в результате расположения образующих вещество частиц. Если представить строение кристалла образно, то получится примерно такая картина: атомы (или другие частицы) располагаются друг от друга на определенных расстояниях так, чтобы в результате получилась идеальная элементарная ячейка будущей кристаллической решетки. Затем данная ячейка многократно повторяется, и так складывается общая структура.

Главной особенностью является то, что физические свойства в подобных структурах изменяются в параллелях, но не во всех направлениях. Называется подобное явление анизотропией. То есть если воздействовать на одну часть кристалла, то вторая сторона может не реагировать на это. Так, можно измельчить половину кусочка поваренной соли, однако вторая останется целой.

Типы кристаллов

Принято обозначать два варианта кристаллов. Первый - это монокристаллические структуры, то есть когда сама решетка 1. Кристаллические и аморфные тела в этом случае совсем различны по свойствам. Ведь для монокристалла характерна анизотропия в чистом виде. Он представляет собой самую маленькую структуру, элементарную.

Если же монокристаллы повторяются многократно и соединяются в одно целое, тогда речь идет о поликристалле. Тогда речь об анизотропии не идет, так как ориентация элементарных ячеек нарушает общую упорядоченную структуру. В этом отношении поликристаллы и аморфные тела близки друг другу по проявляемым физическим свойствам.

Металлы и их сплавы

Кристаллические и аморфные тела очень близки друг другу. В этом легко убедиться, взяв в качестве примера металлы и их сплавы. Сами по себе они при обычных условиях твердые вещества. Однако при определенной температуре начинают плавиться и, пока не произойдет полная кристаллизация, будут оставаться в состоянии тянущейся, густой, вязкой массы. А это уже и есть аморфное состояние тела.

Поэтому, строго говоря, практически каждое кристаллическое вещество может при определенных условиях стать аморфным. Так же, как и последнее при кристаллизации становится твердым веществом с упорядоченной пространственной структурой.

Металлы могут иметь разные типы пространственных структур, самыми известными и изученными из которых являются следующие:

  1. Простая кубическая.
  2. Гранецентрированная.
  3. Объемоцентрированная.

В основе структуры кристалла может лежать призма или пирамида, а ее главная часть представлена:

  • треугольником;
  • параллелограммом;
  • квадратом;
  • шестиугольником.

Идеальными свойствами изотропии обладает вещество, имеющее простую правильную кубическую решетку.

Понятие об аморфности

Кристаллические и аморфные тела внешне различить достаточно просто. Ведь последние часто можно перепутать с вязкими жидкостями. В основе структуры аморфного вещества также лежат ионы, атомы, молекулы. Однако они не образуют упорядоченной строгой структуры, а потому и свойства их изменяются во всех направлениях. То есть они изотропны.

Частицы располагаются хаотично, беспорядочно. Лишь иногда они могут образовывать небольшие локусы, что все равно не влияет на общие проявляемые свойства.

Свойства подобных тел

Они идентичны таковым у кристаллов. Различия лишь в показателях для каждого конкретного тела. Так, например, можно выделить такие характеристические параметры аморфных тел:

  • упругость;
  • плотность;
  • вязкость;
  • тягучесть;
  • проводимость и полупроводимость.

Часто можно встретить граничные состояния соединений. Кристаллические и аморфные тела могут переходить в состояние полуаморфности.

Также интересна та черта рассматриваемого состояния, которая проявляется при резком внешнем воздействии. Так, если аморфное тело подвергнуть резкому удару или деформации, то оно способно повести себя как поликристалл и расколоться на мелкие кусочки. Однако если дать этим частям время, то вскоре они снова соединятся вместе и перейдут в вязкое текучее состояние.

У данного состояния соединений нет определенной температуры, при которой происходит фазовый переход. Этот процесс сильно растянут, иногда даже на десятки лет (например, разложение полиэтилена низкого давления).

Примеры аморфных веществ

Можно привести много примеров подобных веществ. Обозначим несколько самых наглядных и часто встречаемых.

  1. Шоколад - типичное аморфное вещество.
  2. Смолы, в том числе фенолформальдегидные, все пластики.
  3. Янтарь.
  4. Стекло любого состава.
  5. Битум.
  6. Гудрон.
  7. Воск и другие.

Аморфное тело образуется в результате очень медленной кристаллизации, то есть повышения вязкости раствора при понижении значения температуры. Часто сложно назвать подобные вещества твердыми, их относят скорее к вязким густым жидкостям.

Особое состояние имеют те соединения, которые при затвердевании вообще не кристаллизуются. Их называют стеклами, а состояние - стеклообразным.

Стеклообразные вещества

Свойства кристаллических и аморфных тел схожи, как мы выяснили, вследствие общего происхождения и единой внутренней природы. Но иногда от них отдельно рассматривают особое состояние веществ, именуемое стеклообразным. Это гомогенный минеральный раствор, который кристаллизуется и затвердевает без формирования пространственных решеток. То есть остается изотропным по изменению свойств всегда.

Так, например, обычное оконное стекло не имеет точного значения температуры плавления. Оно просто при повышении данного показателя медленно плавится, размягчается и переходит в жидкое состояние. Если же воздействие прекратить, то пойдет обратный процесс и начнется затвердевание, но без кристаллизации.

Такие вещества очень ценятся, стекло сегодня - один из самых распространенных и востребованных строительных материалов во всем мире.