Прямоугольный треугольник теорема чевы менелая. Теорема чевы и менелая

ТЕОРЕМЫ ЧЕВЫ И МЕНЕЛАЯ

Теорема Чевы

Большинство замечательных точек треугольника могут быть по­лучены при помощи следующей процедуры. Пусть имеется некоторое правило, согласно которому мы сможем выбрать определенную точку A 1 , на стороне BC (или её про­должении) треугольника ABC (например, выберем середину этой стороны). Затем построим аналогичные точки B 1 , C 1 на двух других сторонах треугольника (в нашем примере еще две середи­ны сторон). Если правило выбора удачное, то прямые AA 1 , BB 1 , CC 1 пересекутся в некоторой точке Z (выбор середин сторон в этом смысле, конечно, удачный, так как медианы треугольника пересекаются в одной точке).

Хотелось бы иметь какой-нибудь общий метод, позво­ляющий по положению точек на сторонах треугольника определять, пересекается ли соответствующая тройка прямых в одной точке или нет.

Универсальное условие, «закрывшее» эту проблему, нашёл в 1678 г. итальянский инженер Джованни Чева .

Определение. Отрезки, соеди­няющие вершины треугольника с точками на противолежащих сторонах (или их продолжениях), называют чевианами, если они пересекаются в одной точке.

Возможны два варианта расположения чевиан. В одном варианте точка


пересечения – внутренняя, а концы чевиан лежат на сторонах треугольника. Во втором варианте точка пересечения внешняя, конец одного чевиана лежит на стороне, а у двух других чевиан концы лежат на продолжениях сторон (смотри чертежи).

Теорема 3. (Прямая теорема Чевы) В произвольном треугольнике АВС на сторонах ВС, СА, АВ или их продолжениях взяты соответственно точки А 1 , В 1 , С 1 , такие, что прямые АА 1 , ВВ 1 , СС 1 пересекаются в некоторой общей точке, тогда

.

Доказательство: известно несколько оригинальных доказательств теоремы Чевы, мы рассмотрим доказательство, основанное на двукратном применении теоремы Менелая. Запишем соотношение теоремы Менелая первый раз для треугольника ABB 1 и секущей CC 1 (точку пересечения чевиан обозначим Z ):

,

а второй раз для треугольника B 1 BC и секущей AA 1 :

.

Перемножив два этих отношения, проведя необходимые сокращения получим соотношение, содержащееся в утверждении теоремы.

Теорема 4. (Обратная теорема Чевы) . Если для выбранных на сторонах треугольника ABC или их продолжениях точек A 1 , В 1 и C 1 выполняется условие Чевы:

,

то прямые AA 1 , BB 1 и CC 1 пересекаются в одной точке .

Доказательство этой теоремы проводится методом от противного, также, как доказательство теоремы Менелая.

Рассмотрим примеры применения прямой и обратной теорем Чевы.

Пример 3. Докажите, что медианы треугольника пересекаются в одной точке.

Решение. Рассмотрим соотношение

для вершин треугольника и середин его сторон. Очевидно, что в каждой дроби в числителе и знаменателе стоят равные отрезки, поэтому все эти дроби равны единице. Следовательно, выполнено соотношение Чевы, поэтому, по обратной теореме, медианы пересекаются в одной точке.

Теорема (теорема Чевы) . Пусть точки лежат на сторонах и треугольника соответственно. Пусть отрезки и пересекаются в одной точке. Тогда

(обходим треугольник по часовой стрелке).

Доказательство. Обозначим через точку пересечения отрезков и . Опустим из точек и перпендикуляры на прямую до пересечения с ней в точках и соответственно (см. рисунок).


Поскольку треугольники и имеют общую сторону , то их площади относятся как высоты, проведенные на эту сторону, т.е. и :

Последнее равенство справедливо, так как прямоугольные треугольники и подобны по острому углу.

Аналогично получаем

и

Перемножим эти три равенства:

что и требовалось доказать.

Про медианы:

1. Разместим в вершинах треугольника ABC единичные массы.
2. Центр масс точек A и B находится посередине AB. Центр масс всей системы должен находиться на медиане к стороне AB, так как центр масс треугольника ABC - это центр масса центра масс точек A и B, и точки C.
(запутанно получилось)
3. Аналогично - ЦМ должен лежать на медиане к сторонам AC и BC
4. Так как ЦМ - единственная точка, то, следовательно все эти три медианы должны пересекаться в ней.

Кстати, сразу же следует, что пересечением они делятся в отношении 2:1. Так как масса центра масс точек A и B равна 2, а масса точки C равна 1, следовательно, общий центр масс согласно теореме о пропорции будет делить медиану в отношении 2/1.

Спасибо большое, доступно изложено, думаю, будет не лишним представить док-во и при помощи методов геометрии масс, например:
Прямые AA1 и CC1 пересекаются в точке O; AC1: C1B = p и BA1: A1C = q. Нужно доказать, что прямая BB1 проходит через точку O тогда и только тогда, когда CB1: B1A = 1: pq.
Поместим в точки A, B и C массы 1, p и pq соответственно. Тогда точка C1 является центром масс точек A и B, а точка A1 - центром масс точек B и C. Поэтому центр масс точек A, B и C с данными массами является точкой O пересечения прямых CC1 и AA1. С другой стороны, точка O лежит на отрезке, соединяющем точку B с центром масс точек A и C. Если B1 - центр масс точек A и C с массами 1 и pq, то AB1: B1C = pq: 1. Остается заметить, что на отрезке AC существует единственная точка, делящая его в данном отношении AB1: B1C.

2. Теорема Чевы

Отрезок, соединяющий вершину треугольника с некоторой точкой на противоположной стороне, называется чевианой . Таким образом, если в треугольнике ABC X , Y и Z - точки, лежащие на сторонах BC , CA , AB соответственно, то отрезки AX , BY , CZ являются чевианами. Этот термин происходит от имени итальянского математика Джованни Чевы, который в 1678 году опубликовал следующую очень полезную теорему:

Теорема 1.21. Если три чевианы AX, BY, CZ (по одной из каждой вершины) треугольника ABC конкурентны, то

|BX| |XC| · |CY| |YA| · |AZ| |ZB| =1 .

Рис. 3.

Когда мы говорим, что три прямые (или отрезка) конкурентны , то мы имеем в виду, что все они проходят через одну точку, которую обозначим через P . Для доказательства теоремы Чевы вспомним, что площади треугольников с равными высотами пропорциональны основаниям треугольников. Ссылаясь на рисунок 3, мы имеем:

|BX| |XC| = SABX SAXC = SPBX SPXC = SABX− SPBX SAXC− SPXC = SABP SCAP .

Аналогично,

|CY| |YA| = SBCP SABP , |AZ| |ZB| = SCAP SBCP .

Теперь, если мы перемножим их, то получим

|BX| |XC| · |CY| |YA| · |AZ| |ZB| = SABP SCAP · SBCP SABP · SCAP SBCP =1 .

Теорема, обратная к этой теореме, также верна:

Теорема 1.22. Если три чевианы AX, BY, CZ удовлетворяют соотношению

|BX| |XC| · |CY| |YA| · |AZ| |ZB| =1 ,

то они конкурентны .

Чтобы это показать, предположим, что две первые чевианы пересекаются в точке P , как и прежде, а третья чевиана, проходящая через точку P , будет CZ′ . Тогда, по теореме 1.21,

|BX| |XC| · |CY| |YA| · |AZ′| |Z′B| =1 .

Но по предположению

|BX| |XC| · |CY| |YA| · |AZ| |ZB| =1 .

Следовательно,

|AZ| |ZB| = |AZ′| |Z′B| ,

точка Z′ совпадает с точкой Z , и мы доказали, что отрезки AX , BY и CZ конкурентны (, стр. 54 и , стр, 48, 317).

Математика – 10 класс Мендель Виктор Васильевич, декан факультета естественных наук, математики и информационных технологий ДВГГУ ТЕОРЕМЫ ЧЕВЫ И МЕНЕЛАЯ Особое место в планиметрии отведено двум замечательным теоремам: теореме Чевы и теореме Менелая. Эти теоремы не включены в базовую программу курса геометрии средней школы, но их изучение (и применение) рекомендуется всем, кто интересуется математикой чуть больше, чем это возможно в рамках школьной программы. Чем же интересны эти теоремы? Сначала отметим, что при решении геометрических задач продуктивно сочетаются два подхода: - один основан на определении базовой конструкции (например: треугольник – окружность; треугольник – секущая прямая; треугольник – три прямых, проходящих через его вершины и пересекающиеся в одной точке; четырехугольник с двумя параллельными сторонами и т.п.), - а второй – метод опорных задач (простых геометрических задач, к которым сводится процесс решения сложной задачи). Так вот, теоремы Менелая и Чевы относятся к наиболее часто встречающимся конструкциям: первая рассматривает треугольник, стороны или продолжения сторон которого пересечены некоторой прямой (секущей), во второй речь идет о треугольнике и трех прямых, проходящих через его вершины, пересекающиеся в одной точке. Теорема Менелая Эта теорема наблюдающуюся (вместе для с обратной) отношений показывает отрезков, закономерность, соединяющих вершины некоторого треугольника и точки пересечения секущей со сторонами (продолжениями сторон) треугольника. На чертежах приведены два возможных случая расположения треугольника и секущей. В первом случае секущая пересекает две стороны треугольника и продолжение третьей, во втором – продолжения всех трех сторон треугольника. Теорема 1. (Менелая) Пусть ABC пересечен прямой, не параллельной стороне АВ и пересекающей две его стороны АС и ВС соответственно в точках В1 и А1, а прямую АВ в точке С1 тогда AB1 CA1 BC1    1. B1C A1B C1 A Теорема 2. (обратная теореме Менелая) Пусть в треугольнике АВС точки А1, В1, С1 принадлежит прямым ВС, АС, АВ соответственно, тогда, если AB1 CA1 BC1   1 B1C A1B C1 A , то точки А1, В1, С1 лежат на одной прямой. Доказательство первой теоремы можно провести так: на секущую прямую опускают перпендикуляры из всех вершин треугольника. В результате получают три пары подобных прямоугольных треугольников. Фигурирующие в формулировке теоремы отношения отрезков заменяют на отношения перпендикуляров, соответствующих им по подобию. Оказывается, что каждый отрезок – перпендикуляр в дробях будет присутствовать дважды: один раз в одной дроби в числителе, второй раз, в другой дроби, в знаменателе. Таким образом, произведение всех этих отношений окажется равным единице. Обратная теорема доказывается методом «от противного». Предполагается, что при выполнении условий теоремы 2 точки А1, В1, С1 не лежат на одной прямой. Тогда прямая А1В1 пересечет сторону АВ в точке С2, отличной от точки С1. При этом, в силу теоремы 1, для точек А1, В1, С2 будет выполняться то же отношение, что и для точек А1, В1, С1. Из этого следует, что точки С1 и С2 поделят отрезок AB в одинаковых отношениях. Тогда эти точки совпадут – получили противоречие. Рассмотрим примеры применения теоремы Менелая. Пример 1. Доказать, что медианы треугольника в точке пересечения делятся в отношении 2:1 считая от вершины. Решение. Запишем полученное в теореме соотношение, Менелая для треугольника ABMb и прямой McM(C): AM c BM M bC    1. M c B MM b CA Первая дробь в этом произведении очевидно равна 1, а третья второе отношение равно 1 . Поэтому 2 2:1, что и требовалось доказать. Пример 2. Секущая пересекает продолжение стороны AC треугольника ABC в точке B1 так, что точка C является серединой отрезка AB1. Сторону AB эта секущая делит пополам. Найдите, в каком отношении она делит сторону BC? Решение. Запишем для треугольника и секущей произведение трех отношений из теоремы Менелая: AB1 CA1 BC1    1. B1C A1B C1 A Из условий задачи следует, что первое отношение равно единице, а третье 1 , 2 таким образом, второе отношение равно 2, т.е., секущая делит сторону BC в отношении 2:1. Следующий пример применения теоремы Менелая мы встретим, когда будем рассматривать доказательство теоремы Чевы. Теорема Чевы Большинство замечательных точек треугольника могут быть получены при помощи следующей процедуры. Пусть имеется некоторое правило, согласно которому мы сможем выбрать определенную точку A1, на стороне BC (или её продолжении) треугольника ABC (например, выберем середину этой стороны). Затем построим аналогичные точки B1, C1 на двух других сторонах треугольника (в нашем примере еще две середины сторон). Если правило выбора удачное, то прямые AA1, BB1, CC1 пересекутся в некоторой точке Z (выбор середин сторон в этом смысле, конечно, удачный, так как медианы треугольника пересекаются в одной точке). Хотелось бы иметь какой-нибудь общий метод, позволяющий по положению точек на сторонах треугольника определять, пересекается ли соответствующая тройка прямых в одной точке или нет. Универсальное условие, «закрывшее» эту проблему, нашёл в 1678 г. итальянский инженер Джованни Чева. Определение. Отрезки, соединяющие вершины треугольника с точками на противолежащих сторонах (или их продолжениях), называют чевианами, если они пересекаются в одной точке. Возможны два варианта расположения чевиан. В одном варианте точка пересечения – внутренняя, а концы чевиан лежат на сторонах треугольника. Во втором варианте точка пересечения внешняя, конец одного чевиана лежит на стороне, а у двух других чевиан концы лежат на продолжениях сторон (смотри чертежи). Теорема 3. (Прямая теорема Чевы) В произвольном треугольнике АВС на сторонах ВС, СА, АВ или их продолжениях взяты соответственно точки А1, В1, С1, такие, что прямые АА1, ВВ1, СС1 пересекаются в некоторой общей точке, тогда BA1 CB1 AC1   1 CA1 AB1 BC1 . Доказательство: известно несколько оригинальных доказательств теоремы Чевы, мы рассмотрим доказательство, основанное на двукратном применении теоремы Менелая. Запишем соотношение теоремы Менелая первый раз для треугольника ABB1 и секущей CC1 (точку пересечения чевиан обозначим Z): AC1 BZ B1C    1, C1B ZB1 CA а второй раз для треугольника B1BC и секущей AA1: B1Z BA1 CA    1. ZB A1C AB1 Перемножив два этих отношения, проведя необходимые сокращения получим соотношение, содержащееся в утверждении теоремы. Теорема 4. (Обратная теорема Чевы). Если для выбранных на сторонах треугольника ABC или их продолжениях точек A1, В1 и C1 выполняется условие Чевы: BA1 CB1 AC1   1 CA1 AB1 BC1 , то прямые AA1, BB1 и CC1 пересекаются в одной точке. Доказательство этой теоремы проводится методом от противного, также, как доказательство теоремы Менелая. Рассмотрим примеры применения прямой и обратной теорем Чевы. Пример 3. Докажите, что медианы треугольника пересекаются в одной точке. Решение. Рассмотрим соотношение AC1 BA1 CB1   C1B A1C B1 A для вершин треугольника и середин его сторон. Очевидно, что в каждой дроби в числителе и знаменателе стоят равные отрезки, поэтому все эти дроби равны единице. Следовательно, выполнено соотношение Чевы, поэтому, по обратной теореме, медианы пересекаются в одной точке. Задачи для самостоятельного решения Предлагаемые здесь задачи являются контрольной работой №1 для учащихся 9 классов. Решите эти задачи, запишите решения в отдельную (от физики и информатики) тетрадь. Укажите на обложке следующую информацию о себе: 1. Фамилия, имя, класс, профиль класса (например: Пупкин Василий,9 кл., математический) 2. Индекс, адрес места жительства, электронная почта (если есть), телефон (домашний или мобильный) 3. Данные о школе (например: МБОУ №1 п. Бикин) 4. Фамилия, И. О. учителя математики (например: учитель математики Петрова М.И.) Рекомендуется решить не менее четырех задач. М 9.1.1. Может ли секущая прямая из теоремы Менелая разрезать стороны треугольника (или их продолжения) на отрезки длиной: а) 3, 3, 5, 7,10, 14; в) 3, 5, 6, 7, 7, 10, Если такие варианты возможны, приведите примеры. Отрезки могут идти в разном порядке. М 9.1.2. Могут ли внутренние чевианы треугольника делить его стороны на отрезки: а) 3, 3, 5, 7,10, 14; в) 3, 5, 6, 7, 7, 10, Если такие варианты возможны, приведите примеры. Отрезки могут идти в разном порядке. Указание: придумывая примеры не забудьте проверить неваенство треугольника. М 9.1.3. Используя обратную теорему Чевы докажите, что: а) биссектрисы треугольника пересекаются в одной точке; б) отрезки, соединяющие вершины треугольника с точками на противоположных сторонах, в которых эти стороны касаются вписанной окружности, пересекаются в одной точке. Указания: а) вспомните, в каком отношении биссектриса делит противоположную сторону; б) используйте свойство, что отрезки двух касательных, проведенные из одной точки к некоторой окружности, равны. М 9.1.4. Завершите доказательство теоремы Менелая, начатое в первой части статьи. М 9.1.5. Докажите, что высоты треугольника пересекаются в одной точке, используя обратную теорему Чевы. М 9.1.6. Докажите теорему Симпсона: из произвольной точки M, взятой на описанной вокруг треугольника ABC окружности, на стороны или продолжения сторон треугольника опущены перпендикуляры, докажите, что основания этих перпендикуляров лежат на одной прямой. Указание: используйте обратную теорему Менелая. Попробуйте выразить длины отрезков, используемых в отношениях, через длины перпендикуляров, проведенных их точки M. Также полезно вспомнить свойства углов вписанного четырехугольника.

— Что общего между теоремой Менелая и наркотиками?
— О них все знают, но никто не говорит.
Типичный разговор с учеником

Это прикольная теорема, которая поможет вам в тот момент, когда кажется, что уже ничего не поможет. В уроке мы сформулируем саму теорему, рассмотрим несколько вариантов её использования, а в качестве десерта вас ждёт суровое домашнее задание. Поехали!

Для начала — формулировка. Возможно, я дам не самую «красивую» версию теорему, но зато самую понятную и удобную.

Теорема Менелая. Рассмотрим произвольный треугольник $ABC$ и некую прямую $l$, которая пересекает две стороны нашего треугольника внутренним образом и одну — на продолжении. Обозначим точки пересечения $M$, $N$ и $K$:

Треугольник $ABC$ и секущая $l$

Тогда верно следующее соотношение:

\[\frac{AM}{MB}\cdot \frac{BN}{NC}\cdot \frac{CK}{KA}=1\]

Хочу отметить: не надо зубрить расположение букв в этой злобной формуле! Сейчас я расскажу вам алгоритм, по которому вы всегда сможете восстановить все три дроби буквально на лету. Даже на экзамене в состоянии стресса. Даже если вы сидите за геометрией в 3 часа ночи и вообще уже ничего не понимаете.:)

Схема простая:

  1. Чертим треугольник и секущую. Например, так, как показано в теореме. Обозначаем вершины и точки какими-нибудь буквами. Это может быть произвольны треугольник $ABC$ и прямая с точками $M$, $N$, $K$, либо какая-нибудь другая — суть не в этом.
  2. Ставим ручку (карандаш, маркер, гусиное перо) в любую вершину треугольника и начинаем обход сторон этого треугольника с обязательным заходом в точки пересечения с прямой . Например, если сначала пойти из точки $A$ в точку $B$, то получим отрезки: $AM$ и $MB$, затем $BN$ и $NC$, а затем (внимание!) $CK$ и $KA$. Поскольку точка $K$ лежит на продолжении стороны $AC$, то при движении из $C$ в $A$ придётся временно свалить из треугольника.
  3. А теперь просто делим соседние отрезки друг на друга ровно в том порядке, в котором мы получили их при обходе: $AM/MB$, $BN/NC$, $CK/KA$ — получим три дроби, произведение которых и даст нам единицу.

На чертеже это будет выглядеть вот так:

Простая схема, позволяющая восстановить формулу из т. Менелая

И сразу пара замечаний. Точнее, это даже не замечания, а ответы на типичные вопросы:

  • Что будет, если прямая $l$ пройдёт через вершину треугольника? Ответ: ничего. Теорема Менелая в этом случае не работает.
  • Что будет, если выбрать другую вершину для старта или пойти в другую сторону? Ответ: будет то же самое. Просто изменится последовательность дробей.

Думаю, с формулировкой разобрались. Давайте посмотрим, как вся эта дичь применяется для решения сложных геометрических задач.

Зачем всё это нужно?

Предупреждение. Чрезмерное применение теоремы Менелая для решения планиметрических задач может нанести непоправимый вред вашей психике, поскольку данная теорема значительно ускоряет вычисления и заставляет вспоминать другие важные факты из школьного курса геометрии.

Доказательство

Я не буду её доказывать.:)

Ладно, докажу:

Теперь осталось сравнить два полученных значения для отрезка $CT$:

\[\frac{AM\cdot BN\cdot CK}{BM\cdot CN\cdot AK}=1;\]

\[\frac{AM}{BM}\cdot \frac{BN}{CN}\cdot \frac{CK}{AK}=1;\]

Ну вот и всё. Осталось только «причесать» эту формулу, правильно расставив буквы внутри отрезков — и формула готова.:)


В курсе геометрии есть теоремы, которые изучаются в школе недостаточно подробно, но которые могут быть полезны для решения наиболее сложных задач ОГЭ и ЕГЭ. К ним относится, например, теорема Менелая. Традиционно она изучается в классах с углублённым изучением математики в 8-м классе, а в обычной программе (по учебнику Атанасяна) теорема Менелая включена в учебник 10-11 классов.
Между тем результат штудирования Интернет-ресурсов, упоминающих теорему Менелая, показывает, что обычно она формулируется неполно и потому неточно, а все случаи её использования, равно как и доказательство обратной теоремы не приводятся. Цель настоящей статьи - разобраться, что такое теорема Менелая, как и для чего она используется, а также поделиться методикой преподавания этой теоремы на индивидуальных занятиях репетитора с учениками.
Рассмотрим типовую задачу (Задание № 26, ОГЭ), встречающуюся на экзаменах во множестве вариантов, отличающихся только числами в условии.


Решение самой задачи несложное – ознакомиться с ним можно ниже. В настоящей же статье нас интересует главным образом немножко другой момент, который зачастую опускается, понимается, как сам собой разумеющийся, как очевидный. Но очевидное - это то, что можно доказать. А доказать это можно различными способами, - обычно доказывают исключительно с помощью подобия, - но можно и с помощью теоремы Менелая.
Из условия следует, что, так как углы при нижнем основании трапеции в сумме составляют 90°, то если продлить боковые стороны, получится прямоугольный треугольник. Далее из получившейся точки пересечения продолжений боковых сторон проводят отрезок, который проходит через середины оснований. А почему этот отрезок проходит через все эти три точки? Обычно об этом в решениях задачи, встречающихся в Интернете, не говорится ни слова. Отсутствует даже отсылка к теореме о четырёх точках трапеции, не говоря уже о доказательстве этого утверждения. А между тем, оно может быть доказано с помощью теоремы Менелая, которая представляет собой условие принадлежности трёх точек к одной прямой.

Формулировки теоремы Менелая
Настало время сформулировать теорему. Надо отметить, что в различных учебниках и пособиях встречаются довольно-таки разные её формулировки, хотя суть остаётся неизменной. В учебнике Атанасяна и др. за 10-11 классы приводится такая формулировка теоремы Менелая, назовём её "векторной":

В учебнике «Геометрия 10-11 класс» Александрова и др., а также в учебном пособии этих же авторов «Геометрия. 8 класс» приводится несколько иная формулировка теоремы Менелая, причём и для 10-11 классов и для 8 класса она одинаковая:
Здесь необходимо сделать три примечания.
Примечание 1. На экзаменах не бывает задач, которые необходимо решить только с помощью векторов, для которых и используется именно «минус единица». Поэтому для практического использования наиболее удобна формулировка, представляющая, по сути, следствие из теоремы для отрезков (это вторая формулировка, выделенная жирными буквами). Ею и ограничимся для дальнейшего изучения теоремы Менелая, поскольку наша цель научиться применять её для решения задач.
Примечание 2. Несмотря на то, что во всех учебниках чётко оговаривается и тот случай, когда все три точки A 1 , B 1 и C 1 могут лежать на продолжениях сторон треугольника (или на прямых, содержащих стороны треугольника), на нескольких репетиторских сайтах Интернета формулируется только тот случай, когда две точки лежат на двух сторонах, а третья - на продолжении третьей стороны. Вряд ли это можно оправдать тем, что на экзаменах встречаются только задачи первого типа и не могут встретиться задачи, когда все эти точки лежат на продолжениях трёх сторон.
Примечание 3. Обратная теорема, т.е. условие для того, чтобы три точки лежали на одной прямой, обычно не рассматривается вовсе, а некоторые репетиторы даже советуют (???) заниматься только прямой теоремой, и не рассматривать обратную теорему. Между тем доказательство обратного утверждения достаточно поучительно и позволяет доказывать утверждения, похожие на то, что приведено в решении задачи 1. Опыт доказательства обратной теоремы, несомненно, даст ощутимую пользу ученику при решении задач.

Рисунки и закономерности

Для того, чтобы научить ученика видеть теорему Менелая в задачах и пользоваться ею при решениях важно обратить внимание на рисунки и закономерности в записи теоремы для конкретного случая. А поскольку сама теорема в "чистом" виде, т.е. без окружения другими отрезками, сторонами различных фигур в задачах обычно не встречается, то целесообразнее показывать теорему на конкретных задачах. А если и показывать рисунки в качестве объяснения, то делать их многовариантными. При этом выделять одним цветом (например, красным) прямую, которая образовывается тремя точками, а синим - отрезки треугольника, участвующие в записи теоремы Менелая. При этом те элементы, которые не участвуют, остаются чёрными:

На первый взгялд может показаться, что формулировка теоремы достаточно сложная и не всегда понятная; ведь в ней участвуют три дроби. Действительно, если опыта у ученика недостаточно, то он легко может ошибиться в написании, и как следствие, неправильно решить задачу. И вот тут, бывает, начинаются проблемы. Дело в том, что в учебниках обычно не акцентируется внимание на том, как «совершать обход» при написании теоремы. Ничего не говорится и о закономерностях записи самой теоремы. Поэтому некоторые репетиторы даже рисуют различные стрелки, в каком порядке записывать формулу. И предлагают ученикам строго следовать таким установкам. Отчасти это правильно, но куда важнее понять суть теоремы, чем чисто механически ее записывать, пользуясь «правилом обхода» и стрелками.
На самом деле, важно понять всего лишь логику "обхода", а она настолько точная, что ошибиться в написании формулы невозможно. В обоих случаях a) и b) напишем формулу для треугольника AMC.
Для начала определяем для себя три точки - вершины треугольника. У нас это точки A, M, C. Затем определяем точки, лежащие на пересекающей прямой (красной прямой), это - B, P, K. Начинаем "движение" с вершины треугольника, например, из точки C. Из этой точки "идём" к точке, которая образуется пересечением, например, стороны AC и пересекающей прямой - у нас это точка K. Пишем в числитель первой дроби - СК. Дальше из точки K "идем" в оставшуюся точку на прямой AC - в точку A. В знаменатель первой дроби пишем - KA. Так как точка A принадлежит ещё и прямой AM, то проделываем то же самое с отрезками на прямой AM. И тут опять, начинаем с вершины, далее "идём" в точку на пересекающей прямой, после чего переходим в вершину M. "Очутившись" на прямой BC проделываем то же самое и с отрезками на этой прямой. Из M "идём" конечно же в B, после чего возвращаемся в C. Этот "обход" можно совершать как по часовой стрелке, так и против часовой стрелки. Важно только понять правило обхода - из вершины к точке на прямой, и от точки на прямой - к другой вершине. Примерно так обычно и объясняют правило записи произведения дробей. В итоге получается:
Обратим внимание на то, что весь "обход" отражён в записи и для удобства показан стрелками.
Однако получившуюся запись можно получить не выполняя никакого "обхода". После того, как выписаны точки - вершины треугольника (A, M, C ) и точки - лежащие на пересекающей прямой (B, P, K ), записывают ещё и тройки букв, обозначающих точки, лежащие на каждой из трёх прямых. В наших случаях, это I) B , M , C ; II) A , P , M и III) A , C , K . После этого верную левую часть формулы можно написать даже не глядя на чертёж и в любом порядке. Нам достаточно из каждой тройки букв написать верные дроби, которые подчиняются правилу - условно "средние" буквы - это точки пересекающей прямой (красные). Условно "крайние" буквы - это точки вершин треугольника (синие). При написании формулы таким способом надо следить только за тем, чтобы любая "синяя" буква (вершина треугольника) попала бы по разу и в числитель и в знаменатель Например.
Этот метод бывает особенно полезен для случаев типа b), а также для самопроверки.

Теорема Менелая. Доказательства
Существует несколько различных способов доказательства теоремы Менелая. Иногда доказывают с помощью подобия треугольников, для чего из точки M (как на данном чертеже) проводят отрезок, параллельный AC. Другие проводят дополнительную прямую, не параллельную пересекающей прямой, а потом прямыми, параллельными пересекающей словно "проецируют" все нужные отрезки на эту прямую и с помощью обобщения теоремы Фалеса (т.е. теоремы о пропорциональных отрезках) выводят формулу. Однако, пожалуй, наиболее простой способ доказательства получается, если из точки M провести прямую, параллельную пересекающей. Докажем теорему Менелая этим способом.
Дано: Треугольник ABC. Прямая PK пересекает стороны треугольника и продолжение стороны MC в точке B.
Доказать, что выполняется равенство:
Доказательство. Проведём луч MM 1 , параллельно BK. Запишем отношения, в которых участвуют отрезки, которые входят в запись формулы теоремы Менелая. В одном случае рассмотрим прямые, пересекающиеся в точке A, а в другом случае, пересекающиеся в точке C. Перемножим левые и правые части этих уравнений:

Теорема доказана.
Аналогично доказывается теорема и для случая b}.


Из точки C проведём отрезок CC 1 , параллельный прямой BK. Запишем отношения, в которых участвуют отрезки, которые входят в запись формулы теоремы Менелая. В одном случае рассмотрим прямые, пересекающиеся в точке A, а в другом случае, пересекающиеся в точке M. Так как в теореме Фалеса ничего не говорится о расположении отрезков на двух пересекающихся прямых, то отрезки могут располагаться и по разные стороны от точки M. Поэтому

Теорема доказана.

Теперь докажем обратную теорему.
Дано:
Доказать, что точки B, P, К лежат на одной прямой.
Доказательство. Пусть прямая BP пересекает AC в некоторой точке K 2 , не совпадаюшей с точкой K. Так как BP - это прямая, содержащая точку K 2 , то для неё справедлива только что доказанная теорема Менелая. Значит, для нее запишем
Однако только что мы доказали, что
Отсюда следует, что Точки K и K 2 совпадают, так как делят сторону AC в одном и том же отношении.
Для случая b) теорема доказывается аналогично.

Решение задач с помощью теоремы Менелая

Для начала вернёмся к Задаче 1 и решим её. Прочитаем ещё раз . Сделаем чертёж:

Дана трапеция ABCD. ST - средняя линия трапеции, т.е. одно из данных расстояний. Углы A и D в сумме составляют 90°. Продлеваем боковые стороны AB и CD и на их пересечении получаем точку K. Соединим точку K с точкой N - серединой BC. Теперь докажем, что точка P, являющаяся серединой основания AD также принадлежит прямой KN. Рассмотрим последовательно треугольники ABD и ACD. Две стороны каждого треугольника пересекает прямая KP. Предположим, прямая KN пересекает основание AD в некоторой точке X. По теореме Менелая:
Так как треугольник AKD прямоугольный, то точка P, являющаяся серединой гипотенузы AD, равноудалена от A, D и K Аналогично точка N равноудалена от точек B, C и K. Откуда одно основание равно 36, а другое равно 2.
Решение. Рассмотрим треугольник BCD. Его пересекает луч AX, где X - точка пересечения этого луча с продолжением стороны BC. По теореме Менелая:
Подставив (1) во (2) получаем:

Решение. Обозначим буквами S 1 , S 2 , S 3 и S 4 площади соответственно треугольников AOB, AOM, BOK и четырёхугольника MOKC.

Так как BM - медиана, то S ABM = S BMC .
Значит, S 1 + S 2 = S 3 + S 4 .
Так как надо найти отношение площадей S 1 и S 4 , поделим обе части уравнения на S 4:
Подставим эти значения в формулу (1): Из треугольника BMC при секущей AK по теореме Менелая имеем: Из треугольника AKC при секущей BM по теореме Менелая имеем: Все нужные отношения выражены через k и теперь можно подставить их в выражение (2):

© Репетитор по математике в Москве, Александр Анатольевич, 8-968-423-9589.

Решите самостоятельно

1) Задача попроще. На медиане BD треугольника ABC отмечена точка M так, что BM: MD = m: n. Прямая AM пересекает сторону BC в точке K.
Найдите отношение BK: KC.
2) Задача посложнеее. Биссектриса угла A параллелограмма ABCD пересекает сторону ВС в точке P, а диагональ BD - в точке T. Известно, что AB: AD = k (0 3) Задача № 26 ОГЭ. В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 36. Найдите стороны треугольника ABC.
Подсказка репетитора по математике. В Интернете встречается решение такой задачи с помощью дополнительного построения и далее либо подобия, либо нахождения площадей, и только после этого сторон треугольника. Т.е. оба этих способа требуют дополнительного построения. Однако решение такой задачи с помощью свойства биссектрисы и теоремы Менелая не требует никаких дополнительных построений. Оно гораздо проще и рациональнее.

Теорема Менелая или теорема о полном четырехстороннике известна еще со времен Древней Греции. Название она получила в честь своего автора – древнегреческого математика и астронома Менелая Александрийского (примерно 100 г. н.э.). Эта теорема очень красива и проста, но, к сожалению, в современном школьном курсе ей не уделено должного внимания. А, между тем, она во многих случаях помогает очень легко и изящно решать достаточно сложные геометрические задачи.

Теорема 1 (теорема Менелая) . Пусть ∆ABC пересечен прямой, не параллельной стороне AB и пересекающей две его стороны AC и BC соответственно в точках F и E, а прямую AB в точке D (рис. 1) ,

тогда А F FC * CE EB * BD DA = 1

Примечание. Чтобы легко запомнить эту формулу, можно воспользоваться следующим правилом: двигаться вдоль контура треугольника от вершины до точки пересечения с прямой и от точки пересечения до следующей вершины.

Доказательство. Из вершин A, B, C треугольника проведем соответственно три параллельные прямые до пересечения с секущей прямой. Получим три пары подобных треугольников (признак подобия по двум углам). Из подобия треугольников вытекают следующие равенства

А теперь перемножим данные полученные равенства:

Теорема доказана.

Чтобы ощутить всю прелесть данной теоремы, попробуем решить предложенную ниже геометрическую задачу двумя разными способами: используя вспомогательное построение и с помощью теоремы Менелая .

Задача 1.

В ∆ABC биссектриса AD делит сторону BC в отношении 2: 1. В каком отношении медиана CE делит эту биссектрису?

Решение.

С помощью вспомогательного построения :

Пусть S – точка пересечения биссектрисы AD и медианы CE. Достроим ∆ASB до параллелограмма ASBK. (рис. 2)

Очевидно, что SE = EK, так как точка пересечения параллелограмма делит диагонали пополам. Рассмотрим теперь треугольники ∆CBK и ∆CDS. Нетрудно заметить, что они подобны (признак подобия по двум углам: и как внутренние односторонние углы при параллельных прямых AD и KB и секущей CB). Из подобия треугольника вытекает следующее:

Используя условие, получим:

CB CD = CD + DB CD = CD + 2CD CB = 3CD CD = 3

Теперь заметим, что KB = AS, как противолежащие стороны параллелограмма. Тогда

AS SD = KB SD = CB CD = 3

С помощью теоремы Менелая .

Рассмотрим ∆ABD и применим к нему теорему Менелая (прямая, проходящая через точки C, S, E – секущая прямая):

BE EA * AS SD * DC CB = 1

По условию теоремы имеем BE/EA = 1 , так как CE – медиана, а DC/CB = 1/3, как мы уже подсчитали ранее.

1 * AS SD * 1 3 = 1

Отсюда получаем AS/SD = 3 На первый взгляд оба решения достаточно компактны и примерно равноценны. Однако, идея дополнительного построения для школьников часто оказывается очень сложна и совсем не очевидна, тогда как, зная теорему Менелая, ему достаточно лишь правильно ее применить.

Рассмотрим еще одну задачу, в которой очень изящно работает теорема Менелая.

Задача 2.

На сторонах AB и BC ∆ABC даны соответственно точки M и N такие, что выполняются следующие равенства

AM MB = CN NA = 1 2

В каком соотношении точка S пересечения отрезков BN и CM делит каждый из этих отрезков (рис. 3)?

Решение.

Рассмотрим ∆ABN. Применим теорему Менелая для этого треугольника (прямая, проходящая через точки M, S, C – секущая прямая)

AM MB * BC SN * CN CA = 1

Из условия задачи имеем: AM MB = 1 2

NC CA = NC CN + NA = NC CN + 2NC = NC 3 NC = 1 3

Подставим эти результаты и получим:

1 2 * BS SN * 1 3 = 1

Отсюда BS/SN = 6. А, значит, точка S пересечения отрезков BN и CM делит отрезок BN в отношении 6: 1.

Рассмотрим ∆ACM. Применим теорему Менелая для этого треугольника (прямая, проходящая через точки N, S, B – секущая прямая):

AN NC * CS SM * MB BA = 1

Из условия задачи имеем: AN NC = 2

MB BA = MB BM + MA = 2MA 2MA + MA = 2MB 3MA = 2 3

Подставим эти результаты и получим:

2 * CS SM * 2 3 = 1

Отсюда CS/SM = 3/4

А, значит, точка S пересечения отрезков BN и CM делит отрезок CM в отношении 3: 4.

Справедлива и обратная теорема к теореме Менелая. Она часто оказывается еще более полезной. Особенно хорошо она работает в задачах на доказательства. Нередко с ее помощью красиво, легко и быстро решаются даже олимпиадные задачи.

Теорема 2 (Обратная теорема Менелая). Пусть дан треугольник ABC и точки D, E, F принадлежат соответственно прямым BC, AC, AB (отметим, что они могут лежать как на сторонах треугольника ABC, так и на их продолжениях) (рис. 4) .

Тогда, если AF FC * CE EB * BD DA = 1

то точки D, E, F лежат на одной прямой.

Доказательство. Докажем теорему методом от противного. Предположим, что соотношение из условия теоремы выполняется, но точка F не лежит на прямой DE (рис. 5).

Обозначим точку пересечения прямых DE и AB буквой O. Теперь применим теорему Менелая и получим: AE EC * CD DB * BO OA = 1

Но, с другой стороны, равенство BF FA = BO OA

не может выполняться.

Поэтому соотношение из условия теоремы не может быть выполнено. Получили противоречие.

Теорема доказана.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.